Arylation Reactions in the Synthesis of Biologically Important 2,5-Diaryl-1,3,4-Oxadiazoles
Abstract
:1. Introduction
2. Synthesis of 1,3,4-Oxadiazole Precursors
3. Direct Arylation of 1,3,4-Oxadiazoles Using Aryl Halides
3.1. Reactions with Aryl Iodides
3.2. Reactions with Aryl Bromides
3.3. Reactions with Aryl Fluorides
4. Direct Arylation of 1,3,4-Oxadiazoles with the Use of Organometallics
5. Direct Arylation of 1,3,4-Oxadiazoles Using Compounds Bearing Different Functionalities
6. Direct Arylation of 1,3,4-Oxadiazoles by Condensation
7. Direct Cross-Coupling Reactions between 2-Bromo-1,3,4-Oxadiazoles and Organoboron Compounds
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coates, R.M.; Denmark, S.E. Reagents, Auxiliaries, and Catalysts for C-C Bond Formation. In Handbook of Reagents for Organic Synthesis; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Knochel, P.; Molander, G.A. Carbon–Carbon Bond Formation. In Comprehensive Organic Synthesis; Elsevier: Amsterdam, The Netherlands, 2014; Volume 3. [Google Scholar]
- Zhao, B.; Rogge, T.; Ackermann, L.; Shi, Z. Metal-Catalysed C–Het (F, O, S, N) and C–C Bond Arylation. Chem. Soc. Rev. 2021, 50, 8903–8953. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.; Bellina, F.; Lessi, M.; Manzini, C. Cross-Coupling of Heteroarenes by C-H Functionalization: Recent Progress towards Direct Arylation and Heteroarylation Reactions Involving Heteroarenes Containing One Heteroatom. Adv. Synth. Catal. 2014, 356, 17–117. [Google Scholar] [CrossRef]
- Yu, D.G.; Li, B.J.; Shi, Z.J. Challenges in C–C Bond Formation through Direct Transformations of Sp2 C–H Bonds. Tetrahedron 2012, 68, 5130–5136. [Google Scholar] [CrossRef]
- Sharma, A.; Vacchani, D.; Van Der Eycken, E. Developments in Direct C–H Arylation of (Hetero)Arenes under Microwave Irradiation. Chem. Eur. J. 2013, 19, 1158–1168. [Google Scholar] [CrossRef]
- Rossi, R.; Lessi, M.; Manzini, C.; Marianetti, G.; Bellina, F. Transition Metal-Free Direct C–H (Hetero)Arylation of Heteroarenes: A Sustainable Methodology to Access (Hetero)Aryl-Substituted Heteroarenes. Adv. Synth. Catal. 2015, 357, 3777–3814. [Google Scholar] [CrossRef]
- Grover, J.; Prakash, G.; Goswami, N.; Maiti, D. Traditional and Sustainable Approaches for the Construction of C–C Bonds by Harnessing C–H Arylation. Nat. Commun. 2022, 13, 1085. [Google Scholar] [CrossRef] [PubMed]
- García-Melchor, M.; Braga, A.A.C.; Lledós, A.; Ujaque, G.; Maseras, F. Computational Perspective on Pd-Catalyzed C–C Cross-Coupling Reaction Mechanisms. Acc. Chem. Res. 2013, 46, 2626–2634. [Google Scholar] [CrossRef] [PubMed]
- Peruzzini, M.; Gonsalvi, L. Phosphorus Compounds. Advanced Tools in Catalysis and Material Sciences. In Catalysis by Metal Complexes; Springer: Dordrecht, The Netherlands, 2011; Volume 37. [Google Scholar]
- Katritzky, A.R.; Ramsden, C.A.; Joule, J.A.; Zhdankin, V.V. Structure of Five-Membered Rings with Two or More Heteroatoms. In Handbook of Heterocyclic Chemistry; Elsevier: Oxford, UK, 2010; Volume 2, pp. 139–209. [Google Scholar]
- Scriven, E.; Ramsden, C.A. Heterocyclic Chemistry in the 21st Century: A Tribute to Alan Katritzky. In Advances in Heterocyclic Chemistry; Academic Press: Cambridge, MA, USA, 2017; Volume 121. [Google Scholar]
- Kavitha, S.; Gnanavel, S.; Kannan, K. Biological Aspects of 1,3,4-Oxadiazole Derivatives. Asian J. Pharm. Clin. Res. 2014, 7, 11–20. [Google Scholar]
- Pangal, A.; Shaikh, J.A. Various Pharmacological Aspects of 2, 5-Disubstituted 1,3,4-Oxadiazole Derivatives: A Review. Res. J. Chem. Sci. 2013, 3, 79–89. [Google Scholar]
- Arvind, K.S.; Vinay, K.S.; Deepmala, Y. Biological Activities of 2, 5-Disubstituted 1,3,4-Oxadiazoles. Int. J. Pharma Sci. Res. 2011, 2, 135–147. [Google Scholar]
- Vinay, K.S.; Arvind, K.S.; Deepmala, Y. Review Article on 1, 3, 4-Oxadiazole Derivaties and It’s Pharmacological Activities. Int. J. ChemTech Res. 2011, 3, 1362–1372. [Google Scholar]
- Patel, K.D.; Prajapati, S.M.; Panchal, S.N.; Patel, H.D. Review of Synthesis of 1,3,4-Oxadiazole Derivatives. Synth. Commun. 2014, 44, 1859–1875. [Google Scholar] [CrossRef]
- James, N.D.; Growcott, J.W. Zibotentan Endothelin ETA Receptor Antagonist Oncolytic. Drugs Future 2009, 34, 624–633. [Google Scholar] [CrossRef]
- Ouyang, X.; Piatnitski, E.L.; Pattaropong, V.; Chen, X.; He, H.Y.; Kiselyov, A.S.; Velankar, A.; Kawakami, J.; Labelle, M.; Smith, L.; et al. Oxadiazole Derivatives as a Novel Class of Antimitotic Agents: Synthesis, Inhibition of Tubulin Polymerization, and Activity in Tumor Cell Lines. Bioorg. Med. Chem. Lett. 2006, 16, 1191–1196. [Google Scholar] [CrossRef] [PubMed]
- Adelstein, G.W.; Yen, C.H.; Dajani, E.Z.; Bianchi, R.G. 3,3-Diphenyl-3-(2-Alkyl-1,3,4-Oxadiazol-5-Yl)Propylcycloalkylamines, a Novel Series of Antidiarrheal Agents. J. Med. Chem. 1976, 19, 1221–1225. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sharma, L.K.; Saraswat, A.; Siddiqui, I.R.; Kehri, H.K.; Pal Singh, R.K. Electrosynthesis and Screening of Novel 1,3,4-Oxadiazoles as Potent and Selective Antifungal Agents. RSC Adv. 2013, 3, 4237–4245. [Google Scholar] [CrossRef]
- Kalhor, M.; Dadras, A. Synthesis, Characterization, and Herbicidal Activities of New 1,3,4-Oxadiazoles, 1,3,4-Thiadiazoles, and 1,2,4-Triazoles Derivatives Bearing (R)-5-Chloro-3-Fluoro-2-Phenoxypyridine. J. Heterocycl. Chem. 2013, 50, 220–224. [Google Scholar] [CrossRef]
- Zheng, X.; Li, Z.; Wang, Y.; Chen, W.; Huang, Q.; Liu, C.; Song, G. Syntheses and Insecticidal Activities of Novel 2,5-Disubstituted 1,3,4-Oxadiazoles. J. Fluor. Chem. 2003, 123, 163–169. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, W.; Li, Q.; Li, T.; Wu, W.; Bai, H.; Shi, B. Design, Synthesis, and Study of the Insecticidal Activity of Novel Steroidal 1,3,4-Oxadiazoles. J. Agric. Food Chem. 2021, 69, 11572–11581. [Google Scholar] [CrossRef]
- Shi, W.; Qian, X.; Zhang, R.; Song, G. Synthesis and Quantitative Structure—Activity Relationships of New 2,5-Disubstituted-1,3,4-Oxadiazoles. J. Agric. Food Chem. 2001, 49, 124–130. [Google Scholar] [CrossRef]
- Luczynski, M.; Kudelko, A. Synthesis and Biological Activity of 1,3,4-Oxadiazoles Used in Medicine and Agriculture. Appl. Sci. 2022, 12, 3756. [Google Scholar] [CrossRef]
- Girdziunaite, D.; Tschierske, C.; Novotna, E.; Kresse, H.; Hetzheim, A. New Mesogenic 1,3,4-Oxadiazole Derivatives. Liq. Cryst. 1991, 10, 397–407. [Google Scholar] [CrossRef]
- Tafer, A.; Benalia, M.; Djedid, M.; Bouchareb, H.; Al-dujaili, A.H. Synthesis of Four Liquid Crystals and Study of Alkyl Chain Effect on the Nematic Range for Application in GC. Mol. Cryst. Liq. Cryst. 2018, 665, 10–19. [Google Scholar] [CrossRef]
- Westphal, E.; Gallardo, H.; Sebastián, N.; Eremin, A.; Prehm, M.; Alaasar, M.; Tschierske, C. Liquid Crystalline Self-Assembly of 2,5-Diphenyl-1,3,4-Oxadiazole Based Bent-Core Molecules and the Influence of Carbosilane End-Groups. J. Mater. Chem. C 2019, 7, 3064–3081. [Google Scholar] [CrossRef]
- Han, J.; Wang, Z.-Z.; Wu, J.-R. Room-Temperature Fluorescent Liquid Crystalline Dimers Based on Discotic 1,3,4-Oxadizole. Liq. Cryst. 2018, 45, 1047–1054. [Google Scholar] [CrossRef]
- Bentiss, F.; Lagrenee, M.; Traisnel, M.; Hornez, J.C. Corrosion Inhibition of Mild Steel in 1 M Hydrochloric Acid by 2,5-Bis(2-Aminophenyl)-1,3,4-Oxadiazole. Corrosion 1999, 55, 968–976. [Google Scholar] [CrossRef]
- Sharma, V.S.; Shah, A.P.; Sharma, A.S.; Athar, M. Columnar Self-Assembly, Gelation and Electrochemical Behavior of Cone-Shaped Luminescent Supramolecular Calix[4]Arene LCs Based on Oxadiazole and Thiadiazole Derivatives. New J. Chem. 2019, 43, 1910–1925. [Google Scholar] [CrossRef]
- Paun, A.; Hadade, N.D.; Paraschivescu, C.C.; Matache, M. 1,3,4-Oxadiazoles as Luminescent Materials for Organic Light Emitting Diodes via Cross-Coupling Reactions. J. Mater. Chem. C 2016, 4, 8596–8610. [Google Scholar] [CrossRef]
- Najare, M.S.; Patil, M.K.; Mantur, S.; Nadaf, A.A.; Inamdar, S.R.; Khazi, I.A.M. Highly Conjugated D-π-A-π-D Form of Novel Benzo[b]Thiophene Substituted 1,3,4-oxadiazole Derivatives; Thermal, Optical Properties, Solvatochromism and DFT Studies. J. Mol. Liq. 2018, 272, 507–519. [Google Scholar] [CrossRef]
- Ye, H.; Wu, H.; Chen, L.; Ma, S.; Zhou, K.; Yan, G.; Shen, J.; Chen, D.; Su, S.-J. Synthesis, Properties, Calculations and Applications of Small Molecular Host Materials Containing Oxadiazole Units with Different Nitrogen and Oxygen Atom Orientations for Solution-Processable Blue Phosphorescent OLEDs. Electron. Mater. Lett. 2018, 14, 89–100. [Google Scholar] [CrossRef]
- Huang, M.; Jiang, B.; Xie, G.; Yang, C. Highly Efficient Solution-Processed Deep-Red Organic Light-Emitting Diodes Based on an Exciplex Host Composed of a Hole Transporter and a Bipolar Host. J. Phys. Chem. Lett. 2017, 8, 4967–4973. [Google Scholar] [CrossRef]
- Adachi, C.; Tsutsui, T.; Saito, S. Blue Light-Emitting Organic Electroluminescent Devices. Appl. Phys. Lett. 1990, 56, 799–801. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, C.S.; Lira, B.F.; Barbosa-Filho, J.M.; Lorenzo, J.G.F.; De Athayde-Filho, P.F. Synthetic Approaches and Pharmacological Activity of 1,3,4-Oxadiazoles: A Review of the Literature from 2000–2012. Molecules 2012, 17, 10192–10231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakopin, Z.; Dolenc, M.S. Recent Advances in the Synthesis of 1,2,4- and 1,3,4-Oxadiazoles. Curr. Org. Chem. 2008, 12, 850–898. [Google Scholar] [CrossRef]
- Kawano, T.; Yoshizumi, T.; Hirano, K.; Satoh, T.; Miura, M. Copper-Mediated Direct Arylation of 1,3,4-Oxadiazoles and 1,2,4-Triazoles with Aryl Iodides. Org. Lett. 2009, 11, 3072–3075. [Google Scholar] [CrossRef]
- Kumar, D.; Pilania, M.; Arun, V.; Pooniya, S. C–H Arylation of Azaheterocycles: A Direct Ligand-Free and Cu-Catalyzed Approach Using Diaryliodonium Salts. Org. Biomol. Chem. 2014, 12, 6340–6344. [Google Scholar] [CrossRef] [PubMed]
- Salva Reddy, N.; Raghavendar Reddy, P.; Das, B. An Improved Synthesis of 2-Aryl- and 2-Alkenyl-1,3,4-Oxadiazoles by Using Copper(II) Oxide Nanoparticles as a Catalyst 1. Synthesis 2015, 47, 2831–2838. [Google Scholar] [CrossRef]
- Tadikonda, R.; Nakka, M.; Rayavarapu, S.; Kalidindi, S.P.K.; Vidavalur, S. Ligand-Free Copper(0) Catalyzed Direct C–H Arylation of 1,2,4-Triazoles and 1,3,4-Oxadiazoles with Aryl Iodides in PEG-400. Tetrahedron Lett. 2015, 56, 690–692. [Google Scholar] [CrossRef]
- Lei, C.; Jin, X.; Zhou, J.S. Palladium-Catalyzed Heteroarylation and Concomitant Ortho -Alkylation of Aryl Iodides. Angew. Chemie Int. Ed. 2015, 54, 13397–13400. [Google Scholar] [CrossRef]
- Yang, F.; Koeller, J.; Ackermann, L. Photoinduced Copper-Catalyzed C-H Arylation at Room Temperature. Angew. Chemie Int. Ed. 2016, 55, 4759–4762. [Google Scholar] [CrossRef] [PubMed]
- Aurelio, L.; Scullino, C.V.; Pitman, M.R.; Sexton, A.; Oliver, V.; Davies, L.; Rebello, R.J.; Furic, L.; Creek, D.J.; Pitson, S.M.; et al. From Sphingosine Kinase to Dihydroceramide Desaturase: A Structure–Activity Relationship (SAR) Study of the Enzyme Inhibitory and Anticancer Activity of 4-((4-(4-Chlorophenyl)Thiazol-2-Yl)Amino)Phenol (SKI-II). J. Med. Chem. 2016, 59, 965–984. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, K.; Kong, X.; Zhang, S.; Jiang, G.; Ji, F. DMF as Methine Source: Copper-Catalyzed Direct Annulation of Hydrazides to 1,3,4-Oxadiazoles. Adv. Synth. Catal. 2019, 361, 3986–3990. [Google Scholar] [CrossRef]
- Chen, S.; Ranjan, P.; Ramkumar, N.; Van Meervelt, L.; Van der Eycken, E.V.; Sharma, U.K. Ligand-Enabled Palladium-Catalyzed Through-Space C−H Bond Activation via a Carbopalladation/1,4-Pd Migration/C−H Functionalization Sequence. Chem. Eur. J. 2020, 26, 14075–14079. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xu, Y.; Zhang, Q.; Fang, S.; Sun, H.; Ou, W.; Su, C. Semi-Heterogeneous Photo-Cu-Dual-Catalytic Cross-Coupling Reactions Using Polymeric Carbon Nitrides. Sci. Bull. 2022, 67, 71–78. [Google Scholar] [CrossRef]
- Sharma, U.K.; Sharma, N.; Xu, J.; Song, G.; Van der Eycken, E.V. Pd-Catalyzed Csp 2 -H Functionalization of Heteroarenes via Isocyanide Insertion: Concise Synthesis of Di-(Hetero)Aryl Ketones and Di-(Hetero)Aryl Alkylamines. Chem. Eur. J. 2015, 21, 4908–4912. [Google Scholar] [CrossRef] [PubMed]
- Bhujabal, Y.B.; Vadagaonkar, K.S.; Kapdi, A.R. Pd/PTABS: Catalyst for Efficient C−H (Hetero)Arylation of 1,3,4-Oxadiazoles Using Bromo(Hetero)Arenes. Asian J. Org. Chem. 2019, 8, 289–295. [Google Scholar] [CrossRef]
- Yang, J. Mixed N-Heterocycles/N-Heterocyclic Carbene Palladium(II) Allyl Complexes as Precatalysts for Direct Arylation of Azoles with Aryl Bromides. Tetrahedron 2019, 75, 2182–2187. [Google Scholar] [CrossRef]
- Sharma, U.K.; Sharma, N.; Kumar, Y.; Singh, B.K.; Van der Eycken, E.V. Domino Carbopalladation/C-H Functionalization Sequence: An Expedient Synthesis of Bis-Heteroaryls through Transient Alkyl/Vinyl-Palladium Species Capture. Chem. Eur. J. 2016, 22, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Khandagale, S.B.; Pilania, M.; Arun, V.; Kumar, D. Metal-Catalyzed Direct Heteroarylation of C–H (Meso) Bonds in Porphyrins: Facile Synthesis and Photophysical Properties of Novel Meso -Heteroaromatic Appended Porphyrins. Org. Biomol. Chem. 2018, 16, 2097–2104. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.-H.; Mottweiler, J.; Priebbenow, D.L.; Wang, J.; Stubenrauch, J.A.; Bolm, C. Mild Copper-Mediated Direct Oxidative Cross-Coupling of 1,3,4-Oxadiazoles with Polyfluoroarenes by Using Dioxygen as Oxidant. Chem. Eur. J. 2013, 19, 3302–3305. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Lu, L.; Shen, Q. Palladium-Catalyzed Coupling of Polyfluorinated Arenes with Heteroarenes via C–F/C–H Activation. Org. Lett. 2013, 15, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Nickel-Catalyzed Direct C-H Arylation and Alkenylation of Heteroarenes with Organosilicon Reagents. Angew. Chem. Int. Ed. 2010, 49, 2202–2205. [Google Scholar] [CrossRef]
- Liu, B.; Qin, X.; Li, K.; Li, X.; Guo, Q.; Lan, J.; You, J. A Palladium/Copper Bimetallic Catalytic System: Dramatic Improvement for Suzuki-Miyaura-Type Direct C-H Arylation of Azoles with Arylboronic Acids. Chem. Eur. J. 2010, 16, 11836–11839. [Google Scholar] [CrossRef] [PubMed]
- Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Oxidative Nickel-Air Catalysis in C-H Arylation: Direct Cross-Coupling of Azoles with Arylboronic Acids Using Air as Sole Oxidant. ChemCatChem 2010, 2, 1403–1406. [Google Scholar] [CrossRef]
- Salvanna, N.; Reddy, G.C.; Das, B. Pd(OAc)2 Catalyzed C–H Activation of 1,3,4-Oxadiazoles and Their Direct Oxidative Coupling with Benzothiazoles and Aryl Boronic Acids Using Cu(OAc)2 as an Oxidant. Tetrahedron 2013, 69, 2220–2225. [Google Scholar] [CrossRef]
- Li, Y.; Jin, J.; Qian, W.; Bao, W. An Efficient and Convenient Cu(OAc)2/Air Mediated Oxidative Coupling of Azoles via C–H Activation. Org. Biomol. Chem. 2010, 8, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Guo, Q.; Cheng, Y.; Lan, J.; You, J. Palladium-Catalyzed Desulfitative C-H Arylation of Heteroarenes with Sodium Sulfinates. Chem. Eur. J. 2011, 17, 13415–13419. [Google Scholar] [CrossRef] [PubMed]
- Do, H.-Q.; Daugulis, O. A General Method for Copper-Catalyzed Arene Cross-Dimerization. J. Am. Chem. Soc. 2011, 133, 13577–13586. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Li, D.; Zhou, W.; Wang, L. A Highly Efficient Palladium-Catalyzed Desulfitative Arylation of Azoles with Sodium Arylsulfinates. Tetrahedron 2012, 68, 1926–1930. [Google Scholar] [CrossRef]
- Mao, Z.; Wang, Z.; Xu, Z.; Huang, F.; Yu, Z.; Wang, R. Copper(II)-Mediated Dehydrogenative Cross-Coupling of Heteroarenes. Org. Lett. 2012, 14, 3854–3857. [Google Scholar] [CrossRef]
- Li, C.; Li, P.; Yang, J.; Wang, L. Palladium-Catalyzed Deamidative Arylation of Azoles with Arylamides through a Tandem Decarbonylation–C–H Functionalization. Chem. Commun. 2012, 48, 4214–4216. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, J.; Song, F.; You, J. Palladium-Catalyzed Direct Arylation of N-Heteroarenes with Arylsulfonyl Hydrazides. Chem. Eur. J. 2012, 18, 10830–10833. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Feng, B.; Dong, J.; Li, X.; Xue, Y.; Lan, J.; You, J. Copper(II)-Catalyzed Dehydrogenative Cross-Coupling between Two Azoles. J. Org. Chem. 2012, 77, 7677–7683. [Google Scholar] [CrossRef] [PubMed]
- Nishino, M.; Hirano, K.; Satoh, T.; Miura, M. Copper-Mediated C-H/C-H Biaryl Coupling of Benzoic Acid Derivatives and 1,3-Azoles. Angew. Chemie Int. Ed. 2013, 52, 4457–4461. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, D.M.; Rudolph, S.R.; Kalyani, D. Palladium-Catalyzed Intra- and Intermolecular C–H Arylation Using Mesylates: Synthetic Scope and Mechanistic Studies. ACS Catal. 2014, 4, 2395–2401. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Tao, J.-L.; Wang, Z.-X. Palladium-Catalyzed C–H Arylation of (Benzo)Oxazoles or (Benzo)Thiazoles with Aryltrimethylammonium Triflates. Org. Lett. 2015, 17, 4926–4929. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.-J.; Quan, Z.; Zhang, Z.; Da, Y.; Wang, X. Direct C–H Heteroarylation of Azoles with 1,2-Di(Pyrimidin-2-Yl)Disulfides through C–S Cleavage of Disulfides. RSC Adv. 2016, 6, 78059–78063. [Google Scholar] [CrossRef]
- Tan, G.; He, S.; Huang, X.; Liao, X.; Cheng, Y.; You, J. Cobalt-Catalyzed Oxidative C−H/C−H Cross-Coupling between Two Heteroarenes. Angew. Chemie Int. Ed. 2016, 55, 10414–10418. [Google Scholar] [CrossRef] [PubMed]
- Hanson, M.G.; Olson, N.M.; Yi, Z.; Wilson, G.; Kalyani, D. Nickel-Catalyzed Coupling of Azoles with Aromatic Nitriles. Org. Lett. 2017, 19, 4271–4274. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.X.; Shi, S.; Wang, J.; Zhang, Y.; Li, C.; Ge, C. Palladium/Copper-Catalyzed Decarbonylative Heteroarylation of Amides via C–N Bond Activation. Org. Chem. Front. 2019, 6, 1942–1947. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Z.; Wang, L.; Li, P.; Zhang, Y. Palladium-Catalyzed Direct C2-Arylation of Azoles with Aromatic Triazenes. Org. Biomol. Chem. 2019, 17, 9209–9216. [Google Scholar] [CrossRef] [PubMed]
- Kajiwara, R.; Xu, S.; Hirano, K.; Miura, M. Bipyridine-Type Bidentate Auxiliary-Enabled Copper-Mediated C-H/C-H Biaryl Coupling of Phenols and 1,3-Azoles. Org. Lett. 2021, 23, 5405–5409. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ji, C.L.; Zhou, T.; Hong, X.; Szostak, M. Bimetallic Cooperative Catalysis for Decarbonylative Heteroarylation of Carboxylic Acids via C-O/C-H Coupling. Angew. Chemie Int. Ed. 2021, 60, 10690–10699. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.Y.; Lin, Z.H.; Zhang, C.P. Pd/Cu-Catalyzed C-H/C-H Cross Coupling of (Hetero)Arenes with Azoles through Arylsulfonium Intermediates. Org. Lett. 2021, 23, 4400–4405. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Cong, X.; Zhao, D.; You, J.; Lan, J. One-Pot Synthesis of Benzofused Heteroaryl Azoles via Tandem C-Heteroatom Coupling/C–H Activation of Azoles. Chem. Commun. 2011, 47, 5611–5613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Copper-Mediated Annulative Direct Coupling of o -Alkynylphenols with Oxadiazoles: A Dehydrogenative Cascade Construction of Biheteroaryls. Org. Lett. 2011, 13, 3076–3079. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, M.; Li, P.; Wang, L. Highly Efficient Copper/Palladium-Catalyzed Tandem Ullman Reaction/Arylation of Azoles via C–H Activation: Synthesis of Benzofuranyl and Indolyl Azoles from 2-(Gem-Dibromovinyl)Phenols(Anilines) with Azoles. Tetrahedron 2011, 67, 5913–5919. [Google Scholar] [CrossRef]
- Sharma, A.; Vachhani, D.; Van der Eycken, E. Direct Heteroarylation of Tautomerizable Heterocycles into Unsymmetrical and Symmetrical Biheterocycles via Pd/Cu-Catalyzed Phosphonium Coupling. Org. Lett. 2012, 14, 1854–1857. [Google Scholar] [CrossRef] [PubMed]
- Oda, Y.; Matsuyama, N.; Hirano, K.; Satoh, T.; Miura, M. Dehydrogenative Synthesis of C3-Azolylindoles via Copper-Promoted Annulative Direct Coupling of o-Alkynylanilines. Synthesis 2012, 44, 1515–1520. [Google Scholar] [CrossRef]
- Vachal, P.; Toth, L.M. General Facile Synthesis of 2,5-Diarylheteropentalenes. Tetrahedron Lett. 2004, 45, 7157–7161. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olesiejuk, M.; Kudelko, A. Arylation Reactions in the Synthesis of Biologically Important 2,5-Diaryl-1,3,4-Oxadiazoles. Appl. Sci. 2022, 12, 7806. https://doi.org/10.3390/app12157806
Olesiejuk M, Kudelko A. Arylation Reactions in the Synthesis of Biologically Important 2,5-Diaryl-1,3,4-Oxadiazoles. Applied Sciences. 2022; 12(15):7806. https://doi.org/10.3390/app12157806
Chicago/Turabian StyleOlesiejuk, Monika, and Agnieszka Kudelko. 2022. "Arylation Reactions in the Synthesis of Biologically Important 2,5-Diaryl-1,3,4-Oxadiazoles" Applied Sciences 12, no. 15: 7806. https://doi.org/10.3390/app12157806
APA StyleOlesiejuk, M., & Kudelko, A. (2022). Arylation Reactions in the Synthesis of Biologically Important 2,5-Diaryl-1,3,4-Oxadiazoles. Applied Sciences, 12(15), 7806. https://doi.org/10.3390/app12157806