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Abstract: Segmenting primary objects in a video is an important yet challenging problem in intelligent
video surveillance, as it exhibits various levels of foreground/background ambiguities. To reduce
such ambiguities, we propose a novel formulation via exploiting foreground and background context
as well as their complementary constraint. Under this formulation, a unified objective function is
further defined to encode each cue. For implementation, we design a complementary segmentation
network (CSNet) with two separate branches, which can simultaneously encode the foreground
and background information along with joint spatial constraints. The CSNet is trained on massive
images with manually annotated salient objects in an end-to-end manner. By applying CSNet
on each video frame, the spatial foreground and background maps can be initialized. To enforce
temporal consistency effectively and efficiently, we divide each frame into superpixels and construct
a neighborhood reversible flow that reflects the most reliable temporal correspondences between
superpixels in far-away frames. With such a flow, the initialized foregroundness and backgroundness
can be propagated along the temporal dimension so that primary video objects gradually pop out and
distractors are well suppressed. Extensive experimental results on three video datasets show that the
proposed approach achieves impressive performance in comparisons with 22 state-of-the-art models.

Keywords: primary object segmentation; video; objective function; complementary CNNs; neighbor-
hood reversibility

1. Introduction

Segmenting primary objects aims to delineate the physical boundaries of the most
perceptually salient objects in an image or video. Perceptual saliency means that the objects
should be visually salient in image space while present in most of the video frames. This
is a useful assumption that works under various unconstrained settings, thus benefiting
many computer vision applications such as action recognition, object class learning [1],
video summarization, video editing, content-based video retrieval and video surveillance.

Despite impressive performance in recent years [2–13], primary object segmentation
remains a challenging task since in real-world images there exist various levels of ambi-
guities in determining whether a pixel belongs to the foreground or background. These
ambiguities are more serious in video frames due to some video attributes representing
specific situations, such as fast motion, occlusion, appearance changes and cluttered back-
ground [14]. Specially, these attributes are not exclusive; thus a sequence can be annotated
with multiple attributes. As shown in Figure 1, due to the camera and/or object motion,
the primary objects may suffer motion blur (e.g., the last dog frame), occlusion (e.g., the
second dog frame) and even be out-of-view (e.g., the last two turtle frames). Moreover, the
primary objects may co-occur with various distractors in different frames (e.g., the turtle
video frames), making them difficult to consistently pop-out throughout the whole video.
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Figure 1. Primary objects may co-occur with or be occluded by various distractors. They may
not always be the most salient ones in each separate frame but can consistently pop out in most
video frames (the two groups of frames and masks are taken from the dataset VOS [15] and dataset
Youtube-Objects [1], respectively).

To address these issues, there exist three major types of models, which can be roughly
categorized into interactive, weakly supervised and fully automatic models. Of these
models, interactive models require manually annotated primary objects in the first frame
or several selected frames before starting automatic segmentation [16–18], while weakly
supervised models often assume that the semantic tags of primary video objects are known
before segmentation so that external cues such as object detection can be used [19,20].
However, the requirement of interaction or semantic tags prevents their usage in processing
large-scale video data [21].

Beyond these two kinds of models, fully automatic models aim to directly segment
primary objects in a single video [21–26] or co-segment the primary objects shared by a col-
lection of videos [27–29] without any prior information about the objects. Although recently,
CNNs have achieved impressive progress in object segmentation, insufficient video data
with pixel-level annotations may prevent the end-to-end training of a sophiscated spatio-
temporal model. In view of the remarkable performance in image-based primary object
sementation, an easy method is to extend the image-based models to videos by considering
spatial attributes and the additional temporal cues of primary video objects [22,30,31].

Such spatiotemporal attributes such as attractive appearance, better objectness, dis-
tinctive motion from its surroundings and frequent occurrence in the whole video mainly
focus on foreground features and have attracted much attention from most models [2,32,33].
However, the background is actually symbiotic with the foreground and contains much
connotative information. Thus, some models pay more attention to background cues, such
as boundary connectivity [32,34] and surroundings [35], even including complex dynamic
background modeling [36]. Naturally, this leads to several models [22,37] that consider
both foreground and background cues to assist foreground segmentation. However, there
exist two issues. On one hand, sometimes the complexity of primary objects renders these
attributes insufficient (e.g., distractors share common visual attributes with targets), then
these models may fail on certain videos in which the assumptions may not hold. On the
other hand, these models either ignore the foreground/background or only utilize one to
facilitate the other, which may miss some important cues and result in more ambiguities
between the foreground and background.

Moreover, temporal coherence is an important issue for primary video object seg-
mentation, and directly applying image-based algorithms to videos is vulnerable to in-
consistent segmentation. To reduce such inconsistency, costly processing methods are
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usually adopted, such as object/trajectory tracking and sophisticated energy optimization
models [22,31,37,38]. Particularly, pixel-wise optical flows are widely used to propagate
information between adjacent frames. Unfortunately, optical flows are often inaccurate
in case of sudden motion changes or occlusions, by which errors may be accumulated
along time. Moreover, usually only correspondences in adjacent temporal windows are
established, which may prevent long-term information being propagated more effectively.

Considering all these issues, this paper proposes a novel approach that effectively
models the complementary nature of the foreground/background in primary video object
segmentation and efficiently propagates information temporally within a neighborhood
reversible flow (NRF). Firstly, the problem of primary object segmentation is formulated
into a novel objective function that explicitly considers foreground and background cues as
well as their complementary relationships. In order to optimize the function and obtain the
foregroundness and backgroundness prediction, a complementary segmentation network
(CSNet) with multi-scale feature fusion and foreground/background branching is proposed.
Then, to enhance the temporal consistency of initial predictions, NRF is further proposed to
establish reliable, non-local inter-frame correspondences. These two techniques constitute
the spatial and temporal modules of the proposed framework, as shown in Figure 2.

Figure 2. Framework of the proposed approach. The framework consists of two major modules. The
spatial module trains CSNet to simultaneously initialize the foreground and background maps of
each frame. This module operates on GPU to provide pixel-wise predictions for each frame. The
temporal module constructs neighborhood reversible flow so as to propagate foregroundness and
backgroundness along the most reliable inter-frame correspondences. This module operates on
superpixels for efficient temporal propagation. Note that E(·) is the cross-entropy loss that enforce
F → G and B→ 1−G. The proposed complementary loss Ω(F, B) contains intersection loss Ω∩(F, B)
and union loss Ω∪(F, B) for a complementary constraint. F, B and G are foreground, background
and groundtruth, respectively. λ∩ and λ∪ are corresponding weights. Moreover, more details about
CSNet are shown in Section 3.2.

In the spatial module, CSNet is trained on massive annotated images as an optimizer
of the proposed complementary objective so as to simultaneously handle two complemen-
tary tasks, i.e., foregroundness and backgroundness estimation, with two separate branches.
By using CSNet, we can obtain the initialized foreground and background maps on each
individual frame. To efficiently and accurately propagate such spatial predictions between
far-away frames, we further divide each frame into a set of superpixels and construct a
neighborhood reversible flow so as to depict the most reliable temporal correspondences



Appl. Sci. 2022, 12, 7781 4 of 22

between superpixels in different frames. Within such flow, the initialized spatial fore-
groundness and backgroundness are efficiently propagated along the temporal dimension
by solving a quadratic programming problem that has an analytic solution. In this manner,
primary objects can efficiently pop out, and distractors can be further suppressed. Extensive
experiments on three video datasets show that the proposed approach acts efficiently and
achieves impressive performances compared with 22 state-of-the-art models.

This paper builds upon and extends our previous work in [39] with further discussion
of the algorithm, analysis and expanded evaluations. We further formulate the segmenta-
tion problem into a new objective function based on the constraint relationship between
foreground and background and optimize it using a new complementary deep network.

The main contributions of this paper include the following:

• We formulate the problem of primary object segmentation into a novel objective func-
tion based on the relationship between foreground and background and incorporate
the objective optimization problem into end-to-end CNNs. By training specific CNNs,
two dual tasks of foreground and background segmentation can be simultaneously
addressed, and primary video objects can be segmented from complementary cues.

• We construct neighborhood reversible flow between superpixels which effectively
propagates foreground and background cues along the most reliable inter-frame
correspondences and leads to more temporally consistent results.

• Based on the proposed method, we achieve impressive performance compared with
22 image-based and video-based existing models, achieving state-of-the-art results.

In the rest of this paper, we first conduct a brief review of previous studies on pri-
mary/salient object segmentation in Section 2. Then, we present the technical details of
the proposed spatial initialization module in Section 3 and temporal refinement module
in Section 4. Experimental results are shown in Section 5. At last, we conclude with a
discussion in Section 6.

2. Related Work

A great amount of the performance of primary video object segmentation is con-
tributed by the good performance of each frame. In this section, we give a brief overview
of recent works in salient object segmentation in images and primary/semantic object
segmentation in videos.

2.1. Salient Object Segmentation in Images

Salient object segmentation in images is a research area that has been greatly developed
in the past twenty years, in particular since 2007 [40].

Early approaches treated saliency object segmentation as an unsupervised problem
and focused on low-level and mid-level cues, such as contrast [32,41], focusness [33], spatial
properties [42,43], spectral information [44], objectness [35], etc. Most of the cues build
upon foreground priors. For example, the widely used contrast prior believes that the
salient regions present high contrast over the background in certain contexts [42,45], and
the focusness prior considers that a salient object is often photographed in focus to attract
more attention. From the opposite perspective, the background prior was first proposed
by Wei et al. [43], who assumed the image boundaries are mostly background and built
a saliency detection model based two background priors, i.e., boundary and connectiv-
ity. After that, some approaches [34,46–48] successively appeared. Unfortunately, these
methods usually require a prior hypothesis about salient objects, and their performance
heavily depend on the prior’s reliability. Besides, the methods that only use purely low-
level/mid-level cues face difficulties in detecting salient objects in complex scenes due to
their unawareness of image content.

Recently, learning-based methods, especially deep networks methods (i.e., CNN-based
models and FCN-based models), have attracted much attention because of their ability to
extract high-level semantic information [4,13,49]. In [13], two neural networks, DNN-L
and DNN-G, were proposed to respectively extract local features and conduct a global
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search for generating the final saliency map. In [5], Li and Yu introduced a neural network
with fully connected layers to regress the saliency degree of each superpixel by extracting
multiscale CNN features. While these CNN-based models with fully connected layers that
operate at the patch level may result in blurry saliency maps, especially near the boundary
of salient objects, in [50], fully convolutional networks considering pixel-level operations
were applied for salient object segmentation. After that, various FCN-based salient object
segmentation approaches were explored [51–53] and obtained impressive performance.

However, most of these methods focus on independent foreground or background
features, and only several models [54,55] pay attention to both of them. To the best of
our knowledge, few models explicitly model the constraint relationship between them, al-
though it may be very helpful in complex scenes. Therefore, in this work, we simultaneously
consider foreground and background cues as well as their complementary relationships
and optimize their joint objective by using the powerful learning ability of deep networks.

2.2. Primary/Semantic Object Segmentation in Videos

Different from salient object segmentation in images, primary video object segmen-
tation faces more challenges and criteria (e.g., spatiotemporal consistency) due to the
additional temporal attributes.

Motion information (e.g., motion vectors, feature point trajectories and optical flow)
is usually used in the spatiotemporal domain to facilitate primary/semantic video object
segmentation and enhance the spatiotemporal consistency of segmentation results [56–58].
For example, Papazoglou and Ferrari [23] first initialized foreground maps with motion
information and then refined them in the spatiotemporal domain so as to enhance the
smoothness of foreground objects. Zhang et al. [21] used optical flow to track the evolu-
tion of object shape and presented a layered directed acyclic graph-based framework for
primary video object segmentation. In a further step, Tsai et al. [38] utilized a multi-level
spatial-temporal graphical model with the use of optical flow and supervoxels to jointly
optimize segmentation and optical flow in an iterative scheme. The re-estimated optical
flow (i.e., object flow) was used to maintain object boundaries and temporal consistency.
Nevertheless, there still exist several issues. Firstly, some models [57,59,60] are built upon
certain assumptions, for instance, that foreground objects should move differently from
their surroundings in a good fraction of the video or should be spatially dense and change
smoothly across frames in shapes and locations, which may fail on certain videos that
contain complex scenarios in which these assumptions may not hold. Secondly, the pixel-
wise optical flows are usually computed between adjacent frames since their similarity can
offer more accurate flow estimation, while it is disadvantageous to obtain more valuable
inter-frame (e.g., two far-away frames) cues since adjacent frames may not offer useful cues
due to occlusion, blur and out-of-view, etc.

Recently, a number of approaches have attempted to address video object segmen-
tation via deep neural networks. Due to lacking sufficient video data with per-frame
pixel-level annotations, most of them exploit temporal information over image segmen-
tation approaches for video segmentation. One popular thought is to calculate a kind of
correspondence flow and propagate it in inter-frames [61–63]. In [61], based on optical
flow, a spatio-temporal transformer GRU was proposed to temporally propagate labeling
information between adjacent frames for semantic video segmentation. In [63], a deep
feature flow was presented to propagate deep feature maps from key frames to other
frames, which was jointly trained with video recognition tasks. Although these methods
are helpful for transferring image-based segmentation networks to videos, the propagation
flows are still limited by adjacent frames or training complexity.

Therefore, in our work, we enhance inter-frame consistency by constructing a neigh-
borhood reversible flow (NRF) instead of an optical flow to efficiently and accurately
propagate the initialized predictions between adjacent key frames, which is simple but
effective for popping out the consistent and primary object in the whole video.
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3. Initialization with Complementary CNNs

In this section, starting from the complementary peculiarity of foreground and back-
ground, we reformulate the problem of primary video object segmentation into a new
objective function. Then, we design complementary CNNs to conduct deep optimization
of the objective function and yield the initial foreground and background estimation.

3.1. Problem Formulation

Typically, a frame I consists of the foreground area F and the background area B with
F ∩ B = ∅ and F ∪ B = I , i.e., the foreground and background should be complementary
in image space. Considering that foreground objects and background distractors usually
have different visual characteristics (e.g., clear versus fuzzy edges, large versus small sizes,
high versus low objectness), we can attack the problem of primary object segmentation at
the frame I from a complementary perspective, estimating foreground and background
maps, respectively. In this manner, the intrinsic characteristics of foreground and back-
ground regions can be better captured by two models with different focuses. Keeping
this in mind, we propose the following formulation to explicitly consider foreground and
background cues

min
WF ,WB

L(F, B, G) + Ω(F, B),

s.t. φF(I ;WF) = F, F(p) ∈ {0, 1}, ∀ p ∈ I
φB(I ;WB) = B, B(p) ∈ {0, 1}, ∀ p ∈ I ,

(1)

where F and B are two binary matrices representing F and B. G is the ground-truth map
that equals 1 for a foreground pixel and 0 for a background pixel. WF and WB are two sets
of parameters for the foreground and background prediction models φF and φB. For the
sake of simplifications, the values of F and B are assumed to be in the range [0, 1]. The first
term L(F, B, G) is the empirical loss defined as

L(F, B, G) = E(F, G) + E(B, 1−G), (2)

where E(·) is the cross-entropy loss that enforces F→ G and B→ 1−G. Ideally, salient
objects and background regions can be perfectly detected by minimizing these two losses.
However, errors always exist even when two extremely complex models are used. In this
case, conflicts and unlabeled areas may arise in the predicted maps (e.g., both F and G
equal 1 or 0 at the same location).

To reduce such errors, we refer to the constraint relationshipF ∩B = ∅ andF ∪B = I
and incorporate the complementary loss Ω(F, B):

Ω(F, B) = λ∩Ω∩(F, B) + λ∪Ω∪(F, B), (3)

where Ω∩(·) and Ω∪(·) are two losses with non-negative weights λ∩ and λ∪ to encode the
constraint F ∩ B = ∅ and F ∪ B = I , respectively. Here, λ∩ and λ∪ are both set to 0.4.
The intersection loss term Ω∩(·) tries to minimize the conflicts between F and B:

Ω∩(F, B) =
1
‖I‖ ∑

p∈I
(F(p) · B(p))σ∩ , (4)

where ‖I‖ indicates the number of pixels in the image I , and p is a pixel with predicted
foregroundness F(p) and backgroundness B(p). σ∩ is a positive weight to control the
penalty of conflicts. The minimum value of (4) will be reached when F(p) · B(p) = 0,
implying that at least one map has zero prediction at every location.
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Similarly, the union loss term Ω∪(·) tries to maximize the complementary degree
between F and B:

Ω∪(F, B) =
1
‖I‖ ∑

p∈I
(F(p) + B(p)− 1)σ∪ . (5)

We can see that the minimum complementary loss can be reached when F(p) +B(p) = 1
(i.e., perfect complementary predictions). The parameter σ∪ is a positive weight to control
the penalty of non-complementary predictions.

3.2. Deep Optimization with Complementary CNNs

Given the empirical loss (2) and the complementary loss (3), we can derive two models,
φF(·) and φB(·), for per-frame initialization of the foreground and background maps by
solving the optimization problem of objective functions (1). Toward this end, we need to
first determine the form of the models and the algorithm for optimizing their parameters.
Considering the impressive capability of convolutional neural networks (CNN), we propose
to solve the optimization problem in a deep learning paradigm.

The architecture of the proposed CNN can be found in Figure 3, which starts from
a shared trunk and ends up with two separate branches, i.e., a foreground branch and
a background branch. The main configurations and details are shown in Table 1. For
simplicity, only the foreground branch is illustrated in Table 1, as the background one adopts
the same architecture. Note that this network simultaneously handles two complementary
tasks as well as their relationships and is denoted as a complementary segmentation
network (CSNet). The parameters of the shared trunk are initialized from the ResNet50
networks [64], which are used to extract low- to high-level features that are shared by
foreground objects and background distractors. We remove the pooling layer and the
fully connected layer after the RELU layer of res5c and introduce two pooling blocks (see
Figure 3) to provide features from additional levels and reduce parameters. In order to
integrate both the local and global contexts, we sum up different levels of feature outputs
by layer Res3, Res4 and Res5 and two pooling blocks by appropriate up/down-sampling
operations. After that, a residual block with a 3 × 3 CONV layer and a 1 × 1 CONV layer is
used to post-process the integrated features as well as increase their nonlinearity. Finally,
the shared trunk takes a 320× 320 image as the input and outputs a 40× 40 feature map
with 512 channels.

Table 1. Main configurations for CSNet. Note that x and y are integers in the range [1, 5].

Type Name Patch Size/Stride/Pad/Dilation/Group Output Size

Conv1_pb1 3 × 3/1/1/1/32 10 × 10 × 256
Conv2_pb1 1 × 1/1/0/1/1 10 × 10 × 2048
Pool1 avg pool, 2 × 2, stride 2 5 × 5 × 2048
Conv3_pb1 3 × 3/1/1/1/32 5 × 5 × 256
Conv4_pb1 1 × 1/1/0/1/1 5 × 5 × 2048
Conv1_pb2 3 × 3/1/1/1/32 5 × 5 × 256
Conv2_pb2 1 × 1/1/0/1/1 5 × 5 × 2048
Pool2 avg pool, 2 × 2, stride 2 3 × 3 × 2048
Conv3_pb2 3 × 3/1/1/1/32 3 × 3 × 256
Conv4_pb2 1 × 1/1/0/1/1 3 × 3 × 2048
Interp1 bilinear upsampling 40 × 40 × 1024
Conv1 1 × 1/1/0/1/1 40 × 40 × 512
Interp2 bilinear upsampling 40 × 40 × 2048
Conv2 1 × 1/1/0/1/1 40 × 40 × 512
Interp3 bilinear upsampling 40 × 40 × 2048
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Table 1. Cont.

Type Name Patch Size/Stride/Pad/Dilation/Group Output Size

Conv3 1 × 1/1/0/1/1 40 × 40 × 512
Interp4 bilinear upsampling 40 × 40 × 2048
Conv4 1 × 1/1/0/1/1 40 × 40 × 512
Conv5 3 × 3/1/1/1/32 40 × 40 × 256
Conv6 1 × 1/1/0/1/1 40 × 40 × 512
Conv7_xf 1 × 1/1/0/1/1 40 × 40 × 512
Conv8_yf 3 × 3/1/y/y/32 40 × 40 × 256
Conv9f 1 × 1/1/0/1/1 40 × 40 × 256
Conv10f 3 × 3/1/1/1/8 40 × 40 × 64
Deconv1f 3 × 3/4/1/1/1 161 × 161 × 1

Figure 3. Architecture of the proposed CSNet. Note that layers Res1 and Res2/3/4/5 correspond to
layers conv1 and conv2_x/3_x/4_x/5_x in [64], respectively. More details are shown in Table 1.

After the shared trunk, the features are fed into two separate branches that address
two complementary tasks, i.e., foreground and background estimation. Note that the two
branches share the architecture with the input, but produce complementary outputs. In each
branch, the shared features pass through a sequential of convolution blocks. These blocks
all consist of 1× 1 and 3× 3 CONVs, but with different dilations. As such, we concatenate
the output of each block to constitute feature maps at 40× 40 resolution with 1280 channels.
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These features, which have a wide range of spatial context and abstraction levels, are finally
fed into several CONV layers for dimensional reduction and post-processing, and upsampled
to produce output segmentation maps at size 161× 161. With such designs, the foreground
branch mainly focuses on detecting salient objects, while the background one suppresses
distractors. In addition to the empirical loss defined in (2), two additional losses, (4) and (5),
are also adopted to penalize the conflicts and complementary degree of the output maps
for more accurate predictions.

In the training stage, we collect massive images with labeled salient objects from
four datasets for image-based salient object detection [5,46,65,66]. We down-sample all
images to 320× 320 and their ground-truth saliency maps into 161× 161. For the pretrained
ResNet50 trunk, the learning rate is set to 5× 10−7, while for the two branches they are
5× 10−6. We train the network with a mini-batch of 4 images using the SGD optimizer
with a momentum of 0.9 and a weight decay of 0.0005.

4. Efficient Temporal Propagation with Neighborhood Reversible Flow

The per-frame initialization of foregroundness and backgroundness can only provide a
location prediction of the primary objects and background distractors at the spatial domain.
However, the concept of primary objects is defined from a more global spatiotemporal
perspective, not only salient in the intra-frame but also consistent in the inter-frame and
throughout the whole video. As mentioned earlier, the primary video object should be
spatiotemporally consistent, i.e., the saliency foreground regions should not change dra-
matically along the time dimension. This implies that there still exists a large gap between
the frame-based initialization results and the video-based primary objects. Therefore, we
need to further infer the primary objects that consistently pop out in the whole video [15]
according to the spatiotemporal correspondence of visual signals. In this process, two key
challenges need to be addressed, including:

(1) How to find the most reliable correspondences between various (nearby or far-away) frames;
(2) How to infer out the consistent primary objects based on spatiotemporal correspon-

dences and the initialization results?

To address these two challenges, we propose a neighborhood reversible flow algorithm
to find and propagate a neighborhood reversible subset from the inter-frames. Details of
our solutions will be discussed in the following part of this section.

4.1. Neighborhood Reversible Flow

The proposed neighborhood reversible flow (NRF) propagates information along
reliable correspondences established among several key frames of the video, thus prevent-
ing errors from accumulating quickly and involving larger temporal windows for more
effective context exploitation. Instead of pixel-level correspondence, NRF operates on
superpixels to achieve region-level matching and higher computational efficiency.

Given a video V = {Iu}K
u=1, we first apply the SLIC algorithm [67] to divide a frame

Iu into Nu superpixels, denoted as {Oui}. For each superpixel, we compute its average
RGB, Lab and HSV colors as well as the horizontal and vertical positions. These features
are then normalized into the same dynamic range [0, 1].

Based on the features, we need to address two fundamental problems: (1) how to
measure the correspondence between a superpixel Oui from the frame Iu and a superpixel
Ovj from the frame Iv, and (2) which frames should be referred to for a given frame?
Inspired by the concept of neighborhood reversibility in image search [68], we can compute
the pair-wise `1 distances between {Oui}Nu

i=1 and {Ovj}Nv
j=1. After that, we denote the k-

nearest neighbors of Oui in the frame Iv asNk(Oui|Iv). As a consequence, two superpixels
Oui and Ovj are k-neighborhood reversible if they reside in the list of k-nearest neighbors
of each other. That is,

Oui ∈ Nk(Ovj|Iu) and Ovj ∈ Nk(Oui|Iv). (6)
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From (6), we find that the smaller the k, the more tightly two superpixels are temporally
correlated. Therefore, the correspondence between Oui and Ovj can be measured as

sui,vj =

{
exp(−2k/k0), if k ≤ k0

0, otherwise
(7)

where k0 is a constant to suppress weak flow, and k is a variable. A small k0 will build
sparse correspondences between Iu and Iv (e.g., k0 = 1), while a large k0 will cause
dense correspondences. In this study, we empirically set k0 = 15 and represent the flow
between Iu and Iv with a matrix Fuv ∈ RNu×Nv , in which the component at (i, j) equals
fui,vj. Note that we further normalize Fuv so that each row sums up to 1. Considering
the highly redundant visual content between adjacent frames, for each video frame Iu,
we pick up its adjacent keyframes {It|t ∈ Tu} to ensure sufficient variation in content
and depict reliable temporal correspondences. In this paper, we refer to the interval dk
of annotated video frames, which usually contain the most critical information of the
whole video, to determine the interval of adjacent keyframes. Later, we estimate the flow
matrixes between a frame Iu and the frames {It|t ∈ Tu}, where Tu can be empirically set
to {u− 2× dk, u− dk, u + dk, u + 2× dk}.

4.2. Temporal Propagation of Spacial Features

The flow {Fuv} depicts how superpixels in various frames are temporally correlated,
which can be used to further propagate the spatial foregroundness and backgroundness.
Typically, such temporal refinement can obtain impressive performance by solving a com-
plex optimization problem with constraints like spatial compactness and temporal con-
sistency. However, the time cost will also grow surprisingly high [20]. Considering the
requirement of efficiency in many real-world applications, we propose to minimize an
objective function that has an analytic solution. For a superpixel Oui, its foregroundness
xui and backgroundness yui can be initialized as

xvj =
∑p∈Oui

Xu(p)
|Oui|

, yui =
∑p∈Oui

Yu(p)
|Oui|

, (8)

where p is a pixel with foregroundness Xu(p) and backgroundness Yu(p). |Oui| is the area
ofOui. For the sake of simplification, we represent the foregroundness and backgroundness
scores of all superpixels in the uth frame with column vectors xu and yu, respectively. As a
result, we can propagate such scores from Iv to Iu according to Fuv:

xu|v = Fuvxv, yu|v = Fuvyv, ∀v ∈ Tu. (9)

After the propagation, the foregroundness vector x̂u and backgroundness vector ŷu
can be refined by solving

x̂u = arg min
x
‖x− xu‖2

2 + λc ∑
v∈Tu

‖x− xu|v‖2
2,

ŷu = arg min
y
‖y− yu‖2

2 + λc ∑
v∈Tu

‖y− yu|v‖2
2,

(10)

where λc is a positive constant whose value is empirically set to 0.5. Note that we adopt
only the `2 norm in (10) so as to efficiently compute an analytic solution

x̂u =
1

1 + λc · |Tu|

(
xu + λc ∑

v∈Tu

Fuvxv

)
,

ŷu =
1

1 + λc · |Tu|

(
yu + λc ∑

v∈Tu

Fuvyv

)
.

(11)
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By observing (9) and (11), we find that the propagation process is actually calculating
the average foregroundness and backgroundness scores within a local temporal slice under
the guidance of neighborhood reversible flow. After the temporal propagation, we turn
superpixel-based scores into pixel-based ones according to

Mu(p) =
Nu

∑
i=1

δ(p ∈ Oui) · x̂ui · (1− ŷui), (12)

min
x
‖x− xu‖2

2 + λc ∑
v∈Tu

‖x− Fuvxv‖2
2 (13)

where Mu is the importance map of Iu that depict the presence of primary objects.
δ(p ∈ Oui) is an indicator function, which equals 1 if p ∈ Oui and 0 otherwise. Finally, we
calculate an adaptive threshold which equals the 20% of the maximal pixel importance to
binarize each frame, and a morphological closing operation is then performed to fill in the
black area in the segmented objects.

5. Experiments

In this section, we first illustrate experimental settings about datasets and evaluation
metrics in Section 5.1. Then, based on the datasets and metrics, we quantitatively compare
our primary video object segmentation method with 22 state-of-the-art approaches in
Section 5.2. After that, in Section 5.3, we further demonstrate the effectiveness of our ap-
proach by offering more detailed exploration and dissecting various parts of our approach
as well as running time and failure cases.

5.1. Experimental Settings

We test the proposed approach on three widely used video datasets; their ways
of defining primary video objects are different. Details of these datasets are described
as follows:

(1) SegTrack V2 [59] is a classic dataset in video object segmentation that is frequently
used in many previous works. It consists of 14 densely annotated video clips with
1066 frames in total. Most primary objects in this dataset are defined as ones with
irregular motion patterns.

(2) Youtube-Objects [1] contains a large amount of Internet videos, and we adopt its
subset [69] that contains 127 videos with 20,977 frames. In these videos, 2153 keyframes
are sparsely sampled and manually annotated with pixel-wise masks according to the
video tags. In other words, primary objects in Youtube-Objects are defined from the
perspective of semantic attributes.

(3) VOS [15] contains 200 videos with 116,093 frames. On 7467 uniformly sampled
keyframes, all objects are pre-segmented by 4 subjects, and the fixations of another
23 subjects are collected in eye-tracking tests. With these annotations, primary objects
are automatically selected as the ones whose average fixation densities over the whole
video fall above a predefined threshold. If no primary objects can be selected with
the predefined threshold, objects that receive the highest average fixation density will
be treated as the primary ones. Different from SegTrack V2 and Youtube-Objects,
primary objects in VOS are defined from the perspective of human visual attention.

On these three datasets, the proposed approach, denoted as CSP, is compared with
22 state-of-the-art models for primary and salient object segmentation, including: RBD [34],
SMD [70], MB+ [48], DRFI [2], BL [71], BSCA [47], MST [72], ELD [4], MDF [5], DCL [53],
LEGS [13], MCDL [7] and RFCN [73], ACO [22], NLC [74], FST [23], SAG [57], GF [60],
PN+ [75], DFI [76], FSal [77] and PFS [78].

In the comparisons, we adopt two sets of evaluation metrics, including the intersection-
over-union (IoU) and the precision-recall-Fβ. Similar to [15], the precision, recall and IoU
scores are first computed on each video and finally averaged over the whole dataset so
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as to generate the mean average precision (mAP), mean average recall (mAR) and mean
average IoU (mIoU). In this manner, the influence of short and long videos can be balanced.
Furthermore, a unique Fβ score can be obtained based on mAR, mAP and a parameter β,
the square of which is set as 0.3 to emphasize precision more than recall in the evaluation.

5.2. Comparisons with State-of-the-Art Models

The performances of our approach and 22 state-of-the-art models on three video
datasets are shown in Table 2. Some representative results of our approach are demon-
strated in Figure 4. From Table 2, we find that on Youtube-Objects and VOS, for such
larger datasets, our approach obtains the best Fβ and mIoU scores, while on SegTrack
V2, our approach ranks the second place (worse than NLC). This can be explained by the
fact that SegTrack V2 contains only 14 videos, among which most primary objects have
irregular motion patterns. Such videos often perfectly meet the assumption of NLC on
motion patterns of primary objects, making it the best approach on SegTrack V2. However,
when the scenarios being processed extend to datasets such as VOS that are constructed
without such “constraints” on motion patterns, the performance of NLC drops sharply,
as its assumption may sometimes fail (e.g., VOS contains many videos only with static
primary objects and distractors as well as slow camera motion; see Figure 4). These results
further validate that it is quite necessary to conduct comparisons on larger datasets with
daily videos (such as VOS) so that models with various kinds of assumptions can be
fairly evaluated.

Table 2. Performances of our approach and 22 models. Bold and underline indicate the 1st and 2nd
performance in each column.

Models
SegTrackV2 (14 Videos) Youtube-Objects (127 Videos) VOS (200 Videos)

mAP mAR Fβ mIoU mAP mAR Fβ mIoU mAP mAR Fβ mIoU

DRFI [2] 0.464 0.775 0.511 0.395 0.542 0.774 0.582 0.453 0.597 0.854 0.641 0.526
RBD [34] 0.380 0.709 0.426 0.305 0.519 0.707 0.553 0.403 0.652 0.779 0.677 0.532
BL [71] 0.202 0.934 0.246 0.190 0.218 0.910 0.264 0.205 0.483 0.913 0.541 0.450

BSCA [47] 0.233 0.874 0.280 0.223 0.397 0.807 0.450 0.332 0.544 0.853 0.594 0.475
MB+ [48] 0.330 0.883 0.385 0.298 0.480 0.813 0.530 0.399 0.640 0.825 0.675 0.532
MST [72] 0.450 0.678 0.488 0.308 0.538 0.698 0.568 0.396 0.658 0.739 0.675 0.497
SMD [70] 0.442 0.794 0.493 0.322 0.560 0.730 0.592 0.424 0.668 0.771 0.690 0.533
MDF [5] 0.573 0.634 0.586 0.407 0.647 0.776 0.672 0.534 0.601 0.842 0.644 0.542
ELD [4] 0.595 0.767 0.627 0.494 0.637 0.789 0.667 0.531 0.682 0.870 0.718 0.613

DCL [53] 0.757 0.690 0.740 0.568 0.727 0.764 0.735 0.587 0.773 0.727 0.762 0.578
LEGS [13] 0.420 0.778 0.470 0.351 0.549 0.776 0.589 0.450 0.606 0.816 0.644 0.523
MCDL [7] 0.587 0.575 0.584 0.424 0.647 0.613 0.638 0.471 0.711 0.718 0.713 0.581
RFCN [73] 0.759 0.719 0.749 0.591 0.742 0.750 0.744 0.592 0.749 0.796 0.760 0.625
NLC [74] 0.933 0.753 0.884 0.704 0.692 0.444 0.613 0.369 0.518 0.505 0.515 0.364
ACO [22] 0.827 0.619 0.767 0.551 0.683 0.481 0.623 0.391 0.706 0.563 0.667 0.478
FST [23] 0.792 0.671 0.761 0.552 0.687 0.528 0.643 0.380 0.697 0.794 0.718 0.574
SAG [57] 0.431 0.819 0.484 0.384 0.486 0.754 0.529 0.397 0.538 0.824 0.585 0.467
GF [60] 0.444 0.737 0.489 0.354 0.529 0.722 0.563 0.407 0.523 0.819 0.570 0.436

PN+ [75] 0.734 0.633 0.708 0.577 0.759 0.690 0.742 0.559 0.808 0.882 0.824 0.754
DFI [76] 0.711 0.663 0.699 0.579 0.729 0.799 0.744 0.617 0.792 0.906 0.816 0.746
FSal [77] 0.645 0.725 0.662 0.561 0.344 0.358 0.347 0.170 0.313 0.330 0.317 0.152
PFS [78] 0.604 0.581 0.598 0.410 0.736 0.704 0.728 0.549 0.692 0.639 0.679 0.471

CSP 0.789 0.778 0.787 0.669 0.778 0.820 0.787 0.675 0.805 0.910 0.827 0.747
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Figure 4. Representative results of our approach. Red masks are the ground truth, and green contours
are the segmented primary objects.

Moreover, there exist some approaches (BL and MB+) on the three datasets that out-
perform our approach in recall, and some other approaches (NLC, ACO, PN+ and FST)
may achieve better or comparable precision with our approach on SegTrack V2. However,
the other evaluation scores of the approaches are much worse than our method on the three
datasets. That is, none of these approaches simultaneously outperforms our approach in
both recall and precision, so our approach often has better overall performance, especially
on larger datasets. This may imply that the proposed approach is more balanced than pre-
vious works. By analyzing the results on the three datasets, we find that this phenomenon
may be caused by the conduction of complementary tasks in CSNet. By propagating
both foregroundness and backgroundness, some missing foreground information may be
retrieved, while the mistakenly popped-out distractors can be suppressed again, leading to
balanced recall and precision.

From Table 2, we also find that there exist inherent correlations between salient
image object detection and primary video object segmentation. As shown in Figure 4,
primary objects are often the most salient ones in many frames, which explains why deep
models such as ELD, RFCN and DCL outperform many video-based models such as NLC,
SAG and GF. However, there are several key differences between the two problems. First,
primary objects may not always be the most salient ones in all frames (as shown in Figure 1).
Second, inter-frame correspondences provide additional cues for separating primary objects
and distractors, which depict a new way to balance recall and precision. Third, primary
objects may be sometimes close to the video boundary due to camera and object motion,
making the boundary prior widely used in many salient object detection models not valid
(e.g., the bear in the last row of the last column of Figure 4). Last but not least, salient object
detection needs to distinguish a salient object from a fixed set of distractors, while primary
object segmentation needs to consistently pop out the same primary object from a varying
set of distractors. To sum up, primary video object segmentation is a more challenging task
that needs to be further explored from the spatiotemporal perspective.

5.3. Detailed Performance Analysis

Beyond performance comparison, we also conduct several experiments on VOS, the
largest one of the three datasets, to find out how the proposed approach works in segment-
ing primary video objects. Moreover, an additional metric, i.e., temporal stability measure
T [14], is applied to evaluating the relevant aspect in primary video object segmentation
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in addition to the aforementioned four metrics. After all, mIoU only measures how well
the pixels of two masks match, while Fβ measures the accuracy of contours. None of
them consider the temporal aspect. However, video object segmentation is conducted
in spatiotemporal dimensions. Therefore, the additional temporal stability measure is a
appropriate choice to evaluate the temporal consistency of segmentation results. The main
quantifiable results can be found in Table 3. In Table 3, the first group is our previous work
in [39], and the second group is our current work extended from [39]. In order to illustrate
the effect of each component in our approach, the two groups of tests are based on the same
parameters, except for the last case, R-Init. + NRFp, which is the final test result obtained
generally by using some data argumentations and parameter adjustments on the base of
the case R-Init. + NRF.

Table 3. Detailed performances of our approaches. The first test group is our previous work in [39],
and the second group is our current work. V-Init/R-Init.: corresponding results initialized by
previous/current network. FG (FGp)/BG (BGp): foreground/background estimation with (without)
the constraint of complementary loss. NRF (NRFp): neighborhood reversible flow (with multi-test).
CE: cross-entropy. Comple.: complementary loss. mT: mean temporal stability metric, the smaller the
better. Bold and underline indicate the 1st and 2nd performance in each column.

Test Cases
Backbone Objective Evaluation

VGG16/ResNet50 CE Comple. NRF Multi-Test mAP mAR Fβ mIoU mT

V-Init. FG VGG16 X 0.750 0.879 0.776 0.684 0.117
V-Init. BG VGG16 X 0.743 0.884 0.771 0.680 0.117
V-Init. (FG + BG) VGG16 X 0.791 0.834 0.800 0.689 0.121
V-Init. + NRF VGG16 X X 0.789 0.870 0.806 0.710 0.109

R-Init. FG ResNet50 X 0.763 0.901 0.791 0.710 0.128
R-Init. BG ResNet50 X 0.764 0.899 0.791 0.711 0.128
R-Init. (FG + BG) ResNet50 X 0.808 0.863 0.820 0.724 0.127
R-Init. FGp ResNet50 X X 0.768 0.925 0.800 0.726 0.124
R-Init. BGp ResNet50 X X 0.763 0.927 0.796 0.723 0.124
R-Init. (FGp + BGp) ResNet50 X X 0.814 0.883 0.829 0.739 0.122
R-Init. + NRF ResNet50 X X X 0.803 0.901 0.824 0.739 0.108
R-Init. + NRFp ResNet50 X X X X 0.805 0.910 0.827 0.747 0.097

5.3.1. Performance of Complementary CNNs

In this section, some detail analysis will be given to further verify the effectiveness of
the proposed complementary CNN branches and complementary loss.

Impact of two complementary branches. To explore the impact of two complemen-
tary network branches, we evaluated the foreground maps and background maps initialized
by the two complementary branches, as well as their fusion maps. As shown in Table 3, in
the first group the evaluation scores of case V-Init. FG and V-Init. BG are equally matched
for their same branch structure, while the ones of their fusion maps increased to different
degrees, which suggests that the complementary characteristics of initialized foreground
maps and background maps can contribute to and constrain each other to generate more
accurate prediction. Then what will happen if we abandon the background branch? To
this end, we conducted two additional experiments in our previous work [39]. First, if
we cut down the background branch and retrain only the foreground branch, the final
performance decreases by about 0.9%. Second, if we re-train a network with two fore-
ground branches, the final Fβ and mIoU scores decrease from 0.806 to 0.800 and 0.710 to
0.700, respectively. These experiments indicate that, beyond learning more weights, the
background branch does learn some useful cues that are ignored by the foreground branch,
which are expected to be high-level visual patterns of typical background distractors. These
results also validate the idea of training deep networks by simultaneously handling two
complementary tasks.
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Therefore, network structures with two similar branches are still adopted in this
extension work. What is different is that the new network structure is assisted with
more designs based on the deeper and more effective ResNet50 instead of simple VGG16.
From Table 3, we can find that the initialized results are distinctly improved when the
backbone VGG16 is replaced by ResNet50. The aforementioned four evaluation scores are
all increased, e.g., the Fβ and mIoU scores increase from 0.776 to 0.791 and 0.684 to 0.710,
respectively, although the temporal stability performance is affected. This reveals the better
performance of our new network structure, and at the same time, hints at the fact that a
favourable per-frame initialization cannot stand for a good video initialization because of
the temporal consistency attribute in video. Thus, it is necessary to conduct optimization
in thhe temporal dimension, which will be explained in the next subsection.

Effect of the complementary loss. Except for the specific network, another main
difference is that the two complementary CNN bracnches in CSNet are also constrained by
our complementary loss. To verify the effectiveness, we optimize two sets of foreground
and background prediction models based on the new network structure, one with the
constraint of the penalty term in the objective function, and the other without. Based on the
two sets of models, we can initialize a foreground and a background map for each video
frame. The quantitative evaluations of initialization results respectively correspond to the
cases R-Init. FGp/BGp/(FGp + BGp) and the cases R-Init. FG/BG/(FG + BG) in Table 3.
From Table 3 we can find that, compared to the predictions without the penalty term
constraint, the foreground and background models with the additional complementary
loss can achieve better performance in predicting both foreground maps and background
maps, shown as better Fβ and mIoU scores. Moreover, some visual examples are shown in
Figure 5. Obviously, if we only use the empirical loss (2), some background regions may be
wrongly classified into foreground (e.g., the first three columns in Figure 5), while some
foreground details may be missed (e.g. the last three columns in Figure 5). By incorporating
the additional complementary loss (3), these mistakes can be fixed (see Figure 5d,e). Thus,
the complementary loss is effective for boundary localization and suppressing background
distractors. These results validate the effectiveness of handling two complementary tasks
with explicit consideration of their relationships.

Figure 5. Foreground and background maps initialized by CSNet as well as their interaction and
union maps, (a) video frames, (b) foreground maps and (c) background maps generated by CSNet
without the complementary loss. (d) Foreground maps and (e) background maps generated by CSNet
with the complementary loss.

Combining the two differences, the Fβ and mIoU scores of initialization results output
by our previous network CCNN (the case V-Init. (FG + BK)) increase by about 3.6% and
7.2%, i.e., from 0.800 to 0.829 and 0.689 to 0.739, respectively, with the increased mAP
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and mAR scores. This also means that the combination of complementary loss and two
complementary branches of foreground and background are valid and ingenious.

In particular, the complementary CNN branches in our two networks both show
impressive performance in predicting primary video objects over the other 6 deep models
when their pixel-wise predictions are directly evaluated on VOS. By analyzing the results,
we find that this may be caused by two reasons: (1) using more training data, and (2) simul-
taneously handling complementary tasks, whose effectiveness is just verified. To explore
the first reason, we retrained the CCNN on the same MSRA10K dataset used by most
deep models. In this case, the Fβ (mIoU) scores of the foreground and background maps
predicted by CCNN decrease to 0.747 (0.659) and 0.745 (0.658), respectively. Note that both
branches still outperform RFCN on VOS in terms of mIoU (but Fβ is slightly worse).

5.3.2. Effectiveness of Neighborhood Reversible Flow

Through the above complementary network branches, the salient foreground and
background maps in the intra-frame are well obtained, while the initialization operation
cannot ensure the temporal consistency of segmented objects, e.g., the initialized predictions
by CSNet outperform the ones by the CCNN in term of mAP, mAR, Fβ and mIoU but
become inferior in temporal stability mT. Thus, the thought of improving the temporal
relationship was proposed in Section 4, i.e., finding and propagating the reliable inter-frame
correspondences by applying the neighborhood reversible flow to make the consistent
salient subsets enhanced and accidental distractors suppressed. Consequently, the final
primary video objects with spatiotemporal consistency are yielded.

Effectiveness of Neighborhood Reversible Flow. To prove this thought, we compare
the initialized results by CCNN (CSNet) with the optimized results (V-Init.(R-Init.) + NRF)
by neighborhood reversible flow. As shown in Table 3, the temporal stability measure
mT of optimization results in CCNN (CSNet) cases decrease from 0.121 (0.122) to 0.109
(0.108) compared with the initialized predictions (V-Init. (FG + BK), R-Init. (FGp + BKp)).
At the same time, the other evaluation scores are also improved, e.g., the mIoU score
increases from 0.689 to 0.710. The superiority will become more obvious if we directly
compare V-Init. + NRF with V-Init. FG, i.e., conduct the fusion operation on foreground
and background in the process of neighborhood reversible flow just like we really do.
This means that by propagating the neighborhood reversible flow, the spatial subsets
of primary objects in intra-frame can be refined from a temporal perspective, and the
inter-frame temporal consistency can be enhanced. Finally, the primary video objects with
favourable spatiotemporal consistency can pop out. As shown in Figure 6, the primary
objects in most video frames are initialized as the horce, while the objects that only lasts
for a short while are mistakenly classified into foreground due to their spatial saliency
in certain frames. Fortunately, the distractors are well suppressed by the optimization of
neighborhood reversible flow (see the third rows in Figure 6). Thus, via propagating salient
cues in inter-frames, background objects could be effectively suppressed, only preserving
the real primary one.

To further demonstrate the effectiveness of neighborhood reversible flow, we tested
our approach with two new settings based on the CCNN. In the first setting, we replaced the
correspondence from Equation (7) with the cosine similarity between superpixels. In this
case, the Fβ and mIoU scores of our approach on VOS drop to 0.795 and 0.696, respectively.
Such performance is still better than the initialized foreground maps but worse than the
performance when using the neighborhood reversible flow (Fβ = 0.806, mIoU = 0.710). This
result indicates the effectiveness of neighborhood reversibility in temporal propagation.

In the second setting, we set λc = +∞ in Equation (10), implying that primary objects
in a frame are solely determined by the foreground and background propagated from other
frames. When the spatial predictions of each frame are actually ignored in the optimization
process, the Fβ (mIoU) scores of our approach on VOS only decrease from 0.806 (0.710) to
0.790 (0.693), respectively. This result proves that the inter-frame correspondences encoded
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in the neighborhood reversible flow are quite reliable for efficient and accurate propagation
along the temporal dimension.

Figure 6. Performance of the proposed neighborhood reversible flow. The first row is the video
sequences from Youtube-Objects [1], the second row is the corresponding initialized foreground
maps, and the third row is the optimized results by neighborhood reversible flow.

It is worth mentioning that in the previous initialization process, the predictions are all
pixel-wise, while the temporal optimization via neighborhood reversible flow is conducted
on superpixel wise foreground/background maps in order to reduce time consumption,
i.e., the predictions need to be converted from the pixel to superpixel and finally converted
to pixel. However, the superpixel-wise predictions are relatively coarse and may affect
the following process. To explore this effect, we converted the foreground/background
maps and their fusion maps in cases R-Init. FGp/BKp from pixel-wise to superpixel-wise,
as shown in Table 4. Fortunately, both Fβ and mIoU scores of foreground (background)
maps only slightly decrease by 0.003 (0.004), and the mT scores increase by 0.009, while
the negative effect on fusion maps mainly manifests in mT scores, which can be improved
by the propagation of neighborhood reversible flow. Thus, the trade-off is worthy. This
also hints at the important effect of neighborhood reversible flow on temporal stability
or consistency.

Table 4. Performance of superpixel-wise initialization by CSNet on VOS. FGp: foreground branch,
BKp: background branch. Sup. is short for superpixel.

Step mAP mAR Fβ mIoU T

R-Init. FGp (Sup.) 0.765 0.924 0.797 0.723 0.133
R-Init BKp (Sup.) 0.759 0.926 0.792 0.719 0.133

R-Init FGp + BKp (Sup.) 0.814 .881 0.829 0.738 0.129

Parameter setting. In the experiment based on CCNN, we smoothly varied two key
parameters used in NRF, including the k0 in constructing neighborhood flow and the λc
that controls the strength of temporal propagation. As shown in Figure 7, a larger k0 tends
to bring slightly better performance, while our approach performs the best when λc = 0.5.
In these experiments, we set k0 = 15 and λc = 0.5 when constructing the neighborhood
reversible flow.

Selection of color spaces. In constructing the flow, we represented each superpixel
with three color spaces. As shown in Table 5, a single color space performs slightly worse
than their combinations. Actually, using multiple color spaces has been proved to be useful
in detecting salient objects [2], as multiple color spaces make it possible to assess temporal
correspondences from several perspectives with a small increase in time cost. Therefore,
we choose to use RGB, Lab and HSV color spaces in characterizing a superpixel.
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Figure 7. Influence of parameters k0 and λc on our approach.

Table 5. Performance of our CCNN-based approach on VOS when using different color spaces in
constructing neighborhood reversible flow.

Color Space mAP mAR Fβ mIoU

RGB 0.785 0.862 0.801 0.703
Lab 0.786 0.860 0.802 0.702
HSV 0.787 0.866 0.804 0.707

RGB + Lab + HSV 0.789 0.870 0.806 0.710

5.3.3. Running Time

We tested the speed of the proposed approach with a 3.4 GHz CPU (only using single
thread) and an NVIDIA TITAN Xp GPU (without batch processing). The average time
costs of each key step of our approach in processing 400× 224 frames are shown in Table 6.
Note that the majority of the implementation runs on the Matlab platform, with several key
steps written in C (e.g., superpixel segmentation and feature conversion between pixels
and superpixels). We find that our approach takes only 0.20 s to process a frame if not
using multi-test, and no more than 0.75 s even using multi-test, which is much faster than
many video-based models (e.g., 19.0 s for NLC, 6.1 s for ACO, 5.8 s for FST, 5.4 s for SAG
and 4.7 s for GF). This may be caused by the fact that we only build correspondences on
superpixels with the neighborhood reversibility, which is very efficient. Moreover, we
avoid using complex optimization objectives and constraints. Instead, we use only simple
quadratic optimization objectives so as to obtain analytic solutions. The high efficiency of
our approach makes it possible to be used in some real-world applications.

Table 6. Speed of key steps in our approach. Mark and means using multi-test.

Key Step Speed (s/frame)

Initialization (+) 0.05 (0.36)
Superpixel & Feature (+) 0.12 (0.12)

Build Flow & Propagation (+) 0.02 (0.26)
Primary Object Seg. (+) 0.01 (0.01)

Total (+) ∼0.20 (0.75)
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5.3.4. Failure Cases

Beyond the successful cases, we also show in Figure 8 some failures. We find that
failures can be caused by the way of defining primary objects. For example, the salient
hand in Figure 8a is not labeled as a primary object, as the corresponding videos from
Youtube-Objects are tagged with “dog”. Moreover, shadows (Figure 8b) and reflections
(Figure 8c) generated by the target object and environment are some other reasons that may
cause unexpected failures due to their similar saliency with the target object. It is also easy
to fail when parts of the regions of the target salient object are similar to the background
(Figure 8d). Specifically, successful segmentation is very hard for some minuscule objects,
e.g., a crab in water (Figure 8e). Such failures need further exploration in the future.

Figure 8. Failure cases of our approach. Rows from top to bottom: video frames, ground-truth masks
and our results.

6. Conclusions

In this paper, we propose a simple yet effective approach for primary video object
segmentation. Based on the complementary relationship of the foreground and the back-
ground, the problem of primary object segmentation is turned into an optimization problem
of objective function. According to the proposed objective function, a complementary con-
volutional neural network is designed and trained on massive images from salient object
datasets to handle complementary tasks. Then, by the trained models, the foreground
and background in a video frame can be effectively predicted from the spatial perspective.
After that, such spatial predictions are efficiently propagated via the inter-frame flow that
has the characteristic of neighborhood reversibility. In this manner, primary objects in
different frames can gradually pop out, while various types of distractors can be well
suppressed. Extensive experiments on three video datasets have validated the effectiveness
of the proposed approach.

In the future work, we intend to improve the proposed approach by fusing multi-
ple methods of defining primary video objects such as motion patterns, semantic tags
and human visual attention. Moreover, we will try to develop a completely end-to-end
spatiotemporal model for primary video object segmentation by incorporating the recur-
sive mechanism.
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