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Abstract: In the monocular visual-inertia mode of ORB-SLAM3, the insufficient excitation obtained
by the inertial measurement unit (IMU) will lead to a long system initialization time. Hence, the
trajectory can be easily lost and the map creation will not be completed. To solve this problem, a
fast map restoration method is proposed in this paper, which adresses the problem of insufficient
excitation of IMU. Firstly, the frames before system initialization are quickly tracked using bag-of-
words and maximum likelyhood perspective-n-point (MLPNP). Then, the grayscale histogram is
used to accelerate the loop closure detection to reduce the time consumption caused by the map
restoration. After experimental verification on public datasets, the proposed algorithm can establish
a complete map and ensure real-time performance. Compared with the traditional ORB-SLAM3, the
accuracy improved by about 47.51% and time efficiency improved by about 55.96%.

Keywords: visual-inertial SLAM; ORB-SLAM3; initialization; tracking; bag-of-words; MLPNP; loop
closure detection; grayscale histogram

1. Introduction

In the past decade, simultaneous localization and mapping (SLAM) has developed
significantly, and the focus of research has gradually shifted from laser SLAM to visual
SLAM and visual-inertial SLAM. Through rich visual information, the robot can accurately
calculate its own pose in an unknown environment, and construct the map of the envi-
ronment. Combined with the angular velocity and acceleration information of inertial
measurement unit (IMU), we can not only estimate an absolute scale, but also make the
SLAM system based on vision more robust.

According to the different ways of back-end optimization, the research on visual-
inertial SLAM (VINS) can be divided into filtering-based and optimization-based methods.
The MSCKF (multi-state constraint kalman filter) proposed by [1] is a visual-inertial odom-
etry (VIO) based on the extended Kalman filter (EKF), but it is not strictly a complete
SLAM system because of its lack of loop closure detection and map reuse. OPENVINS
proposed by Geneva et al. [2] is a VINS algorithm based on MSCKF, which combines
ARUCO (Augmented Reality University of Cordoba) two-dimensional code features and
conventional sparse features, and an open source library is provided.

However, since the filtering-based SLAM method has a Markov property, which
means it is impossible to establish the relationship between a certain moment and all
previous states, the current mainstream SLAM research is mostly based on the framework
of nonlinear optimization methods. The LSD-SLAM proposed by Engel et al. [3] is a
SLAM system based on the direct method, which can work in a large-scale environment.
The SVO [4] is a semi-direct visual odometry, which combines the feature point method
with the direct method, and finally calculates the pose based on optimization. With the
introduction and application of ORB-SLAM2 [5], the indirect method using an oriented
brief (ORB) feature [6] has also achieved good results. ORB-SLAM2 is compatible with
monocular, stereo and RGB-D cameras and has real-time performance when working on
CPU. In most cases, it is an accurate SLAM system. On the basis of [5], Li et al. [7] proposed
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R-ORBSLAM by combining photometric information with ORB features; Yu et al. [8] adds
semantic segmentation network SegNet [9] and moving consistency check to improve
dynamic performance, and generates dense semantic octo-tree map [10]; Bescos et al. [11]
and Zhong et al. [12] also studied to improve the performance of ORB-SLAM2 in a dynamic
environment. The former added the function of dynamic target detection and background
embedding, while the latter combined with central processing unit (SSD) [13].

With the continuous expansion of the application field of SLAM, the requirements for
the robustness and stability of the SLAM system are also increasing. Therefore, the fusion of
multi-sensors in the SLAM system has become an inevitable trend, and the joint processing
of visual information and IMU data is the most feasible method at present. Leutenegger
et al. [14] proposed a tightly coupled stereo VIO algorithm OKVIS (open keyframe-based
visual-inertial SLAM). Based on the concept of keyframes, they use sliding windows for
batch nonlinear optimization and compute Harris corners as well as BRISK descriptors.
However, the algorithm can only output poses with six degrees of freedom. Since there
are no loop closing threads, it is not a complete SLAM system. VINS-Mono (visual-
inertial system) proposed by the Flight Robot Laboratory [15] of Hong Kong University of
Science and Technology is a tightly coupled monocular visual-inertial SLAM system, which
has a more perfect system framework, including five parts: observation preprocessing,
initialization, joint optimization of local visual-inertia, global graph optimization and loop
closure detection. VINS-MONO uses the Lucas–Kanade (LK) optical flow method to track
inter-frame feature points, and accelerates the tracking process.Not long ago, Rosinol
et al. [16] also proposed Kimera, and used technologies such as PGO and loop closure
detection, 3D grid reconstruction and semantic labeling. Although it is not stable at present,
it shows great potential.

Campos et al. [17] proposed ORB-SLAM3, which is one of the most accurate and robust
algorithms at present. ORB-SLAM3 is the first open source algorithm that can support
pure visual, visual-inertia and multi-map reuse. It not only supports the pinhole camera
model, but also supports the fisheye camera model and custom camera model. It only
needs to take the projection, back projection and Jacobian equation as input. ORB-SLAM3
establishes three kinds of data association: short-term, medium-term and long-term data
association, which enables the algorithm to adapt to various environments and greatly
improves the positioning accuracy through different optimization methods. In the visual-
inertia mode, ORB-SLAM3 first describes the visual-inertia initialization problem as an
optimal estimation problem [18], which enables the inertial measurement unit to initialize
in a short time, so that the pose of the lost frame can be calculated temporarily by IMU
pre-integration when short-term image tracking is lost. Even in the case of long-term data
loss, the current active map is saved by the Atlas multi-map system [19], and then a new
map is re-established, initialized and tracked on this new map. Based on ORB-SLAM3, fast
corner points are extracted by the adaptive dynamic threshold, and a random sampling
consensus (RANSAC) method is used to identify candidate ORB features [20]. Li et al. [21],
Hu et al. [22] and Liu et al. [23] improve the performance of dynamic scenes by combining
semantic information.

Most of the above improvements on the SLAM system require high computational
cost to improve the performance of some specific scenes. Excessive computational time
cannot meet the real-time requirements of robots in practical applications. At the same
time, in the framework of the monocular camera, if the system cannot be well initialized
and create an accurate map, it is very detrimental to the expansion of the SLAM system and
the tracking of robots in offline state. For the initialization problem of the monocular SLAM
system, Martinez et al. [17] calculated the homography matrix and fundamental matrix
synchronously, then, selecting the model according to the scores of them will increase the
success rate of initialization and achieve the automatic initialization process. In the work of
Zhang et al. [24], a fast monocular initialization process based on the feature is proposed,
which can improve the speed of the initialization process. In order to improve the quality
and success rate of initialization, Cheng et al. [25] proposed an improved iterative strategy
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based on trust region. Yang et al. [26] added the generalized motion feature assumption
in the initialization process, and transformed the solution of the rotation and translation
matrix of camera motion into the error elimination problem in the initialization process.

However, current monocular initialization methods cannot improve both the accuracy
and real-time performance. These methods are all based on SFM, and the initialization
process requires the participation of many frames, which is the limitation of the SLAM.
In particular, in the initialization of ORB-SLAM3 monocular visual inertial mode, with
insufficient IMU excitation will make the initialization process of the system even slower.
Due to this limitation, the SLAM system cannot generate a complete map. Therefore,
this paper proposes a real-time map restoration method, which avoids the limitation
of monocular initialization and generates a complete map with higher accuracy. The
improvement of this algorithm is as follows:

• After the scale optimization of ORB-SLAM3, in order to obtain a complete map, all
frames before successful initialization are quickly tracked back. In this process, the
bag-of-words is used to match the feature points, and the MLPNP [27] is used to
estimate the pose.

• In order to offset the extra time consumption caused by reverse tracking, the loop
closure detection of each frame is accelerated. The process uses the mean, standard
deviation and correlation of grayscale histogram to pre-process and pre-screen the
loop candidate frames. It can improve the quality of the loop candidate frames and
further reduce the number of invalid calculations in the loop closure verification.

The remainder of this paper is organized as follows. Section 2 discusses in detail
the overall framework of the system, the details of reverse tracking and the method of
using the grayscale histogram acceleration. The effectiveness of the proposed algorithm is
verified on the Euroc dataset, and the comparison of the time efficiency and accuracy with
ORB-SLAM3 algorithm is included in Section 3, followed by the conclusion in Section 4.

2. Materials and Methods

Our system pipeline is an extension of ORB-SLAM3. The proposed algorithm improves
the tracking thread, local mapping thread, and loop closing thread. We added the map
restoration function and introduced the grayscale histogram as a tool to speed up loop
closure detection.

2.1. Overview of Real-Time Map Restoration Algorithms

This paper proposes a real-time map restoration algorithm based on ORB-SLAM3.
The framework of the system proposed in this paper is shown in Figure 1. In the monocular
inertial mode, each image frame will extract ORB feature points and calculate descriptors
in the tracking thread. We insert frames that have extracted feature points into a custom
stack for reuse. This stack stores all image frames up to the successful initialization of the
current active map. In the local mapping thread, when the IMU initialization is successful
and the second bundle adjustment (BA) optimization [28] is completed, the frame in the
stack is quickly tracked, that is, from the first keyframe of the map to the earlier frame
quickly matching and tracking one by one. Moreover, the process is parallel to the tracking
thread. The detailed process is demonstrated in Section 2.2. In addition, when the keyframe
is inserted from the local mapping thread into the loop closing thread, the grayscale
image of the keyframe is adaptively clipped and the grayscale histogram is calculated.
After normalization of the grayscale histogram, the standard deviation and mean value
are calculated (details refer to Section 2.3). This facilitates the dynamic elimination of
common-view frames, detection of candidate frames in loop closing threads, and similarity
comparison of grayscale histograms.
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Figure 1. System overview. Our system pipeline is an extension of ORB-SLAM3 [17]. Compared with
ORB-SLAM3, the main improvements of our system have been marked with “*” in the flowchart.
The red part indicates new additions, and the green indicates improvements.

2.2. Map Restoration Based on Reverse Tracking

In the reverse tracking, we first take out a frame Fi in the stack and precise positioning
tracking. We quickly match Fi with the first keyframe KF0 in the current active map using
a bag-of-words. In the matching process, only the feature points belonging to the same
node are matched, and the number of successful matching points n is obtained. If the
number meets the requirements, MLPNP is used to estimate the pose of Fi. MLPNP not
only decouples the relationship with the camera model, but also has the advantages of fast
speed and high accuracy. Then, the chi-square test is used to eliminate the outliers, and the
reprojection error is calculated according to Equation (1),

e = u− ū, (1)

where u is the pose of the feature point of Fi on the pixel plane, ū is the pose of the map
point of KF0 projected to the Fi pixel plane. Affected by many independent factors, the
reprojection error is random. According to the central limit theorem, the reprojection error
obeys the Gaussian distribution,

e ∼ N(0, C), (2)

where C is the covariance,

C = (sn × p)2
[

1 0
0 1

]
, (3)

where s is the scaling factor of the image pyramid, p is the standard deviation of the 0th
layer. The error term in Equation (1) is weighted by covariance to obtain an error scalar r,

r = eTC−1e, (4)

which, according to the monocular projection, is 2 degrees of freedom, and the threshold
of chi-square statistics is 5.99 at 0.05 significant level. We believe that the point greater
than this threshold is the outlier, and the point less than this threshold is the interior point.
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When the number of interior points m is sufficient, we update the pose Tcw in the world
coordinate system of the current frame,

Tcw =

[
Rcw tcw
0T 1

]
, (5)

where Rcw and tcw are the rotation and translation matrices from the world coordinate
system to the current camera coordinate system, respectively.If the number of interior point
m obtained in the previous step is small, as shown in Figure 2, the unmatched map points
between frame KF0 and Fi are re-projected to the camera coordinate system of Fi, and the
new point pairs are obtained by using a more stringent threshold and smaller window
matching. Finally, the pose optimization is carried out again.

KF0Fi

Matching
Mappoints 

Unmatching
Mappoints

Figure 2. Reprojection of mappoints. The red points is the mappoints that has been matched between
the two frames, and the black points is the unmatched mappoints. This process is used to generate
new matching relations.

After tracking Fi and getting the pose, the fast reference frame tracking begins. After
inserting Fi into the keyframe queue, the mappoints are inserted into the point cloud map,
and we update this frame as a reference keyframe for the image frame in the stack. The next
frame Fi−1 of pop stack is quickly matched with its reference keyframe through the bag-
of-words, and then the mappoints of the reference keyframe are projected to Fi−1 and the
pose estimation is carried out according to MLPNP, so as to obtain the pose transformation
of the frame in the world coordinate system. The pose transformation Tcr of this frame
relative to the reference frame is calculated according to Equation (6) and saved to the map
file for the generation of map trajectory.

Tcr = Tcw × Twr

Twr = T−1
rw

Trw =

[
Rrw trw
0T 1

] (6)

If the number of successful matching points of Fi−1 is small, the steps similar to the
completed precise positioning tracking between Fi and KF0 are performed. However, in
addition to its reference keyframe, the keyframe quickly matched with Fi−1 also contains a
keyframe with high similarity found in the keyframe database. If the calculation condition
of pose still does not meet the requirements, the pose of Fi−1 is directly set as the pose of
the previous image frame according to the principle that the pose between two adjacent
image frames does not change dramatically. Follow this until the last image frame F0 in
the stack is tracked. After tracking, a complete map trajectory can be obtained, which
contains more frame poses, and more mappoints in point cloud map. The generation
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of the trajectory does not care about the effect of initialization. Due to the use of all the
information of the input sequence, there can also be a good pose within the range of the
original unsuccessful initialization, so that the accuracy of the algorithm to estimate the
trajectory will also be improved.

The tracking process simplifies the process of using a bag-of-words to search for
matching, and adjusts the number of iterations in optimizing pose, which can make this
process become extremely lightweight and ensure accuracy. Considering that the pose
transformation between image frames is not regular in the initialization process, a constant
speed is not used to estimate the pose of the next frame in this tracking process.

2.3. Loop Closure Detection Acceleration Based on Grayscale Histogram

The grayscale histogram of image frame has a small computational cost, but it can
well reflect the pixel distribution characteristics of an image. In addition, the grayscale
histogram has the advantages of translation, rotation and scaling invariance, which is very
suitable for frame measurement in the SLAM system. In this paper, we use the grayscale
histogram to accelerate the loop closure detection of each frame, so that the real-time
performance of the map restoration algorithm is improved.

In the ORB-SLAM3 system, the local mapping thread will continuously insert keyframes
into the keyframe queue of the loop closing thread, and then find out the similar keyframes
in the database for the similarity judgment. If the similarity is high, this keyframe will be
used as a candidate keyframe. When inserting a keyframe into the keyframe queue of the
loop closing detection thread, we calculate the grayscale histogram of the keyframe. In
the working process of the SLAM system, there is almost no case that the two frames are
exactly the same. Therefore, the grayscale image Igray of the keyframe is adaptively clipped
so that the grayscale histogram of the image can retain the main information of the image,
and at the same time, the uncertainty caused by the perspective difference is reduced,

I′gray = Rect(Igray, θ1, λ1, θ2, λ2), (7)

where Rect denotes that the grayscale image Igray is cut from coordinates (θ1,λ1) to coor-
dinates (θ2,λ2); θ represents the abscissa of the image coordinate system, λ represents the
ordinate. Then, the grayscale histogram of the cut I′gray is calculated to obtain Hist. A total
of 256 grayscale levels are taken from 0 to 255, and the number of pixels corresponding to
each grayscale level is calculated, which can represent the frequency of the grayscale level,

H(P) = [h(x0), h(x1), . . . , h(x255)]

h(xi) =
S(xi)

∑j S(xj)

, (8)

where S(xi) is the number of pixels in a grayscale level, ∑j S(xj) is the total number of pixels.
After calculating the grayscale histogram, in order to maintain the relative relationship
between the two sets of data and make the data more comparable, the range of Hist is
normalized by Equation (9),

xout =
β− α

δ− γ
(xin − γ) + α, (9)

where xin and xout are the original values and the normalized values of each grayscale
level, respectively. The range of values is mapped from (γ,δ) to (α,β). For example, Figure 3
shows the process of normalizing histogram (b) of the grayscale image (a) to obtain (c).
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Figure 3. Examples of normalization of grayscale histogram. (a) A room image in Euroc dataset.
(b) The grayscale histogram of the image. (c) Normalized grayscale histogram.

Then, the normalized grayscale histogram is used to calculate the mean and standard
deviation according to Equation (10) as a rough image feature measure.

µ =
1

M× N

M

∑
i=1

N

∑
j=1

P(i, j)

SD =

√√√√ 1
M× N

M

∑
i=1

N

∑
j=1

(P(i, j)− µ)2

(10)

where M× N is the size of the histogram, P(i, j) represents the value of line i and column j
of the histogram.

After obtaining the histogram information of the keyframe, the keyframe is inserted
into the loop closure detection queue, and (µ, SD) is used as the coordinate index to add
the keyframe to the container that is connected by a mean and standard deviation. This
operation makes the keyframes with a similar mean and standard deviation always stored
in a certain interval of the container. Filter candidate keyframes first when loop closure
detection. According to the container characteristics of the mean-SD structure, the keyframe
group similar to the mean and standard deviation of the current keyframe KFi is taken
out, and then all keyframes with common words with KFi are taken out from the keyframe
group through the bag-of-words model and inverted index. This process can help us
roughly and quickly exclude some impossible options, saving time for the SLAM system.

The obtained keyframe group is further eliminated according to the common view
relationship. If the number of common view keyframes in KFi is m, the m frames connected
to KFi will be directly eliminated, which is not used to calculate similar scores. Moreover, if
the result of insufficient similarity between this keyframe and KFi is obtained by judging
the similarity score; a one-way mark that is not used for detection will be added to this
keyframe to illustrate that there is no similarity between this keyframe and KFi. According
to this mark, when traversing the common words of other KFi and its similar keyframes,
those with this mark will skip directly. This also saves a lot of computer resources, with
less computational cost to save subsequent invalid duplicate calculations.

Then, a set of keyframes KM with a high similarity score is obtained by the bag-of-
words matching and calculating the similarity score. According to the characteristics of
bag-of-words matching, KM has high similarity with KFi in multiple parts, but in many
textured similar environments, the overall similarity between KM and KFi is still not
guaranteed. Thus, before KM is calculated by Sim3, we calculate the correlation between
the grayscale histogram of KM and KFi to compare the overall grayscale distribution.
Suppose the grayscale histogram of H1 and H2, and the correlation between H1 and H2 is
d(H1, H2), then

d(H1, H2) =
∑I(H1(I)− H̄1)(H2(I)− H̄2)√

∑I(H1(I)− H̄1)2 ∑I(H2(I)− H̄2)2
, (11)
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where,

H̄k =
1
N ∑

j
Hk(j) (12)

If d(H1, H2) is closer to 1, it is considered that the correlation between H1 and H2 is
higher. Although the high correlation between two grayscale images cannot be obtained
from the high correlation between grayscale histograms, it can be concluded that there is no
similarity between two grayscale images if the correlation between grayscale histograms is
insufficient. Combined with the previous bag-of-words model screening, if d(H1, H2) is
greater than a certain threshold (0.8 in this paper), it can be determined that the similarity
between the two frames is high enough. On the contrary, if d(H1, H2) is less than the
threshold, skip the current keyframe and judge the next keyframe. In the subsequent
test, the situation that the candidate frame is abandoned due to poor frame quality will
not occur.

If the candidate keyframes K′M that meets all the above conditions is obtained, a local
window Wm is defined. The window contains K′M and several keyframes with the highest
degree of common view. The set of all mappoints in Wm is Xm. Mappoints of Xm and KFi
are matched by a bag-of-words. Then, the Sim3 solver is constructed, and the initial relative
pose Tam of Wm and KFi is solved by RANSAC. Through Tam, the mappoints in the window
and the mappoints in KFi are projected bidirectionally similar to Figure 2, so as to obtain
more matching points. According to Equation (1), a more accurate relative pose is obtained
by nonlinear optimization by minimizing the reprojection error. If the number of interior
points is greater than a certain threshold, a more stringent search radius and Hamming
distance are used to match again. Otherwise this process is repeated to obtain a relative
pose with the highest accuracy.

After the Tam is calculated, in order to prevent the loop closure failure, it is necessary
to check the keyframes like a collection card. This process follows the geometric consistency
check in [17] and the loopback continuity check in [5]. Firstly, the geometric consistency
check is performed. This process does not depend on time continuity, and K′M is verified by
the degree of common-view between its keyframes and KFi. If the common-view keyframes
of K′M have enough matching points with KFi, it is recorded as a successful verification.
Traverse these common-view keyframes, and if at least three of them pass the check, exit
the check process. Otherwise, the loopback continuity check is performed. The loop
closure detection results are verified by projecting Xm to the newly generated keyframes
for matching, and the pose of Sim3 is optimized. If the number of matching points meets
the requirements, it is recorded as a validation success. If the total number of verification
successes (geometric consistency check and loopback continuity check) reaches three times,
the detection process will be directly exited, and the final roll angle, pitch angle and yaw
angle will be judged. In ORB-SLAM3, the roll angle and pitch angle are required to be less
than 0.46°, and the yaw angle is less than 20°, otherwise the loopback result is considered
bad. If the above conditions are met, loopback correction will be performed.

3. Simulation Results and Performance Analysis

In order to verify the effectiveness of the proposed algorithm, this paper uses the
visual-inertial dataset Euroc [29] collected by a micro aerial vehicle (MAV) for simulation.
Euroc contains 11 stereo video sequences, and the dataset environment is divided into
indoor rooms and factories. Firstly, according to the different initialization effects caused by
different motion characteristics of each sequence, the dataset is divided into two categories,
where MH01∼MH05 is the sequence with difficulty in initialization, and V101∼V203 is the
sequence with easy initialization. Since V203 contains motion blur and loop closure, we
use it as a sequence to verify time efficiency. The simulation platform is an Intel (R) Core
(TM) i7-7700HQ CPU @ 2.80GHz, 24G RAM computer.
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3.1. Quantitative Analysis

This paper first provides the number of the pose and trajectory length of the map
generated after running on a Euroc dataset before and after the improvement of the ORB-
SLAM3 algorithm, and according to Equations (13) and (14), the effect of the number of Pose
and trajectory length recovery by the algorithm in this paper compared with ORB-SLAM3.

σPose = (
β

α
− 1)× 100% (13)

σTraj = (
γ

µ
− 1)× 100% (14)

where σPose is the effect of the Pose recovery, σTraj is the effect of trajectory recovery, α and
β, µ and γ are the number of the Pose and the total length of map trajectory before and
after the algorithm improvement. In order to eliminate interference as much as possible
and ensure the rationality of the experimental data, the experimental data are the result of
taking the median value after running the Euroc dataset ten times, such as Table 1.

Table 1. Comparison of ORB-SLAM3 and proposed algorithm. It includes the comparison and
improvement of the number of the Pose and the trajectory length (unit in meters). The Pose is
estimated by the SLAM system according to the video sequence, and its number is the same as the
number of the Pose in the trajectory file.

Sequence
Number of Pose

Gains
Trajectory

Gains
ORBSLAM3 Ours ORBSLAM3 Ours

MH01 3548 3680 3.72% 78.826 83.253 5.62%
MH02 2207 3037 41.36% 65.517 75.288 14.91%
MH03 2282 2698 18.23% 128.725 141.722 10.11%
MH04 1605 2032 26.60% 91.038 102.449 12.53%
MH05 1789 2262 26.44% 95.522 110.080 15.24%
V101 2800 2894 3.36% 58.413 58.828 0.71%
V102 1592 1705 7.11% 75.478 78.727 4.30%
V103 2000 2139 6.95% 79.127 79.935 1.02%
V201 2183 2275 4.21% 37.368 37.721 0.94%
V202 2269 2346 3.41% 83.744 84.165 0.50%
V203 1810 1917 6.44% 87.076 87.570 0.57%

A more complete map can be generated when there are more Poses or fewer discarded
frames. The length difference of map trajectory can also intuitively reflect the effect of
mapping and the distance consumed by the algorithm initialization. Due to the recovery
tracking and mapping of discarded frames during initialization, this algorithm must have
a longer map trajectory than ORB-SLAM3. However, in the initialization, due to different
motion modes of different datasets, the effect of map restoration in this paper is different.

The initialization of the visual-inertial SLAM system needs to meet the following
conditions at the same time: the perspective changes slowly, the tracking thread works
normally, and the IMU excitation is stable and sufficient.

For example, in the MH02 sequence, the initialization of the system can be divided
into three stages, namely the vertical reciprocating motion, horizontal reciprocating motion,
and horizontal circular motion. Visual-inertial SLAM systems face different challenges
at each stage. In the first stage, the local map tracking fails due to the rapid change of
perspective, so that the SLAM system cannot create the map. In the second stage, the map
cannot be created and the IMU cannot be initialized because the tracking thread is still not
working properly. In the third stage, the three conditions for initialization are satisfied, thus
completing the computation of the IMU residual, bias and BA optimization of the first part.
However, the MAV then landed on the take-off platform, and the lack of excitation of the
IMU caused the initialization to fail again. In these three stages, the current ORB-SLAM3
algorithm cannot complete the initialization and loses a lot of initialization information.
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The initialization cannot be completed until the next time the MAV leaves the platform,
however, the map created does not include the map information of the first three stages.

After the recovery tracking of the algorithm in this paper, the Pose recovery of 41.36%
can be achieved on the MH02 sequence. Since some frames are stationary, namely, the
pose difference is small, the actual trajectory recovery is 14.91%, about 9.771 m. It can be
observed from Table 1 that the initialization effect of ORB-SLAM3 is poor in the factory
environment; thus, the effect is better after the algorithm is improved in this paper. In the
sequence of room environment in V101∼V203, ORB-SLAM3 can be initialized quickly, so
the effect after recovery and tracking has little improvement, and the recovered trajectory
length is only about half a meter away.

Secondly, for example, Table 2, this paper also counts the root mean square error
(RMSE) and standard deviation of the ATE to reflect the improvement of robustness and
stability of the proposed algorithm compared with the ORB-SLAM3. RMSE can well reflect
the global consistency, such as Equations (15) and (16),

RMSE(F1:n) := (
1
n

n

∑
i=1
‖trans(Fi)‖2)

1
2 , (15)

Fi := Q−1
i SPi, (16)

where ‖trans(Fi)‖ represents the translation part of the ATE, Qi ∈ SE(3) is the ground
truth, Pi ∈ SE(3) is the estimated pose, and S ∈ SE(3) is the transformation matrix from
Pi to Qi. The improvement of the time efficiency of the proposed algorithm is analyzed
by calculating the time spent by the SLAM system in the loop closure detection and the
mean tracking time of each frame. Table 3 reflects the improvement of each sequence in the
Euroc dataset.

Table 2. Comparison of absolute trajectory error (ATE) and time efficiency. The mean time (unit in
second) is the time consumed by tracking each frame, and the detection time (unit in millisecond) is
the time consumed by each frame in the loop closure detection.

Sequence
RMSE Standard Deviation Mean Time Detect Time

ORBSLAM3 Ours ORBSLAM3 Ours ORBSLAM3 Ours ORBSLAM3 Ours

MH01 0.042274 0.021442 0.028004 0.008902 0.03448 0.02702 2.00182 0.72322
MH02 0.089979 0.025743 0.035764 0.013315 0.03591 0.02768 1.46197 0.66376
MH03 0.144068 0.035220 0.095012 0.017778 0.03232 0.02814 2.31237 1.09805
MH04 0.140039 0.134385 0.068027 0.060891 0.03118 0.02470 2.58796 1.55749
MH05 0.492024 0.057585 0.300062 0.026758 0.03073 0.02590 2.56432 1.40208
V101 0.058089 0.035530 0.027776 0.012011 0.03059 0.02986 2.24815 0.95563
V102 0.074244 0.017952 0.063103 0.011832 0.02831 0.02615 2.18541 0.85070
V103 0.019957 0.018903 0.008785 0.008886 0.02824 0.02493 2.36221 0.85074
V201 0.048377 0.028486 0.027442 0.014310 0.02632 0.02508 3.27765 1.27054
V202 0.024106 0.015883 0.009851 0.006280 0.02998 0.02612 2.89432 1.11357
V203 0.033258 0.024923 0.017620 0.014805 0.02701 0.02465 2.54009 1.16674

Table 3. Improvement of RMSE, SD, mean tracking time and loop closure detection time.

MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203

RMSE 49.28% 85.21% 75.55% 4.04% 88.31% 38.84% 75.82% 5.28% 41.12% 34.11% 25.06%
SD 68.21% 85.93% 81.29% 10.49% 91.08% 56.76% 81.25% −1.15% 47.85% 36.25% 15.98%

Mean Time 21.64% 22.92% 12.93% 20.78% 15.72% 2.39% 7.63% 11.72% 4.71% 12.88% 8.74%
Detect Time 63.87% 54.61% 52.51% 39.82% 45.32% 57.49% 61.07% 63.99% 61.24% 61.54% 54.07%

After comparing and analyzing the proposed algorithm with ORB-SLAM3 using Euroc
dataset, it can be observed that under the same conditions (compared with the complete
trajectory of the ground truth), RMSE, standard deviation, mean tracking time and loop
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closure detection time of the proposed algorithm are reduced. The RMSE of 11 sequences
decreased by 47.51% on average, and the accuracy was improved significantly. Among
them, the RMSE on MH01∼MH05 sequence is much lower, which is because the number of
Pose recovered by the algorithm in this paper on these sequences is up to several hundred,
and the final reconstructed map trajectory is long. More information can be provided to the
map after trajectory recovery, and keyframes created during tracking can also be involved
in global optimization to further improve accuracy. At the same time, because the time
efficiency of the SLAM system is improved, there are more sufficient computer resources to
complete BA optimization and more stable tracking image frames. The RMSE reduction in
V101∼V203 is less than in the factory environment. This is because in the sequence of these
room scenes, the image frame and IMU data obtained by SLAM system are good and can
complete rapid initialization, so the accuracy improvement effect of this algorithm on these
sequences is limited. Secondly, the average decline of standard deviation on Euroc dataset
is 52.18%, which indicates that the proposed algorithm is more stable than the original
algorithm and can run SLAM system consistently.

In addition, this algorithm can also significantly improve the time efficiency. In
the Euroc dataset, tracking the time efficiency increased by 12.91% on average, and the
detection time efficiency increased by 55.96% on average. Similarly, the time efficiency is
significantly improved in the sequences with difficulty in initialization, which is due to
the computational lightweight of the map restoration algorithm in this paper. Of course,
the improvement is not high in the easy initialization sequence. It is worth noting that
V103, V202 and V203 sequences are easy to initialize, but there are loop closures in their
sequences. After the loop closure, the number of common-view keyframes will increase
significantly, so that more frames can be eliminated, and the detection time and tracking
time can be significantly reduced.

Therefore, compared with ORB-SLAM3, the proposed algorithm can first generate
a complete map, and then significantly improve the accuracy and time efficiency of the
difficult initialization sequence. According to the characteristics of the algorithm, in the
environment that initialization is easier to fail and the number of loop closure is more, or
when the system runs longer, the accuracy and time efficiency of the system are improved
more obviously.

3.2. Qualitative Analysis

In order to evaluate the performance impact of the proposed algorithm on the SLAM
system more intuitively, two representative sequences (MH02 and V203) are selected
and qualitatively analyzed. This is where the MH02 is the sequence with difficulty in
initialization, and V203 is the sequence with easy initialization. First, the differences
between the estimated trajectories before and after the algorithm improvement and the
groundtruth trajectories are compared. Then, the difference of RMSE of ATE between the
two algorithms is compared.

As shown in Figures 4 and 5, the trajectories on the MH02 sequence and the V203
sequence are compared, respectively. The blue line is the trajectory generated by the
algorithm in this paper, the brown line is the trajectory generated by ORB-SLAM3, and
the gray dotted line represents the ground truth trajectory. The red rectangle in the figure
marks the position where ORB-SLAM3 initialization is completed.

It is obvious that ORB-SLAM3 loses a large part of the initial map information when
faced with challenging sequences (MH02). In this case, the map recovered by the proposed
algorithm has higher value. On the other hand, in the easily initialized sequence (V203), the
maps we can recover are limited because ORB-SLAM3 is able to complete the initialization
at an earlier position.
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Figure 4. Trajectory comparison in the MH02 sequence.

Figure 5. Trajectory comparison in the V203 sequence.

As shown in Figure 6, the ATE of the proposed algorithm (yellow) is smaller than
that of ORB-SLAM3 (blue) in both difficult and easy initialization sequences, and is more
obvious in difficult initialization sequences. Due to the slow initialization of ORB-SLAM3
in the MH02 sequence, there is no data at the beginning. In addition, some outliers will be
generated in our restored map. This is because there are many static scenes at the beginning
of the sequence, and it is unstable to process this information through vision. However,
the effectiveness of the map will not be affected by these few outliers. We further analyze
the ATE of the two, as shown in Figure 7. The blue part of the box plot is ORB-SLAM3,
and the brown part is the algorithm in this paper. It can be clearly observed that the data
obtained by the proposed algorithm are more concentrated, and they are all concentrated
in areas with small ATE. The above is the qualitative analysis of the proposed algorithm.
Next, V203 is taken as an example to analyze the improvement of the time efficiency of the
loop closure detection part by the proposed algorithm.
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(a) MH02 (b) V203

Figure 6. Comparison of ATE (raw date). (a) and (b) are the ATE comparison between the proposed
algorithm and ORB-SLAM3 in MH02 sequence and V203 sequence respectively. The yellow line
represents the result of the proposed algorithm, and the blue line represents the result of ORB-SLAM3.

(a) MH02 (b) V203

Figure 7. Comparison of ATE (box plot). (a,b) are the comparison of ATE between the proposed
algorithm and ORB-SLAM3 in MH02 sequence and V203 sequence, respectively, by box plot. The
results of ORB-SLAM3 are shown in blue and ours are shown in brown.

V203 is a fast moving sequence with motion blur. In this sequence, a large number of
repeated scenes begin to appear in the middle and late stages. The SLAM system should
complete loop closure detection and loop correction during this period. However, not all
frames can be used as the reference frames of the loop, because most frames are blurred or
the rpy direction angle changes too much. Although these frames can extract feature points
and match them, they will eventually be abandoned. Therefore, there are many times
of invalid calculations in V203 due to the above reasons, in which each calculation takes
tens of milliseconds, which seriously wastes computer resources. However, the grayscale
histogram is very sensitive to the changes of pitch angle, roll angle and yaw angle. If one
of the changes is too large, the grayscale distribution of image frames will change greatly.
According to this feature, the proposed algorithm eliminates these image frames which
may cause invalid calculation in advance, thus improving the quality of input frames.

Figure 8 shows the comparison of the time-consumed for loop detection in each frame
of the V203 sequence, where blue is the proposed algorithm and red is ORB-SLAM3. It is
obvious that the time-consuming of the proposed algorithm is generally significantly lower
than that of ORB-SLAM3. When a large number of similar frames appear in the medium
term, many calculations over 10 ms are performed in ORB-SLAM3. However, the proposed
algorithm completes the loop correction process only after two such calculations.

It is worth noting that on the same sequence, the loop completion time of the proposed
algorithm is slightly earlier than that of ORB-SLAM3. This is because when ORB-SLAM3
calculates and optimizes the pose, it takes too much time, resulting in missing the most
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suitable loop candidate frame, and only finding the appropriate loop candidate frame after
the calculation is completed.

Figure 8. Computation time used to loop closure detection for each frame in V203.

Around 230 of the sequence, the loop closure detection process is mainly concentrated
here. For example, loop closures can be detected by the bag-of-words model in both
Figure 9a,b, but only the keyframe pair in Figure 9a can finally pass the loop closure check.
In Figure 9b, the computer reappears at the same angle, so some descriptors are successfully
matched. By matching using the bag-of-words model, we think that the camera came to
the same location. However, in this keyframe pair, the computer is at different distances
in the image, and the roll angle of the camera changes significantly. In the loop closure
check, because the scale of the feature points has a large difference or the angle of the rpy
direction changes too much, we think that the loop closure at this time has a great risk,
and thus reject the loop closure. However, this situation can be effectively avoided by
improved methods. For example, the grayscale histogram similarity of the keyframe pair
in Figure 9a is 0.9782, and in Figure 9b is 0.6659. Therefore, the loop closure in Figure 9b
will be eliminated early.

(a) Good Loopback (b) Bad Loopback

Figure 9. Pairs of keyframes detected by loop closures in V203 sequences and their grayscale
histograms. (a) Good loopback situation. The loopback detection thread can usually complete the
loopback here. (b) Bad loopback situation. The loopback detection thread is prone to loopback
rejections here.

More importantly, when we combine Figures 6b, 8 and 9, we can understand why
there are some larger ATEs at certain time spots. We found that in the V203 sequence, its
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ATE was larger during the period when loop closures were easily identified. This is because
different threads need to coordinate the allocation of computer resources when the SLAM
system processes tasks. Moreover, when ORB-SLAM3’s loop closing thread requests more
time to process the loopback, the work of tracking the thread becomes more challenging.
As a result, the accuracy of the Poses we obtain will decrease. Of course, not all larger ATEs
are only affected by time efficiency. As shown in Figures 9b and 10, motion blur and large
scale changes will affect our accuracy. In general, both motion blur and scale differences
will affect the quality of the feature points extracted by the SLAM system. When we use
these feature points to track and estimate pose, there will be fluctuations in accuracy.

Figure 10. Motion blur in V203 sequences. The image in the red rectangle is the blurred image.

4. Conclusions

This paper proposes a real-time map restoration algorithm based on ORB-SLAM3.
This method reversely tracks all frames before successful initialization, and accelerates
the loop closure detection. We can generate a complete map in real time regardless of
the initialization effect of the system. After comparing the RMSE of ATE, the accuracy
was increased by 47.51% on average. Compared with standard deviation, the stability is
increased by 52.18% on average. After comparing the time consumption, the time efficiency
in the loop closure detection stage increases by 55.96% on average, and the average tracking
time of the system decreases by 13% on average. Experiments show that the proposed
algorithm can achieve map restoration while ensuring real-time performance. The complete
map generated by this algorithm is significant for off-line robot tracking.

The map restoration method proposed in this paper is mainly for the scenes with
difficult initialization, and the effect is not obvious in simple scenes. In addition, the
proposed algorithm is based on the assumption of low dynamic environment and does not
eliminate dynamic objects, so the accuracy in an high dynamic environment will decrease.
In the future, dynamic detection function should be added so that robots can adapt to more
complex environments.
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SLAM Simultaneous Localization and Mapping
IMU Inertial Measurement Unit
MSCKF Multi-State Constraint Kalman Filter
MLPNP Maximum Likelihood Solution to The Perspective-N-Point
VIO Visual Inertial Odometry
OPENVINS Open Visual-Inertial SLAM
VINS Visual-Inertial SLAM
EKF Extended Kalman filter
ARUCO Augmented Reality University of Cordoba
LSD-SLAM Large-Scale Direct SLAM
SVO Semidirect Visual Odometry
ORB ORiented Brief
LK Lucas–Kanade
RGB-D RGB-Depth
CPU Central Processing Unit
SSD Single Shot Multibox Detector
OKVINS Open Keyframe-Based Visual-Inertial SLAM
BRISK Binary Robust Invariant Scalable Keypoints
PGO Pose Graph Optimizer
SFM Structure From Motion
RANSAC Random Sampling Consensus
Sim3 Similar Transformation Using 3 Pairs of Points
MAV Micro Aerial Vehicle
BA Bundle Adjustment
ATE Absolute Trajectory Error
RMSE Root Mean Square Error
SD Standard Deviation
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