Response Surface Optimization of Inulin and Polyphenol Extraction from Artichoke (Cynara scolymus (L.)) Solid Wastes
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Compositional Analysis
2.2.1. Moisture
2.2.2. Inulin Content
2.2.3. Total Polyphenol Content (TPC)
2.2.4. Antioxidant Activity (Aox)
2.3. Extraction of Inulin and Polyphenols from the Reconstituted Solid Waste (RSW)
2.3.1. Water Extraction and Optimization: Experimental Design
2.3.2. Ethanol–Water Extraction and Optimization: Experimental Design
2.4. Statistical Analysis
3. Results and Discussion
3.1. Compositional Analysis
3.2. Water Extraction Experiments and Response Surface Analysis
3.2.1. Water Extraction
3.2.2. Optimization for the Water Extraction
3.3. Ethanol–Water Extraction and Optimization
3.3.1. Ethanol–Water Extraction
3.3.2. Optimization for Ethanol–Water Extraction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christaki, E.; Bonos, E.; Florou-Paneri, P. Nutritional and functional properties of Cynara crops (Globe artichoke and Cardoon) and their potential applications: A review. Int. J. Appl. Sci. Technol. 2012, 2, 64–70. [Google Scholar]
- Hellwege, E.M.; Raap, M.; Grischer, D.; Willmitzer, L.; Heyer, A.G. Differences in chain length distribution of inulin from Cynara scolymus and Helianthus tuberosus are reflected in a transient plant expression system using the respective 1-FFT cDNAs. Fed. Eur. Biochem. Soc. Lett. 1998, 427, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Fratianni, F.; Tucci, M.; De Palma, M.; Pepe, R.; Nazzaro, F. Polyphenolic composition in different parts of some cultivars of globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori). Food Chem. 2007, 104, 1282–1286. [Google Scholar] [CrossRef]
- Lattanzio, V.; Kroon, P.A.; Linsalata, V.; Cardinali, A. Globe artichoke: A functional food and source of nutraceutical ingredients. J. Funct. Foods. 2009, 1, 131–144. [Google Scholar] [CrossRef]
- FAOSTAT, Food and Agriculture Organization of the United Nations, Statistics Division. 2020. Available online: http://www.fao.org/faostat (accessed on 12 January 2022).
- Lutz, M.; Henríquez, C.; Escobar, M. Chemical composition and antioxidant properties of mature and baby artichokes (Cynara scolymus L.), raw and cooked. J. Food Compos. Anal. 2011, 24, 49–54. [Google Scholar] [CrossRef]
- Llorach, R.; Espín, J.C.; Tomás-Barberán, F.A.; Ferreres, F. Artichoke (Cynara scolymus L.) byproducts as a potential source of health-promoting antioxidant pehnolics. J. Agric. Food Chem. 2002, 50, 3458–3464. [Google Scholar] [CrossRef]
- Toneli, J.T.C.L.; Mürr, F.E.X.; Martinelli, P.; Dal Fabbro, I.M.; Park, K.J. Optimization of a physical concentration process for inulin. J. Food Eng. 2007, 80, 832–838. [Google Scholar] [CrossRef]
- Gerschenson, L.N.; Fissore, E.N.; Rojas, A.M.; Bernhardt, D.C.; Santo Domingo, C. Artichoke. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 55–69. [Google Scholar] [CrossRef]
- Frutos, M.J.; Guilabert-Antón, L.; Tomás-Bellido, A.; Hernández-Herrero, J.A. Effect of artichoke (Cynara scolymus L.) fiber on textural and sensory qualities of wheat bread. Food Sci. Technol. Int. 2012, 14, 49–55. [Google Scholar] [CrossRef]
- Lingyun, W.; Jianhua, W.; Xiaodong, Z.; Da, T.; Yalin, Y.; Chenggang, C.; Fan, Z. Studies on the extracting technical conditions of inulin from Jerusalem artichoke tubers. J. Food Eng. 2007, 79, 1087–1093. [Google Scholar] [CrossRef]
- Toneli, J.T.C.L.; Park, K.J.; Ramalho, J.R.P.; Murr, F.E.X.; Fabbro, I.M.D. Rheological characterization of chicory root (Cichorium intybus L.) inulin solution. Braz. J. Chem. Eng. 2008, 25, 461–471. [Google Scholar]
- Saengthongpinit, W.; Sajjaanantakul, T. Influence of harvest time and storage temperature on characteristics of inulin from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Postharvest Biol. Technol. 2005, 37, 93–100. [Google Scholar] [CrossRef]
- Castellino, M.; Renna, M.; Leoni, B.; Calasso, M.; Difonzo, G.; Santamaria, P.; Gambacorta, G.; Caponio, F.; De Angelis, M.; Paradiso, V.M. Conventional and unconventional recovery of inulin rich extracts for food use from the roots of globe artichoke. Food Hydrocoll. 2020, 107, 105975. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Mauromicale, G.; Williamson, G. Profile of polyphenols and phenolic acids in bracts and receptacles of globe artichoke (Cynara cardunculus var. scolymus) germplasm. J. Food Compos. Anal. 2011, 24, 148–153. [Google Scholar] [CrossRef]
- Conidi, C.; Cassano, A.; Garcia-Castello, E. Valorization of artichoke wastewaters by integrated membrane process. Water Res. 2014, 48, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Conidi, C.; Rodriguez-Lopez, A.D.; Garcia-Castello, E.M.; Cassano, A. Purification of artichoke polyphenols by using membrane filtration and polymeric resins. Sep. Purif. Technol. 2015, 144, 153–161. [Google Scholar] [CrossRef]
- Rodriguez-Lopez, A.D.; Reig, M.; Mayor, L.; Ortiz-Climent, M.; Garcia-Castello, E.M. Characterization of Ionic Exchange and Macroporous Resins for Their Application on the Separation and Recovery of Chlorogenic Acid from the Wastewater of Artichoke Blanching. Sustainability 2021, 13, 8928. [Google Scholar] [CrossRef]
- Gollücke, A.P.B.; Correa Peres, R.; Ribeiro, D.A.; Aguiar, O. Polyphenols as Supplements in Foods and Beverages: Recent Discoveries and Health Benefits, an Update. In Polyphenols: Mechanisms of Action in Human Health and Disease, 2nd ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 11–18. [Google Scholar]
- Waszkowiak, K.; Gliszczyńska-Świgło, A. Binary ethanol–water solvents affect phenolic profile and antioxidant capacity of flaxseed extracts. Eur. Food Res. Technol. 2016, 242, 777–786. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, S.F.; Sajak, A.A.B.; Ooi, K.L.; Supriatno; Seow, E.M. Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. J. Food Compos. Anal. 2011, 24, 506–515. [Google Scholar] [CrossRef]
- Gironi, F.; Piemonte, V. Temperature and solvent effects on polyphenol extraction process from chestnut tree Wood. Chem. Eng. Res. Des. 2011, 89, 857–862. [Google Scholar] [CrossRef]
- Soto-Maldonado, C.; Zúñiga-Hansen, M.E.; Olivares, A. Data of co-extraction of inulin and phenolic compounds from globe artichoke discards, using different conditioning conditions of the samples and extraction by maceration. Data Brief. 2020, 31, 105986. [Google Scholar] [CrossRef] [PubMed]
- Laufenberg, G.; Kunz, B.; Nystroem, M. Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresour. Technol. 2003, 87, 167–198. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H.; Wang, D.; Zhang, Y. Preparation of inulin and phenols-rich dietary fibre powder from burdock root. Carbohydr. Polym. 2009, 78, 666–671. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Calorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 283, 350–356. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 420–428. [Google Scholar] [CrossRef]
- Jimenez-Escrig, A.; Daneshvar, L.; Pulido, R.; Saura Calixto, F. In Vitro Antioxidant Activities of Edible Artichoke (Cynara scolymus L.) and Effect on Biomarkers of Antioxidants in Rats. J. Agric. Food Chem. 2003, 51, 5540–5545. [Google Scholar]
- Pinelo, M.; Sineiro, J.; Núñez, M.J. Mass transfer during continuous solid-liquid extraction of antioxidant from grape by-products. J. Food Eng. 2006, 77, 57–63. [Google Scholar] [CrossRef]
- Arnous, A.; Makris, D.P.; Kefalas, P. Correlation of pigment and flavanol content with antioxidant properties in selected aged regional wines from Greece. J. Food Compos. Anal. 2002, 15, 655–665. [Google Scholar] [CrossRef]
- Roussis, I.G.; Lambropoulus, I.; Tzimas, P.; Gkoulioti, A.; Marinos, V.; Tsoupeis, D.; Boutaris, I. Antioxidant activities of some Greek wines and wine phenolic extracts. J. Food Compos. Anal. 2008, 21, 614–621. [Google Scholar] [CrossRef]
- Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Mayor, L.; Ballesteros, L.; Conidi, C.; Cassano, A. Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT-Food Sci. Technol. 2015, 64, 1114–1122. [Google Scholar] [CrossRef]
- Obermiller, D.J. Multiple Response Optimization using JMP©. In Proceedings of the Twenty-Second Annual SAS®Users Group International Conference, San Diego, CA, USA, 16–19 March 1997; pp. 841–847. [Google Scholar]
- Redondo-Cuenca, A.; Herrera-Vázquez, S.E.; Condezo-Hoyos, L.; Gómez-Ordóñez, E.; Rupérez, P. Inulin extraction from common inulin-containing plant sources. Ind. Crops Prod. 2021, 170, 113726. [Google Scholar] [CrossRef]
- Ávila Núñez, R.; Rivas Pérez, B.; Hernández Motzezak, R.; Chirinos, M. Contenido de azúcares totales, reductores y no reductores en Agave cocui Trelease. Multiciencias 2012, 12, 129–135. [Google Scholar]
- Rodríguez Amado, I.; Franco, D.; Sánchez, M.; Zapata, C.; Vázquez, J.A. Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem. 2014, 165, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Turkmen, N.; Sari, F.; Velioglu, Y.S. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chem. 2006, 99, 835–841. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, J.G.; Li, W.F.; Chen, J.; Wang, D.Y.; Zhu, L. Optimum extraction process of polyphenols from the bark of Phyllanthus emblica L. based on the response surface methodology. J. Sep. Sci. 2009, 32, 1437–1444. [Google Scholar] [CrossRef]
Run No. | Variables | Coded Levels | ||
---|---|---|---|---|
Temperature (°C) | Time (min) | X1 | X2 | |
1 | 75 | 75 | 0 | 0 |
2 | 60 | 30 | −1 | −1 |
3 | 90 | 30 | +1 | −1 |
4 | 54 | 75 | −1.414 | 0 |
5 | 75 | 11 | 0 | −1.414 |
6 | 75 | 75 | 0 | 0 |
7 | 60 | 120 | −1 | +1 |
8 | 75 | 75 | 0 | 0 |
9 | 96 | 75 | +1.414 | 0 |
10 | 90 | 120 | +1 | +1 |
11 | 75 | 75 | 0 | 0 |
12 | 75 | 139 | 0 | +1.414 |
13 | 75 | 75 | 0 | 0 |
Run No. | Variables | Coded Levels | ||||
---|---|---|---|---|---|---|
Ethanol Concentration (%) (w/w) | Temperature (°C) | Time (min) | X1 | X2 | X3 | |
1 | 50.1 | 57.5 | 195.0 | 0 | 0 | 0 |
2 | 50.1 | 57.5 | 195.0 | 0 | 0 | 0 |
3 | 20.4 | 38.2 | 97.0 | −1 | −1 | −1 |
4 | 50.1 | 57.5 | 360.0 | 0 | 0 | +1.682 |
5 | 50.1 | 57.5 | 195.0 | 0 | 0 | 0 |
6 | 50.1 | 57.5 | 195.0 | 0 | 0 | 0 |
7 | 20.4 | 76.8 | 97.0 | −1 | +1 | −1 |
8 | 79.8 | 38.2 | 293.1 | +1 | −1 | +1 |
9 | 50.1 | 57.5 | 195.0 | 0 | 0 | 0 |
10 | 0.2 | 57.5 | 195.0 | −1.682 | 0 | 0 |
11 | 50.1 | 90.0 | 195.0 | 0 | +1.682 | 0 |
12 | 79.8 | 38.2 | 97.0 | +1 | −1 | −1 |
13 | 50.1 | 25.0 | 195.0 | 0 | −1.682 | 0 |
14 | 79.8 | 76.8 | 96.9 | +1 | +1 | −1 |
15 | 20.4 | 76.8 | 293.1 | −1 | +1 | +1 |
16 | 20.4 | 38.2 | 293.1 | −1 | −1 | +1 |
17 | 100.0 | 57.5 | 195.0 | +1.682 | 0 | 0 |
18 | 50.1 | 57.5 | 30.0 | 0 | 0 | −1.682 |
19 | 79.8 | 76.8 | 293.1 | +1 | +1 | +1 |
Heart | Inner Bracts | External Bracts | Stem | |
---|---|---|---|---|
Weight distribution (%) (w.b.) 1 | 12.8 ± 3.0 | 44.2 ± 7.5 | 36.9 ± 10.7 | 6.1 ± 2.8 |
Moisture (%) (w.b.) 1 | 86.1 ± 0.62 | 88.7 ± 0.64 | 83.7 ± 0.99 | 88.3 ± 0.56 |
Inulin (mg eq glucose/g artichoke) (d.b.) 2 | 158.8 ± 24.4 | 73.8 ± 5.3 | 45.4 ± 8.7 | 21.6 ± 5.4 |
Polyphenols (mg GAE/g artichoke) (d.b.) 2 | 25.3 ± 0.2 | 32.6 ± 5.0 | 17.8 ± 0.2 | 44.8 ± 1.6 |
Aox (mM trolox/g artichoke) (d.b.) 2 | 172.2 ± 86.1 | 213.8 ± 77.1 | 81.5 ± 9.7 | 213.1 ± 62.3 |
Run No. | Inulin Content | Total Polyphenol Content, TPC | Antioxidant Activity, Aox |
---|---|---|---|
mg glu eq/g (d.b.) | mg GAE/g (d.b.) | mM trolox/g (d.b.) | |
1 | 41.89 ± 5.50 | 10.89 ± 0.13 | 37.84 ± 2.83 |
2 | 11.03 ± 1.47 | 13.18 ± 0.97 | 48.33 ± 0.89 |
3 | 19.13 ± 5.03 | 12.87 ± 0.32 | 45.14 ± 0.88 |
4 | 1.60 ± 0.35 | 10.17 ± 0.23 | 39.17 ± 1.56 |
5 | 13.74 ± 4.12 | 12.49 ± 0.35 | 48.56 ± 1.53 |
6 | 42.99 ± 5.37 | 10.22 ± 0.23 | 37.31 ± 1.08 |
7 | 23.88 ± 3.32 | 9.50 ± 0.23 | 39.55 ± 1.80 |
8 | 42.00 ± 3.51 | 10.30 ± 0.23 | 37.97 ± 1.07 |
9 | 24.19 ± 4.90 | 12.03 ± 0.81 | 47.06 ± 1.54 |
10 | 39.44 ± 5.25 | 11.16 ± 0.40 | 47.30 ± 2.39 |
11 | 52.00 ± 8.31 | 10.27 ± 0.26 | 39.24 ± 2.10 |
12 | 37.69 ± 5.31 | 11.66 ± 0.67 | 46.54 ± 2.40 |
13 | 44.72 ± 3.20 | 11.00 ± 0.13 | 49.04 ± 0.90 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Ratio | p-Value * |
---|---|---|---|---|---|
Inulin content | |||||
A:T (°C) | 386.052 | 1 | 386.052 | 23.07 | 0.0020 |
B:t (min) | 561.996 | 1 | 561.996 | 33.58 | 0.0007 |
AA | 1542.62 | 1 | 1542.62 | 92.17 | 0.0000 |
AB | 13.9128 | 1 | 13.9128 | 0.83 | 0.3922 |
BB | 494.137 | 1 | 494.137 | 29.52 | 0.0010 |
Residual | 117.162 | 7 | 16.7374 | ||
Total | 2922.23 | 12 | |||
Total polyphenol content | |||||
A:T (°C) | 1.97400 | 1 | 1.97400 | 4.55 | 0.0704 |
B:t (min) | 5.36587 | 1 | 5.36587 | 12.37 | 0.0098 |
AA | 0.65622 | 1 | 0.65622 | 1.51 | 0.2585 |
AB | 0.97023 | 1 | 0.97023 | 2.24 | 0.1785 |
BB | 4.34977 | 1 | 4.34977 | 10.03 | 0.0158 |
Residual | 3.03712 | 7 | 0.43387 | ||
Total | 15.996 | 12 | |||
Antioxidant activity | |||||
A:T (°C) | 30.7509 | 1 | 30.7509 | 2.04 | 0.1961 |
B:t (min) | 11.2008 | 1 | 11.2008 | 0.74 | 0.4170 |
AA | 12.9178 | 1 | 12.9178 | 0.86 | 0.3852 |
AB | 29.9209 | 1 | 29.9209 | 1.99 | 0.2015 |
BB | 88.5585 | 1 | 88.5585 | 5.88 | 0.0458 |
Residual | 105.414 | 7 | 15.0592 | ||
Total | 271.639 | 12 |
Run No. | Total Polyphenol Content, TPC | Antioxidant Activity, Aox | Inulin Content |
---|---|---|---|
mg GAE/g (d.b.) | mM trolox/g (d.b.) | mg glu eq/g (d.b.) | |
1 | 11.82 ± 0.02 | 36.21 ± 1.70 | 8.65 ± 1.65 |
2 | 12.51 ± 1.09 | 38.83 ± 0.85 | 4.59 ± 0.76 |
3 | 12.89 ± 0.25 | 36.57 ± 1.72 | 2.89 ± 0.69 |
4 | 11.94 ± 0.87 | 37.33 ± 1.63 | 10.10 ± 2.32 |
5 | 12.60 ± 0.01 | 39.78 ± 2.20 | 0.93 ± 0.09 |
6 | 13.02 ± 0.98 | 39.78 ± 2.20 | 3.89 ± 1.01 |
7 | 14.82 ± 0.25 | 28.06 ± 3.06 | 29.47 ± 4.37 |
8 | 8.57 ± 0.74 | 10.97 ± 1.44 | 1.42 ± 0.28 |
9 | 13.28 ± 0.66 | 35.04 ± 4.25 | 7.49 ± 1.55 |
10 | 14.82 ± 0.90 | 37.37 ± 5.10 | 7.07 ± 1.62 |
11 | 18.83 ± 0.43 | 21.74 ± 0.84 | 20.76 ± 4.93 |
12 | 5.99 ± 0.42 | 11.71 ± 2.47 | 5.19 ± 0.91 |
13 | 10.43 ± 0.86 | 34.12 ± 1.68 | 15.34 ± 3.12 |
14 | 9.15 ± 0.49 | 13.83 ± 2.2. | 9.04 ± 1.54 |
15 | 19.27 ± 0.43 | 25.74 ± 2.25 | 22.41 ± 4.98 |
16 | 14.80 ± 0.24 | 39.95 ± 0.82 | 4.65 ± 0.81 |
17 | 3.28 ± 0.01 | 9.55 ± 0.83 | 4.23 ± 0.85 |
18 | 10.86 ± 0.50 | 34.99 ± 3.03 | 5.25 ± 1.12 |
19 | 10.54 ± 0.75 | 19.63 ± 3.40 | 3.33 ± 0.74 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Ratio | p-Value * |
---|---|---|---|---|---|
Total polyphenol content | |||||
A: EtOH (%) | 0.228 | 1 | 0.228 | 0.20 | 0.6651 |
B: T (°C) | 2.632 | 1 | 2.632 | 2.32 | 0.1624 |
C: t (min) | 5.579 | 1 | 5.579 | 4.91 | 0.0540 |
AA | 19.405 | 1 | 19.405 | 17.07 | 0.0026 |
AB | 0.201 | 1 | 0.201 | 0.18 | 0.6839 |
AC | 0.715 | 1 | 0.715 | 0.63 | 0.4481 |
BB | 8.308 | 1 | 8.308 | 7.31 | 0.0242 |
BC | 0.227 | 1 | 0.227 | 0.20 | 0.6656 |
CC | 1.780 | 1 | 1.780 | 1.57 | 0.2424 |
Residual | 10.29 | 9 | 1.137 | ||
Total | 265.209 | 18 | |||
Antioxidant activity | |||||
A: EtOH (%) | 49.63 | 1 | 49.63 | 3.02 | 0.1164 |
B: T (°C) | 39.72 | 1 | 39.72 | 2.41 | 0.1546 |
C: t (min) | 25.81 | 1 | 25.81 | 1.57 | 0.2419 |
AA | 534.76 | 1 | 534.76 | 32.51 | 0.0003 |
AB | 140.32 | 1 | 140.32 | 8.53 | 0.0170 |
AC | 2.00 | 1 | 2.00 | 0.12 | 0.7355 |
BB | 297.64 | 1 | 297.64 | 18.09 | 0.0021 |
BC | 0.09 | 1 | 0.09 | 0.01 | 0.9431 |
CC | 42.46 | 1 | 42.46 | 2.58 | 0.1426 |
Residual | 148.06 | 9 | 16.45 | ||
Total | 2180.73 | 18 | |||
Inulin content | |||||
A: EtOH (%) | 0.48 | 1 | 0.48 | 0.02 | 0.8895 |
B: T (°C) | 154.31 | 1 | 154.31 | 6.53 | 0.0309 |
C: t (min) | 1.43 | 1 | 1.43 | 0.06 | 0.8114 |
AA | 0.004 | 1 | 0.004 | 0.00 | 0.9902 |
AB | 186.09 | 1 | 186.09 | 7.87 | 0.0205 |
AC | 2.19 | 1 | 2.19 | 0.09 | 0.7678 |
BB | 260.22 | 1 | 260.22 | 11.01 | 0.0090 |
BC | 14.45 | 1 | 14.45 | 0.61 | 0.4545 |
CC | 6.67 | 1 | 6.67 | 0.28 | 0.6081 |
Residual | 212.76 | 9 | 23.64 | ||
Total | 1091.58 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Castello, E.M.; Mayor, L.; Calvo-Ramirez, A.; Ruiz-Melero, R.; Rodriguez-Lopez, A.D. Response Surface Optimization of Inulin and Polyphenol Extraction from Artichoke (Cynara scolymus (L.)) Solid Wastes. Appl. Sci. 2022, 12, 7957. https://doi.org/10.3390/app12167957
Garcia-Castello EM, Mayor L, Calvo-Ramirez A, Ruiz-Melero R, Rodriguez-Lopez AD. Response Surface Optimization of Inulin and Polyphenol Extraction from Artichoke (Cynara scolymus (L.)) Solid Wastes. Applied Sciences. 2022; 12(16):7957. https://doi.org/10.3390/app12167957
Chicago/Turabian StyleGarcia-Castello, Esperanza M., Luis Mayor, Alejandro Calvo-Ramirez, Ruben Ruiz-Melero, and Antonio D. Rodriguez-Lopez. 2022. "Response Surface Optimization of Inulin and Polyphenol Extraction from Artichoke (Cynara scolymus (L.)) Solid Wastes" Applied Sciences 12, no. 16: 7957. https://doi.org/10.3390/app12167957
APA StyleGarcia-Castello, E. M., Mayor, L., Calvo-Ramirez, A., Ruiz-Melero, R., & Rodriguez-Lopez, A. D. (2022). Response Surface Optimization of Inulin and Polyphenol Extraction from Artichoke (Cynara scolymus (L.)) Solid Wastes. Applied Sciences, 12(16), 7957. https://doi.org/10.3390/app12167957