DFT Insight to Ag2O Modified InN as SF6-N2 Mixture Decomposition Components Detector
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. InN Monolayer and Gas Molecules
3.2. SF6-N2 Decomposition Components Adsorption on InN Monolayer
3.3. SF6-N2 Decomposition Components Adsorption on Ag2O-InN Monolayer
3.4. Analysis of Density of States of Gas Adsorption on Ag2O-InN
3.5. Molecular Orbital Analysis and Recovery Time of Gas Adsorption on Ag2O-InN
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Gui, Y.; Qiao, H.; Chen, X.; Cao, L. Theoretical study of SF6 decomposition products adsorption on metal oxide cluster-modified single-layer graphene. J. Ind. Eng. Chem. 2022, 105, 278–290. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, H.; Gui, Y.; Tang, J. Mechanism and Application of Carbon Nanotube Sensors in SF6 Decomposed Production Detection: A Review. Nanoscale Res. Lett. 2017, 12, 177. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.; Tang, J.; Liu, Y.; Zeng, F. Comprehensive Evaluation and Application of GIS Insulation Condition Part 1: Selection and Optimization of Insulation Condition Comprehensive Evaluation Index Based on Multi-Source Information Fusion. IEEE Access 2019, 7, 88254–88263. [Google Scholar] [CrossRef]
- Chen, D.; Tang, J.; Zhang, X.; Li, Y.; Liu, H. Detecting Decompositions of Sulfur Hexafluoride Using MoS2 Monolayer as Gas Sensor. IEEE Sens. J. 2019, 19, 39–46. [Google Scholar] [CrossRef]
- Zeng, F.; Tang, J.; Xie, Y.; Zhou, Q.; Zhang, C. Experimence Study of Trace Water and Oxygen Impact on SF6 Decomposition Characteristics Under Partial Discharge. J. Electr. Eng. Technol. 2015, 10, 1786–1795. [Google Scholar] [CrossRef] [Green Version]
- Zeng, F.; Li, H.; Cheng, H.; Tang, J.; Liu, Y. SF6 decomposition and insulation condition monitoring of GIE: A review. High Volt. 2021, 6, 955–966. [Google Scholar] [CrossRef]
- Wei, G.; Bai, Y.; Hu, M.; Cao, Z.; Fu, W. Research on Environmental Protection Treatment for Ex-Service SF6 Adsorbent. IEEE Access 2020, 8, 93840–93849. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, X.; Tang, J.; Liu, S. A review on SF6 substitute gases and research status of CF3I gases. Energy Rep. 2018, 4, 486–496. [Google Scholar] [CrossRef]
- Ullah, R.; Rashid, A.; Rashid, A.; Khan, F.; Ali, A. Dielectric characteristic of dichlorodifluoromethane (R12) gas and mixture with N-2/air as an alternative to SF6 gas. High Volt. 2017, 2, 205–210. [Google Scholar] [CrossRef]
- Onal, E. Breakdown Mechanism of Different Sulphur Hexafluoride Gas Mixtures. Adv. Mater. Sci. Eng. 2018, 2018, 3206132. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Tu, Y.; Wang, C.; Wang, J.; Yuan, Z.; Ma, G.; Wang, J.; Qi, B.; Li, C. Environment-friendly Insulating Gases for HVDC Gas-insulated Transmission Lines. CSEE J. Power Energy Syst. 2021, 7, 510–529. [Google Scholar] [CrossRef]
- Kharal, H.S.; Kamran, M.; Ullah, R.; Saleem, M.Z.; Alvi, M.J. Environment-Friendly and Efficient Gaseous Insulator as a Potential Alternative to SF6. Processes 2019, 7, 740. [Google Scholar] [CrossRef] [Green Version]
- Owens, J.; Xiao, A.; Bonk, J.; DeLorme, M.; Zhang, A. Recent Development of Two Alternative Gases to SF6 for High Voltage Electrical Power Applications. Energies 2021, 14, 5051. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, D.; Liu, J.; Zhang, Y.; Zeng, L. Alternative Environmentally Friendly Insulating Gases for SF6. Processes 2019, 7, 216. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhao, H.; Murphy, A.B. Murphy, SF6-alternative gases for application in gas-insulated switchgear. J. Phys. D Appl. Phys. 2018, 51, 153001. [Google Scholar] [CrossRef]
- Zhao, H.; Deng, Y.; Tian, Z. Dielectric breakdown properties of CF3I-N2 mixtures containing a small amount of SF6. AIP Adv. 2019, 9, 055031. [Google Scholar] [CrossRef] [Green Version]
- Panchenko, A.N.; Tarasenko, V.F.; Beloplotov, D.V.; Panchenko, N.A.; Lomaev, M.I. Diffuse discharges in SF6 and mixtures of SF6 with H-2, formed by nanosecond voltage pulses in non-uniform electric field. High Volt. 2018, 3, 316–322. [Google Scholar] [CrossRef]
- Dincer, M.S.; Tezcan, S.S.; Duzkaya, H. Suppression of Electron Avalanches in Ultra-Dilute SF6-N-2 Mixtures Subjected to Time-Invariant Crossed Fields. Energies 2018, 11, 3247. [Google Scholar] [CrossRef] [Green Version]
- Zhou, A.; Gao, L.; Ji, X. Research and Application of SF6/N2 Mixed Gas Used in GIS Bus. Power Syst. Technol. 2018, 42, 3429–3435. [Google Scholar] [CrossRef]
- Metwally, I. Status review on partial discharge measurement techniques in gas-insulated switchgear/lines. Electr. Power Syst. Res. 2004, 69, 25–36. [Google Scholar] [CrossRef]
- Casanovas, A.M.; Casanovas, J. Decomposition of high-pressure (400 kPa) SF6-CO2, SF6-CO, SF6-N-2-CO2 and SF6-N-2-CO mixtures under negative dc coronas. J. Phys. D Appl. Phys. 2005, 38, 1556–1564. [Google Scholar] [CrossRef]
- Pearson, J.; Farish, O.; Hampton, B.; Judd, M.; Templeton, D.; Pryor, B.; Welch, I. Partial discharge diagnostics for gas insulated substations. IEEE Trans. Dielectr. Electr. Insul. 1995, 2, 893–905. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiang, G.; Zhang, J.; Zhang, J.; Liu, Y.; Peng, W.; Zhou, Y.; Li, R.; Mei, M.; Zhao, Y.; et al. Preparation of InN films at different substrate temperatures and the effect of operating temperatures on the carrier transmission characteristics of p-NiO/n-InN heterojunction. Vacuum 2021, 194, 110583. [Google Scholar] [CrossRef]
- Lin, X.; Mao, Z.; Dong, S.; Jian, X.; Han, R.; Wu, P. First-principles study on the electronic structures and magnetic properties of InN monolayer doped with Cr, Fe, and Ni. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 127, 114524. [Google Scholar] [CrossRef]
- Xu, D.; Zhao, Z.; Zhang, Y.; Lou, Y.; Li, P. Influence of valence states and vacancy defects on the magnetic properties of Mn doped InN. Solid State Commun. 2019, 297, 11–16. [Google Scholar] [CrossRef]
- Caliskan, S.; Hazar, F. First principles study on the spin unrestricted electronic structure properties of transition metal doped InN nanoribbons. Superlattices Microstruct. 2015, 84, 170–180. [Google Scholar] [CrossRef]
- Korotcenkov, G. Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches. Sens. Actuators B Chem. 2005, 107, 209–232. [Google Scholar] [CrossRef]
- Xu, P.; Gui, Y.; Chen, X. A DFT study of adsorption properties of SO2, SOF2, and SO2F2 on ZnO/CuO doped graphene. Diam. Relat. Mater. 2022, 126, 109103. [Google Scholar] [CrossRef]
- Liu, H.; Xu, L.; Gui, Y.; Ran, L.; Chen, X. Adsorption properties of Ag2O–MoSe2 towards SF6 decomposed products. Vacuum 2021, 189, 110248. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Q.; Wang, J.; Zeng, W. Cr doped MN (M = In, Ga) monolayer: A promising candidate to detect and scavenge SF6 decomposition components. Sens. Actuators A Phys. 2021, 330, 112854. [Google Scholar] [CrossRef]
- Delley, B. From molecules to solids with the DMol 3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Zhu, S.; Ma, S. Adsorption and Sensing Behaviors of Pd-Doped InN Monolayer upon CO and NO Molecules: A First-Principles Study. Appl. Sci. 2019, 9, 3390. [Google Scholar] [CrossRef] [Green Version]
Doping Site | (a) | (b) | (c) | (d) |
---|---|---|---|---|
Eform (eV) | −5.909 | −6.459 | 6.663 | −7.038 |
Adsorption Structures | Figure | Adsorption Distance | Eads | Atom | Mulliken Charge | Qt |
---|---|---|---|---|---|---|
NO2/InN | Figure 3a | 3.132 Å | −0.839 eV | N | 0.217 e | −0.400 e |
O | −0.369 e | |||||
O | −0.248 e | |||||
SOF4/InN | Figure 3b | 2.986 Å | −2.242 eV | S | 0.794 e | −1.188 e |
O | −0.329 e | |||||
F | −0.275 e | |||||
F | −0.549 e | |||||
F | −0.293 e | |||||
F | −0.536 e | |||||
SOF2/InN | Figure 3c | 3.077 Å | −0.483 eV | S | 0.750 e | −0.022 e |
O | −0.231 e | |||||
F | −0.269 e | |||||
F | −0.272 e | |||||
SO2F2/InN | Figure 3d | 3.297 Å | −0.380 eV | S | 0.896 e | −0.007 e |
O | −0.218 e | |||||
O | −0.244 e | |||||
F | −0.222 e | |||||
F | −0.219 e |
Gas Molecules | Figure | Adsorption Distance (Å) | Eads (eV) | Charge Transfer (Qt) |
---|---|---|---|---|
NO2 | Figure 4a | 1.383 | −2.021 | −0.174 e |
SOF4 | Figure 4b | 2.880 | −0.185 | −0.028 e |
SOF2 | Figure 4c | 2.143 | −0.754 | −0.279 e |
SO2F2 | Figure 4d | 3.110 | −0.173 | −0.015 e |
Adsorption System | KB (K) | τ (s) |
---|---|---|
NO2/Ag2O-InN | 298 | 1.474 × 1023 |
348 | 1.817× 1018 | |
418 | 2.288 × 1013 | |
SOF4/Ag2O-InN | 298 | 1.342 × 10−8 |
348 | 4.768 × 10−9 | |
418 | 1.698 × 10−9 | |
SOF2/Ag2O-InN | 298 | 55.94 |
348 | 8.244 × 10−1 | |
418 | 1.225 × 10−2 | |
SO2F2/Ag2O-InN | 298 | 8.411 × 10−9 |
348 | 3.196 × 10−9 | |
418 | 1.217 × 10−9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Li, W.; Junaid, M.; Lu, Z.; Luo, H.; Sun, W. DFT Insight to Ag2O Modified InN as SF6-N2 Mixture Decomposition Components Detector. Appl. Sci. 2022, 12, 7873. https://doi.org/10.3390/app12157873
Dong H, Li W, Junaid M, Lu Z, Luo H, Sun W. DFT Insight to Ag2O Modified InN as SF6-N2 Mixture Decomposition Components Detector. Applied Sciences. 2022; 12(15):7873. https://doi.org/10.3390/app12157873
Chicago/Turabian StyleDong, Haibo, Wenjun Li, Muhammad Junaid, Zhuo Lu, Hao Luo, and Weihu Sun. 2022. "DFT Insight to Ag2O Modified InN as SF6-N2 Mixture Decomposition Components Detector" Applied Sciences 12, no. 15: 7873. https://doi.org/10.3390/app12157873
APA StyleDong, H., Li, W., Junaid, M., Lu, Z., Luo, H., & Sun, W. (2022). DFT Insight to Ag2O Modified InN as SF6-N2 Mixture Decomposition Components Detector. Applied Sciences, 12(15), 7873. https://doi.org/10.3390/app12157873