Challenges of Hydrodynamic Cavitation of Organic Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristic of Substrates
2.2. Operational Set Up and Laboratory Installation
2.3. Analytical Methods
3. Results and Discussion
3.1. Characteristic of Mixtures Applied in HC
3.2. Influence of HC on the Properties of the Applied Mixtures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture’s Contribution to Climate Change and Role in Mitigation Is Distinct from Predominantly Fossil CO2-Emitting Sectors. Front. Sustain. Food Syst. 2021, 4, 518039. [Google Scholar] [CrossRef]
- Rahman, M.; Khan, I.; Luke Field, D.; Techato, K.; Alameh, K. Powering agriculture: Present status, future potential, and challenges of renewable energy applications. Renew. Energy 2022, 188, 731–749. [Google Scholar] [CrossRef]
- Paris, B.; Vandorou, F.; Tyris, D.; Balafoutis, A.T.; Vaiopoulos, K.; Kyriakarakos, G.; Manolakos, D.; Papadakis, G. Energy Use in the EU Livestock Sector: A Review Recommending Energy Efficiency Measures and Renewable Energy Sources Adoption. Appl. Sci. 2022, 12, 2142. [Google Scholar] [CrossRef]
- Gogate, P.R.; Kabadi, A.M. A review of applications of cavitation in biochemical engineering/biotechnology. Biochem. Eng. J 2009, 44, 60–72. [Google Scholar] [CrossRef]
- Ge, M.; Petkovšek, M.; Zhang, G.; Jacobs, D.; Coutier-Delgosha, O. Cavitation dynamics and thermodynamic effects at elevated temperatures in a small Venturi channel. Int. J. Heat Mass Transf. 2021, 170, 120970. [Google Scholar] [CrossRef]
- Ge, M.; Sun, C.; Zhang, G.; Coutier-Delgosha, O.; Fan, D. Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification. Ultrason. Sonochem. 2022, 86, 106035. [Google Scholar] [CrossRef]
- Dular, M.; Griessler-Bulc, T.; Gutierrez-Aguirre, I.; Heath, E.; Kosjek, T.; Krivograd Klemenčič, A.; Oder, M.; Petkovšek, M.; Rački, N.; Ravnikar, M.; et al. Use of hydrodynamic cavitation in (waste)water treatment. Ultrason. Sonochem. 2016, 29, 577–588. [Google Scholar] [CrossRef]
- Sun, X.; Liu, S.; Zhang, X.; Tao, Y.; Boczkaj, G.; Yoon, J.Y.; Xuan, X. Recent advances in hydrodynamic cavitation-based pretreatments of lignocellulosic biomass for valorization. Bioresour. Technol. 2022, 345, 126251. [Google Scholar] [CrossRef]
- Gutiérrez-Mosquera, L.F.; Arias-Giraldo, S.; Zuluaga-Meza, A. Landfill leachate treatment using hydrodynamic cavitation: Exploratory evaluation. Heliyon 2022, 8, e09019. [Google Scholar] [CrossRef]
- Thakkar, K.; Kachhwaha, S.S.; Kodgire, P.V. Multi-response optimization of transesterification reaction for biodiesel production from castor oil assisted by hydrodynamic cavitation. Fuel 2022, 308, 121907. [Google Scholar] [CrossRef]
- Roohinejad, S.; Koubaa, M.; Barba, F.J.; Greiner, R.; Orlien, V.; Lebovka, N.I. Negative pressure cavitation extraction: A novel method for extraction of food bioactive compounds from plant materials. Trends Food Sci. Technol. 2016, 52, 98–108. [Google Scholar] [CrossRef]
- Katariya, P.; Arya, S.S.; Pandit, A.B. Novel, non-thermal hydrodynamic cavitation of orange juice: Effects on physical properties and stability of bioactive compounds. Innov. Food Sci. Emerg. Technol. 2020, 62, 102364. [Google Scholar] [CrossRef]
- Das, S.; Bhat, A.P.; Gogate, P.R. Degradation of dyes using hydrodynamic cavitation: Process overview and cost estimation. J. Water Process. Eng. 2021, 42, 102126. [Google Scholar] [CrossRef]
- Ge, M.; Zhang, G.; Petkovšek, M.; Long, K.; Coutier-Delgosha, O. Intensity and regimes changing of hydrodynamic cavitation considering temperature effects. J. Clean. 2020, 338, 130470. [Google Scholar] [CrossRef]
- Gągol, M.; Przyjazny, A.; Boczkaj, G. Wastewater treatment by means of advanced oxidation processes based on cavitation—A review. Chem. Eng. J. 2018, 338, 599–627. [Google Scholar] [CrossRef]
- Terán Hilares, R.; Dos Santos, J.C.; Ahmed, M.A.; Jeon, S.H.; da Silva, S.S.; Han, J.I. Hydrodynamic cavitation-assisted alkaline pretreatment as a new approach for sugarcane bagasse biorefineries. Bioresour. Technol. 2016, 214, 609–614. [Google Scholar] [CrossRef]
- Bimestre, T.A.; Júnior, J.A.M.; Botura, C.A.; Canettieri, E.; Tuna, C.E. Theoretical modeling and experimental validation of hydrodynamic cavitation reactor with a Venturi tube for sugarcane bagasse pretreatment. Bioresour. Technol. 2020, 311, 123540. [Google Scholar] [CrossRef]
- Thamizhakaran Stanley, J.; Thanarasu, A.; Senthil Kumar, P.; Periyasamy, K.; Raghunandhakumar, S.; Periyaraman, P.M.; Devaraj, K.; Dhanasekaran, A.; Subramanian, S. Potential pre-treatment of lignocellulosic biomass for the enhancement of biomethane production through anaerobic digestion—A review. Fuel 2022, 318, 123593. [Google Scholar] [CrossRef]
- Kainthola, J.; Kalamdhad, A.S.; Goud, V.V. A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochem. 2019, 84, 81–90. [Google Scholar] [CrossRef]
- Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 2018, 262, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Jin, R.; He, Z.; Qiao, Y.; Wang, Y.; Wang, K.; Lu, Y.; Wang, X.; Liu, D. A new water treatment technology for degradation of B[a]A by hydrodynamic cavitation and chlorine dioxide oxidation. Ultrason. Sonochem. 2020, 61, 104834. [Google Scholar] [CrossRef] [PubMed]
- Bis, M.; Montusiewicz, A.; Ozonek, J.; Pasieczna-Patkowska, S. Application of hydrodynamic cavitation to improve the biodegradability of mature landfill leachate. Ultrason. Sonochem. 2015, 26, 378–387. [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 22nd ed.; APHA: Washington, DC, USA, 2012. [Google Scholar]
- Chylińska, M.; Szymańska-Chargot, M.; Kruk, B.; Zdunek, A. Study on dietary fibre by Fourier transform-infrared spectroscopy and chemometric methods. Food Chem. 2016, 196, 114–122. [Google Scholar] [CrossRef]
- Abuabdou, S.M.; Ahmad, W.; Aun, N.C.; Bashir, M.J. A review of anaerobic membrane bioreactors (AnMBR) for the treatment of highly contaminated landfill leachate and biogas production: Effectiveness, limitations and future perspectives. J. Clean. Prod. 2020, 255, 120215. [Google Scholar] [CrossRef]
- Nabi, M.; Liang, H.; Cheng, L.; Yang, W.; Gao, D. A comprehensive review on the use of conductive materials to improve anaerobic digestion: Focusing on landfill leachate treatment. J. Environ. Manag. 2020, 309, 114540. [Google Scholar] [CrossRef]
- Yuan, H.; Zhu, N. Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion. Renew. Sustain. Energy Rev. 2016, 58, 429–438. [Google Scholar] [CrossRef]
- Romero-Güiza, M.S.; Vila, J.; Mata-Alvarez, J.; Chimenos, J.M.; Astals, S. The role of additives on anaerobic digestion: A review. Renew. Sustain. Energy Rev. 2016, 58, 1486–1499. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Rabii, A.; Aldin, S.; Dahman, Y.; Elbeshbishy, E. A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration. Energies 2019, 12, 1106. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Xing, W.; Li, R. Real-time recovery strategies for volatile fatty acid-inhibited anaerobic digestion of food waste for methane production. Bioresour. Technol. 2018, 265, 82–92. [Google Scholar] [CrossRef]
- Zhao, W.; Jeanne Huang, J.; Hua, B.; Huang, Z.; Droste, R.L.; Chen, L.; Wang, B.; Yang, C.; Yang, S. A new strategy to recover from volatile fatty acid inhibition in anaerobic digestion by photosynthetic bacteria. Bioresour. Technol. 2020, 311, 123501. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, J.; Wang, X. Effects of alkalinity sources on the stability of anaerobic digestion from food waste. Waste Manag. Res. 2015, 33, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Mata-Alvarez, J.; Dosta, J.; Romero-Güiza, M.S.; Fonoll, X.; Peces, M.; Astals, S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energ. Rev. 2014, 36, 412–427. [Google Scholar] [CrossRef]
- Prado, C.A.; Antunes, F.A.; Rocha, T.; Sánchez-Muñoz, S.; Barbosa, F.G.; Terán-Hilares, R.; Cruz-Santos, M.M.; Arruda, G.L.; da Silva, S.S.; Santos, J. A review on recent developments in hydrodynamic cavitation and advanced oxidative processes for pretreatment of lignocellulosic materials. Bioresour. Technol. 2021, 345, 126458. [Google Scholar] [CrossRef]
- Devadasu, S.; Joshi, S.M.; Gogate, P.R.; Sonawane, S.H.; Suranani, S. Intensification of delignification of Tectona grandis saw dust as sustainable biomass using acoustic cavitational devices. Ultrason. Sonochem. 2020, 63, 104914. [Google Scholar] [CrossRef]
- Wang, B.; Su, H.; Zhang, B. Hydrodynamic cavitation as a promising route for wastewater treatment—A review. Chem. Eng. J. 2021, 412, 128685. [Google Scholar] [CrossRef]
- Yi, L.; Qin, J.; Sun, H.; Ruan, Y.; Zhao, L.; Xiong, Y.; Wang, Y.; Fang, D. Improved hydrodynamic cavitation device with expanded orifice plate for effective chlorotetracycline degradation: Optimization of device and operation parameters. Sep. Purif. Technol. 2022, 280, 119840. [Google Scholar] [CrossRef]
- Rajoriya, S.; Carpenter, J.; Saharan, V.K.; Pandit, A.B. Hydrodynamic cavitation: An advanced oxidation process for the degradation of bio-refractory pollutants. Rev. Chem. Eng. 2016, 32, 379–411. [Google Scholar] [CrossRef]
- Sivakumar, M.; Pandit, A.B. Wastewater treatment: A novel energy efficient hydrodynamic cavitational technique. Ultrason. Sonochem. 2002, 9, 123–131. [Google Scholar] [CrossRef]
- Simpson, A.; Ranade, V.V. Modelling of hydrodynamic cavitation with orifice: Influence of different orifice designs. Chem. Eng. Res. Des. 2018, 136, 698–711. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.; Oh, Y.K.; Han, J.I. Design optimization of hydrodynamic cavitation for effectual lipid extraction from wet microalgae. J. Environ. Chem. Eng. 2019, 7, 102942. [Google Scholar] [CrossRef]
- Vichare, N.P.; Gogate, P.R.; Pandit, A.B. Optimization of hydrodynamic cavitation using a model reaction. Chem. Eng. Technol. 2000, 33, 683–690. [Google Scholar] [CrossRef]
- Braeutigam, P.; Franke, M.; Wu, Z.; Ondruschka, B. Role of Different Parameters in the Optimization of Hydrodynamic Cavitation. Chem. Eng. Technol. 2010, 33, 932–940. [Google Scholar] [CrossRef]
- Montusiewicz, A.; Pasieczna-Patkowska, S.; Lebiocka, M.; Szaja, A.; Szymańska-Chargot, M. Hydrodynamic cavitation of brewery spent grain diluted by wastewater. Chem. Eng. Sci. 2017, 313, 946–956. [Google Scholar] [CrossRef]
- Baxi, P.B.; Pandit, A.B. Using cavitation for delignification of wood. Bioresour. Technol. 2012, 110, 697–700. [Google Scholar] [CrossRef] [PubMed]
- Terán-Hilares, R.; Dionízio, R.M.; Sanchez Munoz, S.; Prado, C.A.; de Sousa Júnior, R.; da Silva, S.S.; Santos, J.C. 2020. Hydrodynamic cavitation-assisted continuous pre-treatment of sugarcane bagasse for ethanol production: Effects of geometric parameters of the cavitation device. Ultrason. Sonochem. 2020, 63, 104931. [Google Scholar] [CrossRef]
- Lu, G.; Zhao, L.; Zhu, M.; Deng, C.; Liu, H.; Ma, J.; Li, Y. Effect of cavitation hydrodynamic parameters on Bisphenol A removal. Environ. Eng. Sci. 2019, 36, 873–882. [Google Scholar] [CrossRef]
- Padoley, K.V.; Saharan, V.K.; Mudliar, S.N.; Pandey, R.A.; Pandit, A.B. Cavitationally induced biodegradability enhancement of a distillery wastewater. J. Hazard. 2012, 219–220, 69–74. [Google Scholar] [CrossRef]
- Singh, S.; Randhavane, S.B. Hydrodynamic Cavitation: Its optimization and potential application in treatment of Pigment Industry Wastewater. Mater. Today Proc. 2022, 61, 523–529. [Google Scholar] [CrossRef]
- Wu, Z.; Yuste-Córdoba, F.J.; Cintas, P.; Wu, Z.; Boffa, L.; Mantegna, S.; Cravotto, G. Effects of ultrasonic and hydrodynamic cavitation on the treatment of cork wastewater by flocculation and Fenton processes. Ultrason. Sonochem. 2018, 40 Pt B, 3–8. [Google Scholar] [CrossRef]
- Lebiocka, M. Application of Hydrodynamic Cavitation to Improve the Biodegradability of Municipal Wastewater. J. Ecol. Eng. 2020, 21, 155–160. [Google Scholar] [CrossRef]
- Kim, I.; Lee, I.; Jeon, S.H.; Hwang, T.; Han, J.I. Hydrodynamic cavitation as a novel pretreatment approach for bioethanol production from reed. Bioresour. Technol. 2015, 192, 335–339. [Google Scholar] [CrossRef]
- Terán-Hilares, R.; Dionízio, R.M.; Prado, C.A.; Ahmed, M.A.; da Silva, S.S.; Santos, J.C. Pretreatment of sugarcane bagasse using hydrodynamic cavitation technology: Semi-continuous and continuous process. Bioresour. Technol. 2019, 290, 121777. [Google Scholar] [CrossRef]
- Hashemi, B.; Sarker, S.; Lamb, J.J.; Lien, K.M. Yield improvements in anaerobic digestion of lignocellulosic feedstocks. J. Clean. 2021, 288, 125447. [Google Scholar] [CrossRef]
- Terán-Hilares, R.; Almeida, G.F.; Ahmed, M.A.; Antunes, F.A.F.; Silva, S.S.; Han, J.; Santos, J.C. Hydrodynamic cavitation as an efficient pretreatment method for lignocellulosic biomass: A parametric study. Bioresour. Technol. 2017, 235, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Lebiocka, M.; Montusiewicz, A.; Pasieczna-Patkowska, S.; Gułkowski, S. Mature Landfill Leachate as a Medium for Hydrodynamic Cavitation of Brewery Spent Grain. Energies 2021, 14, 1150. [Google Scholar] [CrossRef]
- Tao, Y.; Cai, J.; Huai, X.; Liu, B.; Guo, Z. Application of Hydrodynamic Cavitation to Wastewater Treatment. Chem. Eng. Technol. 2016, 39, 1363–1376. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, J.; Liu, H.; Zhang, J. Sludge ozonation: Disintegration, supernatant changes and mechanisms. Bioresour. Technol. 2009, 100, 1505–1509. [Google Scholar] [CrossRef]
- Habashi, N.; Mehrdadi, N.; Mennerich, A.; Alighardashi, A.; Torabian, A. Hydrodynamic cavitation as a novel approach for pretreatment of oily wastewater for anaerobic co-digestion with waste activated sludge. Ultrason. Sonochem. 2016, 31, 362–370. [Google Scholar] [CrossRef]
- Madison, M.J.; Coward-Kelly, G.; Liang, C.; Karim, M.N.; Falls, M.; Holtzapple, M.T. Mechanical pretreatment of biomass—Part I: Acoustic and hydrodynamic cavitation. Biomass Bioenergy 2017, 98, 135–141. [Google Scholar] [CrossRef]
- Carrere, H.; Antonopoulou, G.; Affes, R.; Passos, F.; Battimelli, A.; Lyberatos, G.; Ferrer, I. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresour. Technol. 2016, 199, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Lee, Y.Y.; Kim, T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 2016, 199, 42–48. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, C.; Sialve, B.; Bernet, N.; Steyer, J.P. Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresour. Technol. 2012, 110, 610–616. [Google Scholar] [CrossRef]
- Peces, M.; Astals, S.; Mata-Álvarez, J. Effect of moisture on pretreatment efficiency for anaerobic digestion of lignocellulosic substrates. Waste Manag. 2015, 46, 189–196. [Google Scholar] [CrossRef]
- Garuti, M.; Langone, M.; Fabbri, C.; Piccinini, S. Monitoring of full-scale hydrodynamic cavitation pretreatment in agricultural biogas plant. Bioresour. Technol. 2018, 247, 599–609. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Lignocellulosic Waste (LB) | Municipal Wastewater (MW) | Mature Landfill Leachate (MLL) |
---|---|---|---|---|
Chemical oxygen demand (COD) | mg/L | 323.3 ± 8.1 * | 533.5 ± 52 | 6095 ± 62.9 |
Soluble chemical oxygen demand (SCOD) | mg/L | 471 ± 40 | 4736 ± 48.9 | |
Biological oxygen demand (BOD5) | mg/L | 256.9 ± 12 | 263 ± 19.8 | |
Total organic carbon (TOC) | g/kg | 46.2 ± 1.1 | 1792 | |
Biodegradability Index (BI) | - | 0.4760 ± 0.03 | 0.0435 ± 0.01 | |
Total solids (TS) | g/kg | 235.1 ± 5.4 | 0.8 ± 0.02 | 14.5 ± 0.04 |
Volatile solids (VS) | g/kg | 228.6 ± 4.3 | 0.62 ± 0.01 | 3.25 ± 0.7 |
Alkalinity (ALK) | mg/L | 526 ± 47 | 14573 ± 329 | |
pH | - | 7.42 ± 0.07 | 8.09 ± 0.05 | |
Volatile fatty acids (VFA) | mg/L | 158.9 ± 27 | 1171 ± 49 | |
Total nitrogen (TN) | mg/L | 79 ± 5 | 3552 ± 167 | |
Total phosphorus (TP) | mg/L | 21.4 ± 2.1 | 20.8 ± 2.3 | |
Ammonium nitrogen (N-NH4+) | mg/L | 58 ± 2.2 | 1888 ± 150 | |
Ortho-phosphate phosphorus (P-PO43−) | mg/L | 17.1 ± 1.2 | 22.5 ± 1.5 | |
Phenols | g/kg TS | 0.24 ± 0.01 |
Mixture Composition | Cavitation Number Cv [-] | Orifice Velocity vo [m/s] | Fully Recovered Downstream Pressure p2 [Pa] | Flow Rate Q [L/s] |
---|---|---|---|---|
MW | 0.032 | 77.38 | 95879 | 0.547 |
MLL | 0.033 | 75.44 | 95821 | 0.533 |
LB + MW | 0.036 | 72.15 | 95879 | 0.513 |
LB + MLL | 0.039 | 69.32 | 95821 | 0.492 |
Parameter | Unit | MW | MLL | LB + MW | LB + MLL | |
---|---|---|---|---|---|---|
ALK | mg/L | Before HC | 580 ± 35 | 13,444 ± 327 | 551 ± 20 | 12,767 ± 346 |
After HC | 574 ± 14 | 12,694 ± 308 | 631 ± 39 | 14,369 ± 290 | ||
pH | - | Before HC | 7.30 ± 0.03 | 8.12 ± 0.05 | 7.34 ± 0.07 | 8.22 ± 0.08 |
After HC | 8.01 ± 0.02 | 8.65 ± 0.05 | 7.21 ± 0.07 | 8.51 ± 0.08 | ||
VFA | mg/L | Before HC | 140 ± 14 | 1213 ± 124 | 595 ± 38 | 1865 ± 211 |
After HC | 136 ± 6.8 | 1198 ± 132 | 740 ± 45 | 1909 ± 261 | ||
N-NH4+ | mg/L | Before HC | 68 ± 0.5 | 1710 ± 260 | 65 ± 1.5 | 1729 ± 285 |
After HC | 63.5 ± 0.5 | 1902 ± 300 | 64.3 ± 0.7 | 2810 ± 310 |
No | Steps to Successful HC | Factors to Consider |
---|---|---|
1. | Goal to achieve |
|
2. | Selection of HC inductor | The type of inductor influenced the transformations within HC:
|
3. | Purchase or construction of the device/choosing the size and shape of cavitation inducer |
|
4. | Consideration of dry matter content |
|
5. | Selection of operational parameters and multi-criteria optimization | The following parameters have a decisive influence: inlet pressure, number of cavitation cycles (passes of the stream through the cavitation zone) and the corresponding duration, dry matter content or pollutant concentration in the cavitated medium, temperature of the medium. |
6. | Evaluation of the effects |
|
7. | Alternatively, another attempt to select the cavitation inducer and operational parameters | In case of failure or partial success, it is recommended to change the operational conditions: inlet pressure, duration, dry matter content or pollutant concentration, temperature of the medium and type of HC inductor. |
8. | Final | Assess the profitability of the technology |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szaja, A.; Montusiewicz, A.; Lebiocka, M. Challenges of Hydrodynamic Cavitation of Organic Wastes. Appl. Sci. 2022, 12, 7936. https://doi.org/10.3390/app12157936
Szaja A, Montusiewicz A, Lebiocka M. Challenges of Hydrodynamic Cavitation of Organic Wastes. Applied Sciences. 2022; 12(15):7936. https://doi.org/10.3390/app12157936
Chicago/Turabian StyleSzaja, Aleksandra, Agnieszka Montusiewicz, and Magdalena Lebiocka. 2022. "Challenges of Hydrodynamic Cavitation of Organic Wastes" Applied Sciences 12, no. 15: 7936. https://doi.org/10.3390/app12157936
APA StyleSzaja, A., Montusiewicz, A., & Lebiocka, M. (2022). Challenges of Hydrodynamic Cavitation of Organic Wastes. Applied Sciences, 12(15), 7936. https://doi.org/10.3390/app12157936