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Abstract: To improve electromagnetic performance, an axial-flux permanent magnet brushless
DC motor (AFPMBLDCM) with unequal-thickness arc permanent magnets is proposed in this
paper. Firstly, the structure and magnetic circuit of the AFPMBLDCM with unequal-thickness arc
permanent magnets were designed. Then, the mathematical models and design method of the main
parameters were derived. According to the rated power and rated speed, the main parameters
were further designed, and the analytical model was established by using Maxwell 3D. The air-gap
flux density, back electromotive force (EMF) and torque under no-load and load conditions were
calculated and analyzed to verify the validity of the model and design. Finally, based on a parameter
scanning optimization method, the effects of the permanent magnet thickness, pole arc coefficient
and permanent magnet radius on cogging torque were analyzed. The optimized parameters of the
AFPMBLDCM with unequal-thickness arc permanent magnets were obtained. The results show that
the sinusoidal degree of the air-gap magnetic field is improved, and the maximum torque ripple of
the AFPMBLDCM is reduced to 2.92%.
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1. Introduction

The axial-flux permanent magnet brushless DC motor (AFPMBLDCM) has received
increasing attention due to its compact structure, small axial size, light weight, high power
density ratio and other properties [1–3]. At present, the applications of the AFPMBLDCM at
home and abroad are mainly concentrated in high-tech industries and practical application
fields [4–6]. Especially in the case of motor axial size limitations, such as flywheel energy
storage [7], new energy vehicles [8,9], household appliances [10,11], electric bicycles [12,13]
and other situations [14,15], it has more advantages than the radial motor [16–18]. However,
this kind of motor still has low efficiency [19], large torque ripple [20], low utilization of
permanent magnets and other issues to be solved.

The AFPMBLDCM has a long history of development and wide application prospects.
Many scholars have carried out in-depth research on motor operation efficiency [21],
operation reliability [22], power density [23] and other aspects [24]. In order to improve
motor efficiency, in [24], a novel multi-layer PCB stator structure was proposed to make the
phase windings more evenly distributed. The designed motor was expected to generate an
average torque of 0.02 N m at 30,000 r/min with an efficiency of 94%. However, due to the
large air-gap length, its permanent magnet consumption is more than that of the traditional
magnet with an iron core structure, and the manufacturing cost of the proposed motor
is higher. In order to improve the fault tolerance, a detached winding configuration was
proposed to replace the traditional winding for asymmetric six-phase double-stator axial-
flux permanent magnet machines [25]. Furthermore, rotor eddy current losses could be
reduced by 25% and 70% under normal and fault-tolerant operating conditions, respectively,
without sacrificing torque output. A topological structure of a multi-disc coreless axial-flux
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permanent-magnet synchronous machine was proposed [26]. The magnetic circuit and
air-gap flux intensity were analyzed to improve the stable operation of the motor. Based
on the finite element method, the relationship between the air-gap flux density and the
parameters was clarified. Furthermore, the winding structure and power driver topology
with fault tolerance were presented. To improve the torque density, permanent magnets
were placed between the adjacent rotor teeth with a switched-flux feature. Based on the
three-dimensional finite element optimization method, the loss and efficiency were about
60.7 W and 90.8%, respectively, at the rated speed on a rated road [27]. In [28], the arc-
shaped permanent magnet was proposed. It has notches so that it produces a discrete skew
effect, which reduces the cogging torque and torque ripple. Compared with the radial-
flux permanent magnet brushless DC motor, the AFPMBLDCM has many advantages,
such as high power density, high efficiency, a high torque/current ratio and flat shape.
The AFPMBLDCM can be classified according to the number and relative positions of
stators and rotors. In particular, the torque quality assessment of the AFPMBLDCM is a
challenging task, as torque ripple should also be considered along with torque density. Thus,
torque ripple and its reduction are currently of research interest to many researchers [29].
As is well known, the main sources of torque ripple are cogging torque [30], distorted
stator current [31] and counter-EMF waveforms [32]. An effective method to reduce
cogging torque is the optimization design of motor parameters based on the finite element
method [33–35].

In this study, an AFPMBLDCM with arc-shaped permanent magnets was designed.
It is characterized by a sinusoidal air-gap magnetic field and low cogging torque ripple.
Firstly, the topology structure of the AFPMBLDCM with unequal-thickness arc permanent
magnets was designed. The mathematical models and design of the main parameters
were derived. According to the rated power and rated speed, the analytical model was
established by using Maxwell 3D. The air-gap flux density, back electromotive force (EMF)
and torque were calculated and analyzed to verify the model and design. Finally, based
on the parameter scanning optimization method, the effects of the permanent magnet
thickness, pole arc coefficient and permanent magnet radius on cogging torque were
analyzed. The optimized parameters of the AFPMBLDCM with unequal-thickness arc
permanent magnets were obtained. The results show that the sinusoidal degree of the
air-gap magnetic field is improved, and the maximum torque ripple of the AFPMBLDCM
is reduced to 2.92%.

2. Structure of AFPMBLDCM
2.1. Topology of AFPMBLDCM

The AFPMBLDCM has a variety of topologies. These mainly include the single-
stator and single-rotor structure, double-stator and single-rotor structure, double-rotor
and single-stator structure, and multi-disc structure. In addition, it also includes slotted
stator and non-slotted stator structures. Because the AFPMBLDCM with a single rotor
and a single stator has a greater advantage in axial size, it is favorable for flat mounts
and thin drives. Furthermore, compared with the non-slotted stator AFPMBLDCM, the
slotted stator AFPMBLDCM can reduce the equivalent air-gap length and is convenient for
winding installation, and it can further reduce the number of permanent magnets. Thus, the
AFPMBLDCM described in this paper has a slotted single-stator and single-rotor structure,
as shown in Figure 1.
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Figure 1. Structure of AFPMBLDCM (1—rotor; 2—permanent magnet; 3—windings; 4—stator). 

Figure 2 shows the main magnetic circuit of the AFPMBLDCM, in which the leak-
age flux is ignored. The main flux starts from the N-pole of the arc-shaped permanent 
magnet, passes through the air gap, the stator core, and rotor back iron and returns to 
the S-pole of the adjacent permanent magnet to form a closed path. 
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Figure 2. Main magnetic circuit (1—stator; 2—windings; 3—air gap; 4—permanent magnet; 
5—rotor back iron). 

2.2. Unequal-Thickness Arc-Shaped Permanent Magnets 
The AFPMBLDCM contains surface-mounted permanent magnets. The permanent 

magnet is installed on the back iron of the rotor core in N S alternating mode. Instead of 
traditional permanent magnets, arc-shaped permanent magnets are adopted, resulting in 
unequal-thickness air gaps. The sectional view of the permanent magnet is shown in 
Figure 3. Numbers “1”, “2”, “3”, “4” and “5” represent the upper arc surface, the bottom 
surface, the radius of the upper arc surface, the left side and the right side, respectively. 
The locations of “4” and “5” are perpendicular to “2”. The initial radius of the upper arc 
surface of the unequal-thickness permanent magnets described in this paper is 19 mm, 
which was optimized according to the optimal target, as described later. 

 
Figure 3. The sectional view of the permanent magnet (1—upper arc surface; 2—bottom surface; 
3—radius of the upper arc; 4—left side; 5—right side). 

3. Main Parameter of AFPMBLDCM 
3.1. Number of Poles/Slots 

The selection of slot/pole numbers has a great influence on the performance of the 
AFPMBLDCM. The number of stator slots q and the number of permanent magnet poles 
p should agree with the following equations: 

Figure 1. Structure of AFPMBLDCM (1—rotor; 2—permanent magnet; 3—windings; 4—stator).

Figure 2 shows the main magnetic circuit of the AFPMBLDCM, in which the leakage
flux is ignored. The main flux starts from the N-pole of the arc-shaped permanent magnet,
passes through the air gap, the stator core, and rotor back iron and returns to the S-pole of
the adjacent permanent magnet to form a closed path.
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Figure 2. Main magnetic circuit (1—stator; 2—windings; 3—air gap; 4—permanent magnet; 5—rotor
back iron).

2.2. Unequal-Thickness Arc-Shaped Permanent Magnets

The AFPMBLDCM contains surface-mounted permanent magnets. The permanent
magnet is installed on the back iron of the rotor core in N S alternating mode. Instead
of traditional permanent magnets, arc-shaped permanent magnets are adopted, resulting
in unequal-thickness air gaps. The sectional view of the permanent magnet is shown in
Figure 3. Numbers “1”, “2”, “3”, “4” and “5” represent the upper arc surface, the bottom
surface, the radius of the upper arc surface, the left side and the right side, respectively. The
locations of “4” and “5” are perpendicular to “2”. The initial radius of the upper arc surface
of the unequal-thickness permanent magnets described in this paper is 19 mm, which was
optimized according to the optimal target, as described later.
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3. Main Parameter of AFPMBLDCM
3.1. Number of Poles/Slots

The selection of slot/pole numbers has a great influence on the performance of the
AFPMBLDCM. The number of stator slots q and the number of permanent magnet poles p
should agree with the following equations:{

q = k·q0
p = k·p0

(1)

where k is the greatest common factor of q and p; q0 is a multiple of 3, thus ensuring the
symmetry of three-phase windings; p0 is not a multiple of 3; and q0 and p0 are prime
numbers to each other.

The more pole pairs of the motor, the higher the flux leakage and the lower the
utilization rate of the permanent magnets. Therefore, the number of poles of a low-power
AFPMBLDCM is 8~14 poles. The number of slots is close to the number of poles, which is
conducive to improving the performance of the motor. The structures of 8 poles and 9 slots
and the structures of 10 poles and 9 slots have a high harmonic component of MMF and
large eddy current loss in the rotor. Therefore, the number of poles p = 10, and the number
of slots q = 12. The internal and outer diameter polar arc coefficients of the permanent
magnet described in this paper are the same. When the number of poles p is determined,
the polar arc coefficient should be reasonably selected. The results show that the sinusoidal
degree of the air-gap magnetic field is the best when the polar arc coefficient αi is 0.77. Thus,
the initial value is 0.8 for the polar arc coefficient in this paper, which was also optimized
according to the optimal target, as discussed later.

3.2. Power and Torque

The stator windings of the AFPMBLDCM are distributed. According to the charge
characteristics, the electric load at the outer diameter of the conductor is the minimum
value, and the electric load at the inner diameter of the conductor is the maximum value.
Therefore, the conductor electrical load at the average radius is considered for calculations.
The average electric load Aav is

Aav =
I1Nx

π(Ri + Ro)
(2)

The phase current I1 of the AFPMBLDCM is

I1 =
Aavπ(Ri + Ro)

Nx
(3)

When the rated speed is n, the output electromagnetic power Pe of the AFPMBLDCM is

Pe = 3E1 I1 =
1
5

nπ2KxBδ AavR3
i (β + 1)2(β − 1) (4)

where β is the ratio between the inner diameter and outer diameter.
According to Aav and I1, the electromagnetic torque Te of the AFPMBLDCM is

Te =
3
4

πKxαiBδ Aav(β + 1)2(β − 1) (5)

3.3. Size of AFPMBLDCM Structure

According to Equation (4), the outer diameter of the AFPMBLDCM can be obtained as
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Do = 3

√
40β3Pem

π2KxnαiBδav Aav(β + 1)2(β − 1)
(6)

Di =
Do

β
(7)

3.4. No-Load Back EMF

When the AFPMBLDCM is running under no-load conditions, the permanent magnet
rotates with the rotor. It creates a constantly changing magnetic field in the air gap. The
windings generate an induced electromotive force by cutting magnetic field lines. The
main air-gap flux Φδ of the AFPMBLDCM is distributed along the axial direction, and the
effective length is distributed along the radial direction. Therefore, the air-gap magnetic
density Bδ(θ) at the average radius was selected for equivalent calculations. As shown in
Figure 4, the position of the conductor on magnetic steel is indicated by the radius c and
polar angle θ.
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The distance between the inner and outer radii of the winding Ri and Ro can be any
length dc. When the winding conductor rotates at an angle dθ at Ω angular velocity, the
average induced electromotive force E1 generated by a single winding conductor can be
obtained as follows.

E1 = Ω
∫ Ro

Ri

Bδ(θ)cdc =
1
2

ΩBδav(R2
o − R2

i ) (8)

Bδav = αiBδ (9)

where αi is the polar arc coefficient. Bδav is the average air-gap flux density of the motor at
one pole distance.

When the winding coefficient is Kx, the number of turns per phase is Nx. When the
number of parallel branches is 1, the induced electromotive force Ex of each phase winding
can be written as

Ex = NxKxαiΩBδ(R2
o − R2

i ) (10)

If the magnetic pole material, shape, polar arc coefficient, inner diameter and outer
diameter of the AFPMBLDCM are determined, the permanent magnet thickness hm is also
limited. The thickness of the permanent magnet can be calculated based on the principle
of maximum magnetic energy product. According to design experience and the thickness
of the permanent magnet, the length of the air gap can be calculated. The initial thickness
of the permanent magnet described in this paper is 3.4 mm. The length of the air gap is
0.8 mm. In summary, the design parameters of the AFPMBLDCM can be obtained, as
shown in Table 1.
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Table 1. Design Parameters of AFPMBLDCM.

Parameter Value

Rated power/P 240 W
Rated speed/n 4800 rpm

Outer diameter/Do 65 mm
Inner diameter/Di 25 mm
Number of slots/q 12
Number of poles/p 10

Number of turns of winding/N 14 turns
Length of air gap/δ 0.8 mm

Polar arc coefficient/αi 0.8 (initial value)
Arc radius of permanent magnet/rh 19 (initial value)

Permanent magnet thickness/hm 3.4 (initial value)

4. Electromagnetic Performance Analysis

According to the basic parameters shown in Table 1, the finite element analysis model
of the AFPMBLDCM was established, and its electromagnetic performance was analyzed,
including static magnetic field analysis, transient magnetic field analysis and parameter
optimization. In order to improve the efficiency of the analysis and solution and save
calculation time, the half-equivalent AFPMBLDCM model was established on the premise
of ensuring calculation accuracy and the motor’s cyclic symmetry, as shown in Figure 5. In
addition, manual meshing, motion boundary setting and master–slave boundary setting
were carried out.
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4.1. Air-Gap Magnetic Density

The air-gap magnetic field region is the core region of motor energy conversion.
Therefore, it is necessary to analyze the distribution of the air-gap magnetic field inside
the motor. Generally, the air-gap magnetic density at each diameter is taken as a reference.
After post-processing, the air-gap flux density waveform at different radii distributed along
the circumferential direction is obtained, as shown in Figure 6.

In Figure 6, we can see that the magnetic density amplitude of the air gap at its
innermost diameter is about 0.54 T. The air-gap flux density amplitude at the average radius
of the air gap is about 1.06 T. The air-gap magnetic density amplitude at its outermost
diameter is about 0.55 T. The air-gap flux density waveforms Bδ are different at different
positions. The air-gap flux density amplitudes at the innermost and outermost sides are
smaller than those at the average radius. Due to the special structure of the AFPMM, the
permanent magnet has an edge effect on both inner and outer diameters, which makes the
air-gap magnetic density smaller.
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4.2. No-Load Back EMF

The no-load back EMF is the main factor affecting the electromagnetic performance of
the AFPMBLDCM. Therefore, at the rated voltage of the AFPMBLDCM, the no-load back
EMF amplitude of the three-phase winding was analyzed at a speed of 4800 rpm. Next,
phase B was selected for harmonic analysis.

Figure 7 shows that the amplitude of no-load back EMF is about 11.85 V. The waveform
is similar to a sine wave and has fine sinusoidal properties.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 13 
 

dius of the air gap is about 1.06 T. The air-gap magnetic density amplitude at its outer-
most diameter is about 0.55 T. The air-gap flux density waveforms Bδ are different at 
different positions. The air-gap flux density amplitudes at the innermost and outermost 
sides are smaller than those at the average radius. Due to the special structure of the 
AFPMM, the permanent magnet has an edge effect on both inner and outer diameters, 
which makes the air-gap magnetic density smaller. 

4.2. No-Load Back EMF 
The no-load back EMF is the main factor affecting the electromagnetic performance 

of the AFPMBLDCM. Therefore, at the rated voltage of the AFPMBLDCM, the no-load 
back EMF amplitude of the three-phase winding was analyzed at a speed of 4800 rpm. 
Next, phase B was selected for harmonic analysis. 

Figure 7 shows that the amplitude of no-load back EMF is about 11.85 V. The 
waveform is similar to a sine wave and has fine sinusoidal properties. 

N
o 

lo
ad

 b
ac

k 
EM

F[
V

]

 
Figure 7. Three-phase no-load back EMF. 

Figure 8 shows that when the no-load motor runs at rated speed, the no-load back 
EMF mainly contains third harmonics. The harmonic of no-load back EMF mainly comes 
from the air-gap flux density distortion caused by stator slotting. 

3 4 5 6 7 8 9 10 11
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

A
m

pl
itu

de
 o

f t
he

 p
ha

se
 B

[V
]

Harmonic order n  
Figure 8. Harmonic of no-load back EMF of phase B. 

  

Figure 7. Three-phase no-load back EMF.

Figure 8 shows that when the no-load motor runs at rated speed, the no-load back
EMF mainly contains third harmonics. The harmonic of no-load back EMF mainly comes
from the air-gap flux density distortion caused by stator slotting.



Appl. Sci. 2022, 12, 7863 8 of 13

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 13 
 

dius of the air gap is about 1.06 T. The air-gap magnetic density amplitude at its outer-
most diameter is about 0.55 T. The air-gap flux density waveforms Bδ are different at 
different positions. The air-gap flux density amplitudes at the innermost and outermost 
sides are smaller than those at the average radius. Due to the special structure of the 
AFPMM, the permanent magnet has an edge effect on both inner and outer diameters, 
which makes the air-gap magnetic density smaller. 

4.2. No-Load Back EMF 
The no-load back EMF is the main factor affecting the electromagnetic performance 

of the AFPMBLDCM. Therefore, at the rated voltage of the AFPMBLDCM, the no-load 
back EMF amplitude of the three-phase winding was analyzed at a speed of 4800 rpm. 
Next, phase B was selected for harmonic analysis. 

Figure 7 shows that the amplitude of no-load back EMF is about 11.85 V. The 
waveform is similar to a sine wave and has fine sinusoidal properties. 

N
o 

lo
ad

 b
ac

k 
EM

F[
V

]

 
Figure 7. Three-phase no-load back EMF. 

Figure 8 shows that when the no-load motor runs at rated speed, the no-load back 
EMF mainly contains third harmonics. The harmonic of no-load back EMF mainly comes 
from the air-gap flux density distortion caused by stator slotting. 

3 4 5 6 7 8 9 10 11
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

A
m

pl
itu

de
 o

f t
he

 p
ha

se
 B

[V
]

Harmonic order n  
Figure 8. Harmonic of no-load back EMF of phase B. 

  

Figure 8. Harmonic of no-load back EMF of phase B.

4.3. Load Back EMF

In order to check the load capacity of the AFPMBLDCM at a rated speed of 4800
rpm, rated excitation was applied to the windings. Figure 9 shows the three back EMF
waveforms of the AFPMBLDCM when the rated load is added. It can be seen that the back
EMF has a nearly sinusoidal distribution under rated load.
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4.4. Flux Linkage and Torque

Figure 10 shows the stator winding flux linkage waveform of the AFPMBLDCM with
rated load. Figure 11 shows the output torque curve of the AFPMBLDCM running at a
speed of 4800 rpm. The average output torque reaches 500.191 mNm, which meets the
requirement for a rated torque of 0.50 Nm. The output torque of the AFPMBLDCM is
given in Table 2. However, the maximum torque ripple with the combination of permanent
magnet thickness, polar arc coefficient and permanent magnet arc radius is as high as 9.07%.
Therefore, the optimization of cogging torque must be considered.
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Table 2. Output Torque Parameters of AFPMBLDCM.

Parameter Value

Average value/Tav 500.191 mNm
Instantaneous maximum/Tmax 532.112 mNm
Instantaneous minimum/Tmin 454.818 mNm

Maximum torque volatility 9.07%

5. Optimization of Cogging Torque

Optimetrics, the optimization analysis module provided in Maxwell software, sup-
ports parametric analysis. We can define multiple variables and scan these variables to find
the optimal parameter fit. The parameter scanning method was used to optimize the cog-
ging torque fluctuation of the AFPMBLDC. The optimization goal is to reduce the cogging
torque fluctuation to less than 5%. The three parameter variables subjected to scanning and
optimization are shown in Table 3, which are the pole arc coefficient, permanent magnet
thickness and permanent magnet arc edge radius.
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Table 3. Parameter variables to be scanned optimization variables.

Parameter Initial Value Minimum Value Maximum Value Step Size

Polar arc
coefficient/αi

0.8 0.8 0.98 0.02

Permanent magnet
thinkness rh/mm 3.4 3 4.2 0.1

Arc radius of
permanent

magnet hm/mm
19 18 24 1

5.1. Influence of Permanent Magnet Thickness on Cogging Torque

Through parameter scanning and output torque simulation verification, the permanent
magnet thickness corresponding to the minimum torque volatility was obtained. Figure 12
shows the relationship between the permanent magnet thickness and torque ripple. When
the permanent magnet thickness is 3.8 mm, the corresponding torque volatility is 3.16%. At
this point, the cogging torque is the minimum value.
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5.2. Influence of Polar Arc Coefficient on Cogging Torque

The polar arc coefficient corresponding to the minimum torque ripple was obtained
through parameter scanning and output torque simulation verification. Figure 13 shows
the relationship between the polar arc coefficient and torque ripple. When the polar arc
coefficient is 0.84, the corresponding torque volatility is 4.28%. At this point, the cogging
torque is the minimum value.
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5.3. Influence of Arc Radius of Permanent Magnet on Cogging Torque

Through parameter scanning and output torque simulation verification, the value of
the permanent magnet arc radius corresponding to the minimum torque volatility was
obtained. Figure 14 shows the relationship between the arc radius and torque ripples
of the permanent magnet. When the arc radius of the permanent magnet is 21 mm, the
corresponding torque volatility is 2.47%. At this point, the cogging torque is at its minimum.
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5.4. Optimization Results

After modifying the parameters of the original AFPMBLDCM model, the optimized
model was verified by simulation. The simulation results are shown in Figure 15. The
output torque parameters are shown in Table 4. The simulation results show that the
maximum torque ripple of the AFPMBLDCM is reduced to 2.92% by the parameter scanning
optimization method. Compared with Figure 11 and Table 2, we concluded that the
optimization method proposed in this paper can effectively reduce the torque ripple of
the AFPMBLDCM.
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Table 4. Output Torque Parameters of Optimized AFPMBLDCM.

Parameter Value

Average value/Tav 499.993 mNm
Instantaneous minimum/Tmin 486.947 mNm
Instantaneous maximum/Tmax 514.596 mNm

Maximum torque volatility 2.92%
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6. Conclusions

In this paper, an AFPMBLDC with unequal-thickness arc-shaped permanent magnets
is proposed. We designed the structures of the AFPMBLDC and arc-shaped permanent
magnets. Then, according to the given design requirements, the main parameters, such
as the number of pole slots, torque, power, dimensions and back EMF, were designed.
Furthermore, based on Maxwell 3D, the electromagnetic characteristics of air-gap flux
density, back EMF, torque and flux linkage were calculated. The analysis results show that
the torque, power, flux linkage and back EMF meet the design requirements, but the torque
ripple is large, with a value of 9.07%. Thus, to reduce torque ripple, we set the reduction
in cogging torque as the optimization goal and set pole arc coefficient and permanent
magnet thickness and permanent magnet arc radius as optimization variables; then, the
optimal parameter combination (αi = 0.84; rh = 21 mm; hm = 3.8 mm) was obtained. After
optimization, the maximum torque ripple of the AFPMBLDCM was reduced to 2.92% by
the parameter scanning optimization method.
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