A Real-Time Map Restoration Algorithm Based on ORB-SLAM3
Abstract
:1. Introduction
- After the scale optimization of ORB-SLAM3, in order to obtain a complete map, all frames before successful initialization are quickly tracked back. In this process, the bag-of-words is used to match the feature points, and the MLPNP [27] is used to estimate the pose.
- In order to offset the extra time consumption caused by reverse tracking, the loop closure detection of each frame is accelerated. The process uses the mean, standard deviation and correlation of grayscale histogram to pre-process and pre-screen the loop candidate frames. It can improve the quality of the loop candidate frames and further reduce the number of invalid calculations in the loop closure verification.
2. Materials and Methods
2.1. Overview of Real-Time Map Restoration Algorithms
2.2. Map Restoration Based on Reverse Tracking
2.3. Loop Closure Detection Acceleration Based on Grayscale Histogram
3. Simulation Results and Performance Analysis
3.1. Quantitative Analysis
3.2. Qualitative Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SLAM | Simultaneous Localization and Mapping |
IMU | Inertial Measurement Unit |
MSCKF | Multi-State Constraint Kalman Filter |
MLPNP | Maximum Likelihood Solution to The Perspective-N-Point |
VIO | Visual Inertial Odometry |
OPENVINS | Open Visual-Inertial SLAM |
VINS | Visual-Inertial SLAM |
EKF | Extended Kalman filter |
ARUCO | Augmented Reality University of Cordoba |
LSD-SLAM | Large-Scale Direct SLAM |
SVO | Semidirect Visual Odometry |
ORB | ORiented Brief |
LK | Lucas–Kanade |
RGB-D | RGB-Depth |
CPU | Central Processing Unit |
SSD | Single Shot Multibox Detector |
OKVINS | Open Keyframe-Based Visual-Inertial SLAM |
BRISK | Binary Robust Invariant Scalable Keypoints |
PGO | Pose Graph Optimizer |
SFM | Structure From Motion |
RANSAC | Random Sampling Consensus |
Sim3 | Similar Transformation Using 3 Pairs of Points |
MAV | Micro Aerial Vehicle |
BA | Bundle Adjustment |
ATE | Absolute Trajectory Error |
RMSE | Root Mean Square Error |
SD | Standard Deviation |
References
- Mourikis, A.I.; Roumeliotis, S.I. A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 3565–3572. [Google Scholar] [CrossRef]
- Geneva, P.; Eckenhoff, K.; Lee, W.; Yang, Y.; Huang, G. OpenVINS: A Research Platform for Visual-Inertial Estimation. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 4666–4672. [Google Scholar] [CrossRef]
- Engel, J.; Schops, T.; Cremers, D. LSD-SLAM: Large-Scale Direct monocular SLAM. In Proceedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Volume 8690 LNCS, pp. 834–849. [Google Scholar]
- Forster, C.; Zhang, Z.; Gassner, M.; Werlberger, M.; Scaramuzza, D. SVO: Semidirect Visual Odometry for Monocular and Multicamera Systems. IEEE Trans. Robot. 2017, 33, 249–265. [Google Scholar] [CrossRef] [Green Version]
- Mur-Artal, R.; Tardós, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [Google Scholar] [CrossRef] [Green Version]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Cao, T. SLAM with mapping based on photometric information and ORB features. J. East China Univ. Sci. Technol. 2021, 47, 331–339. [Google Scholar] [CrossRef]
- Yu, C.; Liu, Z.; Liu, X.J.; Xie, F.; Yang, Y.; Wei, Q.; Fei, Q. DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1168–1174. [Google Scholar] [CrossRef] [Green Version]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 2013, 34, 189–206. [Google Scholar] [CrossRef] [Green Version]
- Bescos, B.; Fácil, J.M.; Civera, J.; Neira, J. DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes. IEEE Robot. Autom. Lett. 2018, 3, 4076–4083. [Google Scholar] [CrossRef] [Green Version]
- Zhong, F.; Wang, S.; Zhang, Z.; Chen, C.; Wang, Y. Detect-SLAM: Making Object Detection and SLAM Mutually Beneficial. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 1001–1010. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Volume 9905 LNCS, pp. 21–37. [Google Scholar]
- Leutenegger, S.; Lynen, S.; Bosse, M.; Siegwart, R.; Furgale, P. Keyframe-based visual–inertial odometry using nonlinear optimization. Int. J. Robot. Res. 2015, 34, 314–334. [Google Scholar] [CrossRef] [Green Version]
- Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 2018, 34, 1004–1020. [Google Scholar] [CrossRef] [Green Version]
- Rosinol, A.; Abate, M.; Chang, Y.; Carlone, L. Kimera: An Open-Source Library for Real-Time Metric-Semantic Localization and Mapping. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 1689–1696. [Google Scholar] [CrossRef]
- Martinez, C.C.; Elvira, R.; Gomez Rodriguez, J.J.; Montiel, J.M.; Tardos, J.D. ORB-SLAM3: An accurate open-source library for visual, visual-inertial and multi-map SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar]
- Campos, C.; Montiel, J.M.; Tardós, J.D. Inertial-Only Optimization for Visual-Inertial Initialization. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 51–57. [Google Scholar] [CrossRef]
- Elvira, R.; Tardós, J.D.; Montiel, J. ORBSLAM-Atlas: A robust and accurate multi-map system. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), lMacau, China, 3–8 November 2019; pp. 6253–6259. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Pike, M.; Lee, B.G. DT-SLAM: Dynamic Thresholding Based Corner Point Extraction in SLAM System. IEEE Access 2021, 9, 91723–91729. [Google Scholar] [CrossRef]
- Li, X.; Wu, H.; Chen, Z. Dynamic Objects Recognizing and Masking for RGB-D SLAM. In Proceedings of the 2021 4th International Conference on Intelligent Autonomous Systems (ICoIAS), Wuhan, China, 14–16 May 2021; pp. 169–174. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, J.; Luo, Y.; Ou, J. Semantic SLAM Based on Improved DeepLabv3+ in Dynamic Scenarios. IEEE Access 2022, 10, 21160–21168. [Google Scholar] [CrossRef]
- Liu, Y.; Miura, J. RDS-SLAM: Real-Time Dynamic SLAM Using Semantic Segmentation Methods. IEEE Access 2021, 9, 23772–23785. [Google Scholar] [CrossRef]
- Zhang, A.S.; Liu, B.S.; Zhang, C.J.; Wang, D.Z.; Wang, E.X. Fast initialization for feature-based monocular slam. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 2119–2123. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, L.; Chen, Q.; Zhou, K.; Long, R. A Fast and Accurate Binocular Visual-Inertial SLAM Approach for Micro Unmanned System. In Proceedings of the 2021 IEEE 4th International Conference on Electronics Technology (ICET), Chengdu, China, 7–10 May 2021; pp. 971–976. [Google Scholar] [CrossRef]
- Yang, Y.; Xiong, J.; She, X.; Liu, C.; Yang, C.; Li, J. Passive Initialization Method Based on Motion Characteristics for Monocular SLAM. Complexity 2019, 2019, 8176489. [Google Scholar] [CrossRef] [Green Version]
- Urban, S.; Leitloff, J.; Hinz, S. MLPNP—A real-time maximum likelihood solution to the perspective-n-point problem. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016 XXIII ISPRS Congress, Prague, Czech Republic, 12–19 July 2016; Volume III-3, pp. 131–138. [Google Scholar]
- Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle adjustment a modern synthesis. In Proceedings of the International Workshop on Vision Algorithms, Corfu, Greece, 21–22 September 1999; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1883, pp. 298–372. [Google Scholar]
- Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T.; Rehder, J.; Omari, S.; Achtelik, M.W.; Siegwart, R. The EuRoC micro aerial vehicle datasets. Int. J. Robot. Res. 2016, 35, 1157–1163. [Google Scholar] [CrossRef]
Sequence | Number of Pose | Gains | Trajectory | Gains | ||
---|---|---|---|---|---|---|
ORBSLAM3 | Ours | ORBSLAM3 | Ours | |||
MH01 | 3548 | 3680 | 3.72% | 78.826 | 83.253 | 5.62% |
MH02 | 2207 | 3037 | 41.36% | 65.517 | 75.288 | 14.91% |
MH03 | 2282 | 2698 | 18.23% | 128.725 | 141.722 | 10.11% |
MH04 | 1605 | 2032 | 26.60% | 91.038 | 102.449 | 12.53% |
MH05 | 1789 | 2262 | 26.44% | 95.522 | 110.080 | 15.24% |
V101 | 2800 | 2894 | 3.36% | 58.413 | 58.828 | 0.71% |
V102 | 1592 | 1705 | 7.11% | 75.478 | 78.727 | 4.30% |
V103 | 2000 | 2139 | 6.95% | 79.127 | 79.935 | 1.02% |
V201 | 2183 | 2275 | 4.21% | 37.368 | 37.721 | 0.94% |
V202 | 2269 | 2346 | 3.41% | 83.744 | 84.165 | 0.50% |
V203 | 1810 | 1917 | 6.44% | 87.076 | 87.570 | 0.57% |
Sequence | RMSE | Standard Deviation | Mean Time | Detect Time | ||||
---|---|---|---|---|---|---|---|---|
ORBSLAM3 | Ours | ORBSLAM3 | Ours | ORBSLAM3 | Ours | ORBSLAM3 | Ours | |
MH01 | 0.042274 | 0.021442 | 0.028004 | 0.008902 | 0.03448 | 0.02702 | 2.00182 | 0.72322 |
MH02 | 0.089979 | 0.025743 | 0.035764 | 0.013315 | 0.03591 | 0.02768 | 1.46197 | 0.66376 |
MH03 | 0.144068 | 0.035220 | 0.095012 | 0.017778 | 0.03232 | 0.02814 | 2.31237 | 1.09805 |
MH04 | 0.140039 | 0.134385 | 0.068027 | 0.060891 | 0.03118 | 0.02470 | 2.58796 | 1.55749 |
MH05 | 0.492024 | 0.057585 | 0.300062 | 0.026758 | 0.03073 | 0.02590 | 2.56432 | 1.40208 |
V101 | 0.058089 | 0.035530 | 0.027776 | 0.012011 | 0.03059 | 0.02986 | 2.24815 | 0.95563 |
V102 | 0.074244 | 0.017952 | 0.063103 | 0.011832 | 0.02831 | 0.02615 | 2.18541 | 0.85070 |
V103 | 0.019957 | 0.018903 | 0.008785 | 0.008886 | 0.02824 | 0.02493 | 2.36221 | 0.85074 |
V201 | 0.048377 | 0.028486 | 0.027442 | 0.014310 | 0.02632 | 0.02508 | 3.27765 | 1.27054 |
V202 | 0.024106 | 0.015883 | 0.009851 | 0.006280 | 0.02998 | 0.02612 | 2.89432 | 1.11357 |
V203 | 0.033258 | 0.024923 | 0.017620 | 0.014805 | 0.02701 | 0.02465 | 2.54009 | 1.16674 |
MH01 | MH02 | MH03 | MH04 | MH05 | V101 | V102 | V103 | V201 | V202 | V203 | |
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | 49.28% | 85.21% | 75.55% | 4.04% | 88.31% | 38.84% | 75.82% | 5.28% | 41.12% | 34.11% | 25.06% |
SD | 68.21% | 85.93% | 81.29% | 10.49% | 91.08% | 56.76% | 81.25% | −1.15% | 47.85% | 36.25% | 15.98% |
Mean Time | 21.64% | 22.92% | 12.93% | 20.78% | 15.72% | 2.39% | 7.63% | 11.72% | 4.71% | 12.88% | 8.74% |
Detect Time | 63.87% | 54.61% | 52.51% | 39.82% | 45.32% | 57.49% | 61.07% | 63.99% | 61.24% | 61.54% | 54.07% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, W.; Lin, Q.; Shao, L.; Lin, J.; Zhang, K.; Qin, H. A Real-Time Map Restoration Algorithm Based on ORB-SLAM3. Appl. Sci. 2022, 12, 7780. https://doi.org/10.3390/app12157780
Hu W, Lin Q, Shao L, Lin J, Zhang K, Qin H. A Real-Time Map Restoration Algorithm Based on ORB-SLAM3. Applied Sciences. 2022; 12(15):7780. https://doi.org/10.3390/app12157780
Chicago/Turabian StyleHu, Weiwei, Qinglei Lin, Lihuan Shao, Jiaxu Lin, Keke Zhang, and Huibin Qin. 2022. "A Real-Time Map Restoration Algorithm Based on ORB-SLAM3" Applied Sciences 12, no. 15: 7780. https://doi.org/10.3390/app12157780
APA StyleHu, W., Lin, Q., Shao, L., Lin, J., Zhang, K., & Qin, H. (2022). A Real-Time Map Restoration Algorithm Based on ORB-SLAM3. Applied Sciences, 12(15), 7780. https://doi.org/10.3390/app12157780