Numerical Investigation of Slurry Fracturing during Shield Tunneling under a Reservoir
Abstract
:1. Introduction
2. Numerical Method
2.1. Introduction of Node Enhancement Function
2.2. Unit Cracking Principle
2.3. Damage Evolution Criterion
2.4. Embedding of Tension-Shear Fracture Criterion
3. Verification of Numerical Solution
3.1. Blind-Hole Samples Model Setup
3.2. Analysis of Calculation Results and Comparative Validation
4. Model Setup and Analysis of the Project
4.1. General Project Information and Engineering Conditions
4.2. Model Setup
4.3. Shield Slurry Fracturing Extension Process
4.4. Slurry Fracturing Pressure of Different Sections
4.5. Upper Limit of Shield Slurry Support Pressure
5. Conclusions
- (1)
- Both tensile and shear failures exist in the slurry fracturing process of the clay formation. The error of the fracture initiation pressure obtained by simulation under different confining pressures is basically within 5%, compared with the test results. After introducing the combined tensile-shear failure criterion, the calculation results of the XFEM method are in good agreement with the test data of slurry fracturing of clay samples.
- (2)
- The slurry fracturing pressure of cohesive soil increases with the increase of soil stress, unconfined compressive strength, and slurry viscosity. When the slurry viscosity reaches a certain level (about 25 s), the slurry fracturing pressure is no longer significantly affected by the slurry viscosity. The slurry fractures are deflected in the direction of the maximum principal stress.
- (3)
- The shield slurry fracturing pressure in the same stratum will rise with the increase of tunnel burial and overlying water depths. With the slurry continuously injected, the slurry pressure reaches the peak at the initiation of shield slurry fracturing in cohesive soil layers. The slurry pressure gradually decreases with the extension of the fracture, and the slurry pressure will be equal to the water pressure of the tunnel vault after the fracture penetrates to the surface.
- (4)
- Precisely controlling the shield slurry support pressure to be less than the upper limit of the support pressure is important to avoid slurry fracturing. Increasing the viscosity of slurry can slow down the expansion of fractures. In the process of shield construction, the proper increase in viscosity of the slurry can slow down the spreading speed of the slurry fracturing. The shield can drive quickly to seal the fracture opening to prevent further extension of the fracture. When the upper limit of the shield support pressure is too small, making it difficult to control during construction, it can be optimized from the perspective of shield tunnel site selection and buried depth design to avoid slurry fracturing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, F.; Gao, Y.; Wu, Y.; Wang, Z. Face stability analysis of large-diameter slurry shield-driven tunnels with linearly increasing undrained strength. Tunn. Undergr. Space Technol. 2018, 78, 178–187. [Google Scholar] [CrossRef]
- Mollon, G.; Dias, D.; Soubra, A.-H. Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield. Int. J. Numer. Anal. Meth. Geomech. 2011, 35, 1363–1388. [Google Scholar] [CrossRef] [Green Version]
- Pan, Q.; Dias, D. Three dimensional face stability of a tunnel in weak rock masses subjected to seepage forces. Tunn. Undergr. Space Technol. 2018, 71, 555–566. [Google Scholar] [CrossRef]
- Zhang, C.; Li, W.; Zhu, W.; Tan, Z. Face stability analysis of a shallow horseshoe-shaped shield tunnel in clay with a linearly increasing shear strength with depth. Tunn. Undergr. Space Technol. 2020, 97, 103291. [Google Scholar] [CrossRef]
- Liu, D.; Liu, X.; Han, Y.; Xiong, F.; Liu, R.; Lin, C.; Deng, Z.; Xiao, Y.; Luo, W. Model Test on the Passive Failure of Slurry Shield Tunneling in Circular-Gravel Stratum. Earth Space Sci. 2022, 9, 17. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, D. An in-situ slurry fracturing test for slurry shield tunneling. J. Zhejiang Univ. A 2014, 15, 465–481. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, F.; Yuan, D.; Fang, H.; Zhang, S. Range of support pressures for slurry shield and analysis of its influence factors. Chin. J. Geotech. Eng. 2019, 41, 908–917. (In Chinese) [Google Scholar] [CrossRef]
- Min, F.; Zhu, W.; Lin, C.; Guo, X. Opening the excavation chamber of the large-diameter size slurry shield: A case study in Nanjing Yangtze River Tunnel in China. Tunn. Undergr. Space Technol. 2015, 46, 18–27. [Google Scholar] [CrossRef]
- Zhang, F.; Gao, Y.; Wu, Y.; Zhang, N. Upper-bound solutions for face stability of circular tunnels in undrained clays. Geotechnique 2018, 68, 76–85. [Google Scholar] [CrossRef]
- Alagha, A.S.N.; Chapman, D.N. Numerical modelling of tunnel face stability in homogeneous and layered soft ground. Tunn. Undergr. Space Technol. 2019, 94, 103096. [Google Scholar] [CrossRef]
- Dai, C.; Sui, H.; Ma, C. Study on the Ultimate Supporting Force of Shield Excavation Face Based on Anisotropic Strength Theory. Appl. Sci. 2020, 10, 5222. [Google Scholar] [CrossRef]
- Yuan, D.; Luo, W.; Jin, D.; Lu, P. Hydraulic fracturing pressure of concentric double-layered cylinder in cohesive soil. Front. Struct. Civ. Eng. 2021, 15, 937–947. [Google Scholar] [CrossRef]
- Mori, A.; Tamura, M. Hydrofracturing pressure of cohesive soils. Soils Found. 1987, 27, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Mori, A.; Tamura, M.; Fukui, Y. Fracturing pressure of soil ground by viscous materials. Soils Found. 1990, 30, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Yanagisawa, E.; Panah, A.K. Two dimensional study of hydraulic fracturing criteria in cohesive soils. Soils Found. 1994, 34, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Marchi, M.; Gottardi, G.; Soga, K. Fracturing Pressure in Clay. J. Geotech. Geoenviron. 2014, 140, 04013008. [Google Scholar] [CrossRef]
- Wang, T.; Yuan, D.; Jin, D.; Li, X. Experimental study on slurry-induced fracturing during shield tunneling. Front. Struct. Civ. Eng. 2021, 15, 333–345. [Google Scholar] [CrossRef]
- Jin, D.; Ng, Y.C.H.; Han, B.; Yuan, D. Modeling Hydraulic Fracturing and Blow-Out Failure of Tunnel Face During Shield Tunneling in Soft Soils. Int. J. Geomech. 2022, 22, 06021041. [Google Scholar] [CrossRef]
- Chen, Y.; Zuo, J.P.; Li, Z.H.; Dou, R. Experimental investigation on the crack propagation behaviors of sandstone under different loading and unloading conditions. Int. J. Rock Mech. Min. Sci. 2020, 130, 10. [Google Scholar] [CrossRef]
- Li, W.D.; Nhon, N.T.; Huang, J.Z.; Zhou, K. Adaptive analysis of crack propagation in thin-shell structures via an isogeometric-meshfree moving least-squares approach. Comput. Meth. Appl. Mech. Eng. 2020, 358, 26. [Google Scholar] [CrossRef]
- Cherdantsev, N.V. Approach to Constructing a Hydraulic Fracture Trajectory in a Rock Mass Near a Mine Working. Mech. Sol. 2020, 55, 1372–1391. [Google Scholar] [CrossRef]
- Li, W.D.; Nhon, N.T.; Zhou, K. An isogeometric-meshfree collocation approach for two-dimensional elastic fracture problems with contact loading. Eng. Fract. Mech. 2020, 223, 19. [Google Scholar] [CrossRef]
- Kumar, S.; Zielonka, M.; Searles, K.; Dasari, G. Modeling of hydraulic fracturing in ultra-low permeability formations: The role of pore fluid cavitation. Eng. Fract. Mech. 2017, 184, 227–240. [Google Scholar] [CrossRef]
- Wrobel, M.; Papanastasiou, P.; Peck, D. Numerical simulation of hydraulic fracturing: A hybrid FEM-based algorithm. Int. J. Numer. Anal. Met. 2022, 1–26. [Google Scholar] [CrossRef]
- Sheng, M.; Li, G.; Sutula, D.; Tian, S.; Bordas, S.P.A. XFEM modeling of multistage hydraulic fracturing in anisotropic shale formations. J. Pet. Sci. Eng. 2018, 162, 801–812. [Google Scholar] [CrossRef]
- Tomac, I.; Gutierrez, M. Micromechanics of hydraulic fracturing and damage in rock based on DEM modeling. Granul. Matter 2020, 22, 1–17. [Google Scholar] [CrossRef]
- Xie, L.; Min, K.; Shen, B. Simulation of hydraulic fracturing and its interactions with a pre-existing fracture using displacement discontinuity method. J. Nat. Gas. Sci. Eng. 2016, 36, 1284–1294. [Google Scholar] [CrossRef]
- Behnia, M.; Goshtasbi, K.; Marji, M.F.; Golshani, A. Numerical simulation of crack propagation in layered formations. Arab. J. Geosci. 2014, 7, 2729–2737. [Google Scholar] [CrossRef]
- Feng, Y.; Gray, K. Modeling of curving hydraulic fracture propagation from a wellbore in a poroelastic medium. J. Nat. Gas. Sci. Eng. 2018, 53, 83–93. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.X.; Haim, W.; He, S.M.; Li, X.P. Fracture of rocks in the mountains of Southeast Tibet under hydrothermal conditions at different elevations. Bull. Eng. Geol. Environ. 2020, 79, 4291–4308. [Google Scholar] [CrossRef]
- Huang, J.Z.; Nhon, N.T.; Li, W.D.; Zhou, K. An adaptive isogeometric-meshfree coupling approach for the limit analysis of cracked structures. Theor. Appl. Fract. Mech. 2020, 106, 14. [Google Scholar] [CrossRef]
- Moes, N.; Dolbow, J.; Belytschko, T. A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Eng. 1999, 46, 131–150. [Google Scholar] [CrossRef]
- Asferg, J.L.; Poulsen, P.N.; Nielsen, L.O. A consistent partly cracked XFEM element for cohesive crack growth. Int. J. Numer. Meth. Eng. 2007, 72, 464–485. [Google Scholar] [CrossRef] [Green Version]
- Fries, T.P.; Belytschko, T. The extended/generalized finite element method: An overview of the method and its applications. Int. J. Numer. Meth. Eng. 2010, 84, 253–304. [Google Scholar] [CrossRef]
- Belytschko, T.; Black, T. Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Eng. 1999, 45, 601–620. [Google Scholar] [CrossRef]
- Wang, H. Numerical modeling of non-planar hydraulic fracture propagation in brittle and ductile rocks using XFEM with cohesive zone method. J. Petrol. Sci. Eng. 2015, 135, 127–140. [Google Scholar] [CrossRef]
- Ghaderi, A.; Taheri-Shakib, J.; Nik, M.A.S. The distinct element method (DEM) and the extended finite element method (XFEM) application for analysis of interaction between hydraulic and natural fractures. J. Petrol. Sci. Eng. 2018, 171, 422–430. [Google Scholar] [CrossRef]
- Duarte, A.P.C.; Saez, A.D.; Silvestre, N. Comparative study between XFEM and Hashin damage criterion applied to failure of composites. Thin Wall. Struct. 2017, 115, 277–288. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Elastic modulus E | 75 MPa |
Poisson’s ratio μ | 0.22 |
Cohesion c | 0.375 MPa |
Internal friction angle φ | 14° |
Tensile strength σt | 0.13 MPa |
Type I fracture energy GI | 0.021 MPa·mm |
Type II fracture energy GII | 0.045 MPa·mm |
Penetration k | 1 × 10−6 m2 |
Void ratio e | 0.1 |
Filter loss coefficient | 1 × 10−14 m2·s/kg |
Pore flow viscosity coefficient | 0.001 m2·s/kg |
Condition Number | Axial Pressure (MPa) | Confining Pressure (MPa) | Pressure Simulation Value (MPa) | Pressure Test Value (MPa) [17] | Error |
---|---|---|---|---|---|
1 | 0.35 | 0.2 | 0.36 | 0.382 | −5.76% |
2 | 0.35 | 0.3 | 0.45 | 0.457 | −1.53% |
3 | 0.35 | 0.4 | 0.58 | 0.557 | 4.13% |
4 | 0.35 | 0.5 | 0.63 | 0.652 | −3.37% |
5 | 0.35 | 0.6 | 0.75 | 0.735 | 2.04% |
6 | 0.35 | 0.7 | 0.83 | 0.841 | −1.31% |
Section Location | Covering Thickness (m) | Water Depth (m) |
---|---|---|
EK4 + 820 | 13.5 | 5.1 |
EK5 + 001 | 21.4 | 6.4 |
EK5 + 915 | 24.5 | 6.2 |
EK6 + 280 | 17.2 | 5.5 |
Parameter | Value |
---|---|
Elastic modulus E | 21 MPa |
Poisson’s ratio μ | 0.36 |
Cohesion c | 0.013 MPa |
Internal friction angle φ | 16.8 |
Tensile strength σt | 0.011 MPa |
Type I fracture energy GI | 5.4 × 10−4 MPa·mm |
Type II fracture energy GII | 5.4 × 10−4 MPa·mm |
Penetration k | 1 × 10−6 m2 |
Void ratio e | 0.1 |
Filter loss coefficient | 1 × 10−14 m2·s/kg |
Pore flow viscosity coefficient | 0.001 m2·s/kg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, B.; Yuan, D.; Wang, T.; Wang, Z. Numerical Investigation of Slurry Fracturing during Shield Tunneling under a Reservoir. Appl. Sci. 2022, 12, 7929. https://doi.org/10.3390/app12157929
Han B, Yuan D, Wang T, Wang Z. Numerical Investigation of Slurry Fracturing during Shield Tunneling under a Reservoir. Applied Sciences. 2022; 12(15):7929. https://doi.org/10.3390/app12157929
Chicago/Turabian StyleHan, Bingyu, Dajun Yuan, Teng Wang, and Zhongxin Wang. 2022. "Numerical Investigation of Slurry Fracturing during Shield Tunneling under a Reservoir" Applied Sciences 12, no. 15: 7929. https://doi.org/10.3390/app12157929
APA StyleHan, B., Yuan, D., Wang, T., & Wang, Z. (2022). Numerical Investigation of Slurry Fracturing during Shield Tunneling under a Reservoir. Applied Sciences, 12(15), 7929. https://doi.org/10.3390/app12157929