Assessment of Escape Safety of Cruise Ships Based on Dislocation Accumulation and Social Force Models
Abstract
:1. Introduction
2. Methodologies
2.1. Evacuation Time Model
2.2. Proposed Computational Model
- (1)
- Movement speed model.
- (2)
- Flow model.
- (3)
- Traffic calculation model under congestion.
3. Results
3.1. The Ship and Data Sources
3.2. Results of the Proposed Method
4. Discussion
4.1. Comparison of Stairway Movement Time
4.2. Comparison of Flow Time
4.3. Validations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bartolucci, A.; Casareale, C.; Drury, J. Cooperative and competitive behaviour among passengers during the costa concordia disaster. Saf. Sci. 2021, 134, 105055. [Google Scholar] [CrossRef]
- Vidmar, P.; Perkovič, M.; Gucma, L.; Łazuga, K. Risk assessment of moored and passing ships. Appl. Sci. 2020, 10, 6825. [Google Scholar] [CrossRef]
- Lois, P.; Wang, J.; Wall, A.; Ruxton, T. Formal safety assessment of cruise ships. Tour. Manag. 2004, 25, 93–109. [Google Scholar] [CrossRef]
- Li, H.; Guo, J.Y.; Yazdi, M.; Nedjati, A.; Adesina, K.A. Supportive emergency decision-making model towards sustainable development with fuzzy expert system. Neural Comput. Appl. 2021, 33, 15619–15637. [Google Scholar] [CrossRef]
- Feng, K.; Ji, J.C.; Ni, Q. A novel adaptive bandwidth selection method for Vold–Kalman filtering and its application in wind turbine planetary gearbox diagnostics. Struct. Health Monit. 2022, 14759217221099966. [Google Scholar] [CrossRef]
- Li, H.; Soares, C.G.; Huang, H.Z. Reliability analysis of a floating offshore wind turbine using Bayesian Networks. Ocean Eng. 2020, 217, 107827. [Google Scholar] [CrossRef]
- Li, H.; Huang, C.G.; Soares, C.G. A real-time inspection and opportunistic maintenance strategies for floating offshore wind turbines. Ocean Eng. 2022, 256, 111433. [Google Scholar] [CrossRef]
- Li, H.; Diaz, H.; Soares, C.G. A developed failure mode and effect analysis for floating offshore wind turbine support structures. Renew. Energy 2021, 164, 133–145. [Google Scholar] [CrossRef]
- Huang, P.; Huang, H.Z.; Li, Y.F.; Qian, H.M. An efficient and robust structural reliability analysis method with mixed variables based on hybrid conjugate gradient direction. Int. J. Numer. Methods Eng. 2021, 122, 1990–2004. [Google Scholar] [CrossRef]
- Jiao, Y.; Dulebenets, M.A.; Lau, Y.Y. Cruise Ship Safety Management in Asian Regions: Trends and Future Outlook. Sustainability 2020, 12, 5567. [Google Scholar] [CrossRef]
- Ni, Q.; Ji, J.; Feng, K. Data-driven prognostic scheme for bearings based on a novel health indicator and gated recurrent unit network. IEEE Trans. Ind. Inform. 2022. [Google Scholar] [CrossRef]
- Xiang, G.; Soares, C.G. A CFD approach for numerical assessment of hydrodynamic coefficients of an inclined prism near the sea bottom. Ocean Eng. 2022, 252, 111140. [Google Scholar] [CrossRef]
- Li, H.; Díaz, H.; Soares, C.G. A failure analysis of floating offshore wind turbines using AHP-FMEA methodology. Ocean Eng. 2021, 234, 109261. [Google Scholar] [CrossRef]
- Li, H.; Deng, Z.M.; Golilarz, N.A.; Soares, C.G. Reliability analysis of the main drive system of a CNC machine tool including early failures. Reliab. Eng. Syst. Saf. 2021, 215, 107846. [Google Scholar] [CrossRef]
- Huang, P.; Huang, H.Z.; Li, Y.F.; Li, H. Positioning accuracy reliability analysis of industrial robots based on dif-ferential kinematics and saddlepoint approximation. Mech. Mach. Theory 2021, 162, 104367. [Google Scholar] [CrossRef]
- Li, H.; Huang, H.Z.; Li, Y.F.; Zhou, J.; Mi, J. Physics of failure-based reliability prediction of turbine blades using multi-source information fusion. Appl. Soft Comput. 2018, 72, 624–635. [Google Scholar] [CrossRef]
- Li, H.; Teixeira, A.P.; Soares, C.G. A two-stage Failure Mode and Effect Analysis of offshore wind turbines. Renew. Energy 2020, 162, 1438–1461. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Loughney, S.; Yang, Z.; Wang, Y.; Wang, J. Numerical analysis and staircase layout optimisation for a Ro-Ro passenger ship during emergency evacuation. Reliab. Eng. Syst. Saf. 2022, 217, 108056. [Google Scholar] [CrossRef]
- MSC/Circ. 909; Interim Guidelines for a Simplified Evacuation Analysis of Ro-Ro Passenger Ships. International Maritime Organization: London, UK, 1999.
- MSC/Circular. 1001; Interim Guidelines for a Simplified Evacuation Analysis of High-Speed Passenger Craft. International Maritime Organization: London, UK, 2001.
- MSC/Circ. 1238; Guidelines for Evacuation Analysis for New and Existing Passenger Ships. International Maritime Organization: London, UK, 2007.
- MSC.1/Circular. 1533; Revised Guidelines on Evacuation Analysis for New and Existing Passenger Ships. International Maritime Organization: London, UK, 2016.
- Wang, X.; Liu, Z.; Wang, J.; Loughney, S.; Zhao, Z.; Cao, L. Passengers’ safety awareness and perception of wayfinding tools in a Ro-Ro passenger ship during an emergency evacuation. Saf. Sci. 2021, 137, 105189. [Google Scholar] [CrossRef]
- Vermuyten, H.; Beliën, J.; De Boeck, L.; Reniers, G.; Wauters, T. A review of optimisation models for pedestrian evacuation and design problems. Saf. Sci. 2016, 87, 167–178. [Google Scholar] [CrossRef]
- Wang, W.L.; Liu, S.B.; Lo, S.M.; Gao, L.J. Passenger Ship Evacuation Simulation and Validation by Experimental Data Sets. Procedia Eng. 2014, 71, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Ginnis, A.I.; Kostas, K.V.; Politis, C.G.; Kaklis, P.D. VELOS: A VR platform for ship-evacuation analysis. Comput. Aided Des. 2010, 42, 1045–1058. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Park, J.H.; Lee, D.; Yang, Y.S. Establishing the methodologies for human evacuation simulation in marine accidents. Comput. Ind. Eng. 2004, 46, 725–740. [Google Scholar] [CrossRef]
- Guarin, L.; Hifi, Y.; Vassalos, D. Passenger Ship Evacuation—Design and Verification; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Meyer-Knig, T.; Valanto, P.; Povel, D. Implementing Ship Motion in AENEAS—Model Development and First Results; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Galea, E.; Deere, S.; Brown, R.; Filippidis, L. A validation data-set and suggested validation protocol for ship evacuation models. Fire Saf. Sci. 2014, 11, 1115–1128. [Google Scholar] [CrossRef] [Green Version]
- Galea, E.R.; Deere, S.; Brown, R.; Filippidis, L. An Experimental Validation of an Evacuation Model using Data Sets Generated from Two Large Passenger Ships. Trans. Soc. Nav. Archit. Mar. Eng. 2013, 121, 370–385. [Google Scholar] [CrossRef]
- Choi, J.; Kim, S.Y.; Shin, S.C.; Kang, H.J.; Park, B.J. Development of an Evacuation Time Calculation Program for Passenger Ships Based on IMO Guidelines, MSC.1/Circ.1238. J. Soc. Nav. Arch. Korea 2010, 47, 719–724. [Google Scholar] [CrossRef] [Green Version]
- Nasso, C.; Bertagna, S.; Mauro, F.; Marinò, A.; Bucci, V. Simplified And Advanced Approaches For Evacuation Analysis Of Passenger Ships In The Early Stage Of Design. Brodogr. Teor. I Praksa Brodogr. I Pomor. Teh. 2019, 70, 43–59. [Google Scholar] [CrossRef]
- Takeichi, N.; Yoshida, Y.; Sano, T.; Kimura, T.; Watanabe, H.; Ohmiya, Y. Characteristics of Merging Occupants in a Staircase. Fire Saf. Sci. 2005, 8, 591–598. [Google Scholar] [CrossRef]
- Hokugo, A.; Kubo, K.; Murozaki, Y. An experimental study on confluence of two foot traffic flows ln staircase. J. Arch. Plan. Environ. Eng. 1985, 358, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Galea, E.R.; Sharp, G.; Lawrence, P.J. Investigating the Representation of Merging Behavior at the Floor-Stair Interface in Computer Simulations of Multi-Floor Building Evacuations. J. Fire Prot. Eng. 2008, 18, 291–316. [Google Scholar] [CrossRef]
- Zeng, Y.; Song, W.; Huo, F.; Fang, Z.; Cao, S.; Vizzari, G. Effects of Initial Distribution Ratio and Illumination on Merging Behaviors During High-Rise Stair Descent Process. Fire Technol. 2018, 54, 1095–1112. [Google Scholar] [CrossRef]
- Sano, T.; Ronchi, E.; Minegishi, Y.; Nilsson, D. A pedestrian merging flow model for stair evacuation. Fire Saf. J. 2017, 89, 77–89. [Google Scholar] [CrossRef]
- Helbing, D. A fluid dynamic model for the movement of pedestrians. Complex Syst. 1998, 6, 391–415. [Google Scholar]
- Helbing, D.; Molnar, P. Social force model for pedestrian dynamics. Phys. Rev. E 1995, 51, 4282–4286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helbing, D.; Farkas, I.; Vicsek, T. Simulating dynamical features of escape panic. Nature 2000, 407, 487–490. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Liu, H.; Han, Y. An approach to congestion analysis in crowd dynamics models. Math. Model. Methods Appl. Sci. 2020, 30, 867–890. [Google Scholar] [CrossRef]
Facility | Initial Density D (p/m2) | Initial Density Fs (p/(m × s)) | Initial Personnel Movement Speed S (m/s) |
---|---|---|---|
Corridors | 0 | 0 | 1.2 |
0.5 | 0.65 | 1.2 | |
1.9 | 1.3 | 0.67 | |
3.2 | 0.65 | 0.20 | |
≥3.5 | 0.32 | 0.10 |
Facility | Maximum Flow Fs (p/(m × s)) |
---|---|
Stairs (down) | 1.1 |
Stairs (up) | 0.88 |
Corridor | 1.3 |
Gateway | 1.3 |
Facility | Specific Flow Fs (p/(m × s)) | Movement Speed S (m/s) |
---|---|---|
Stairs (down) | 0 | 1.0 |
0.54 | 1.0 | |
1.1 | 0.55 | |
Stairs (up) | 0 | 0.8 |
0.43 | 0.8 | |
0.88 | 0.44 | |
Corridor | 0 | 1.2 |
0.65 | 1.2 | |
1.3 | 0.67 |
Population Groups—Passengers | Percentages (%) |
---|---|
Females < 30 years | 7 |
Females 30–50 years old | 7 |
Females > 50 years | 16 |
Females > 50, mobility impaired (1) | 10 |
Females > 50, mobility impaired (2) | 10 |
Males < 30 years | 7 |
Males 30–50 years old | 7 |
Males > 50 years | 16 |
Males > 50, mobility impaired (1) | 10 |
Males > 50, mobility impaired (2) | 10 |
Passenger Groups | Weights | Min. Speed in Corridors (m/s) | Max. Speed in Corridors (m/s) |
---|---|---|---|
Females < 30 years | 0.07 | 0.93 | 1.55 |
Females 30–50 years old | 0.07 | 0.71 | 1.19 |
Females > 50 years | 0.16 | 0.56 | 0.94 |
Females > 50, mobility impaired (1) | 0.1 | 0.43 | 0.71 |
Females > 50, mobility impaired (2) | 0.1 | 0.37 | 0.61 |
Males < 30 years | 0.07 | 1.11 | 1.85 |
Males 30–50 years old | 0.07 | 0.97 | 1.62 |
Males > 50 years | 0.16 | 0.84 | 1.4 |
Males > 50, mobility impaired (1) | 0.1 | 0.64 | 1.06 |
Males > 50, mobility impaired (1) | 0.1 | 0.55 | 0.91 |
Weights | 0.68 | 1.14 |
Facility | Initial Density D (p/m2) | Conventional Used S (m/s) | Corrected by the Proposed Method S (m/s) |
---|---|---|---|
Corridors (Initial density) | 0 | 1.2 | 1.14 |
0.5 | 1.2 | 1.14 | |
1,9 | 0.67 | 0.68 | |
3.2 | 0.20 | 0.2 | |
≥3.5 | 0.10 | 0.1 | |
Corridors (Flow) | 0 | 1.2 | 1.14 |
0.65 | 1.2 | 1.14 | |
1.3 | 0.67 | 0.68 |
Passenger Group | Weights | Min. Stairs Down Speed (m/s) | Max. Stairs Down Speed (m/s) | Min. Stairs Up Speed (m/s) | Max. Stairs Up Speed (m/s) |
---|---|---|---|---|---|
Females < 30 years | 0.07 | 0.56 | 0.94 | 0.47 | 0.79 |
Females 30–50 years old | 0.07 | 0.49 | 0.81 | 0.44 | 0.74 |
Females > 50 years | 0.16 | 0.45 | 0.75 | 0.37 | 0.61 |
Females > 50, mobility impaired (1) | 0.1 | 0.34 | 0.56 | 0.28 | 0.46 |
Females > 50, mobility impaired (2) | 0.1 | 0.29 | 0.49 | 0.23 | 0.39 |
Males < 30 years | 0.07 | 0.76 | 1.26 | 0.5 | 0.84 |
Males 30–50 years old | 0.07 | 0.64 | 1.07 | 0.47 | 0.79 |
Males > 50 years | 0.16 | 0.5 | 0.84 | 0.38 | 0.64 |
Males > 50, mobility impaired (1) | 0.1 | 0.38 | 0.64 | 0.29 | 0.49 |
Males > 50, mobility impaired (2) | 0.1 | 0.33 | 0.55 | 0.25 | 0.41 |
Weights | 0.46 | 0.76 | 0.36 | 0.60 |
Type of Facility | Specific Flow Fs (p/(m × s)) | Conventional Used S (m/s) | Revised by the Proposed Method S (m/s) |
---|---|---|---|
Stairs (down) | 0 | 1.0 | 0.76 |
0.54 | 1.0 | 0.76 | |
1.1 | 0.55 | 0.46 | |
Stairs (up) | 0 | 0.8 | 0.6 |
0.43 | 0.8 | 0.6 | |
0.88 | 0.44 | 0.36 |
Main Vertical Zone Parameters | MVZ 1 | MVZ 4 | MVZ 5 |
---|---|---|---|
Maximum horizontal escape distance (m) | 30.3 | 46.1 | 36.1 |
Number of cross deck layers (layer) | 6 | 6 | 6 |
Vertical escape distance (m) | 31.8 | 33.4 | 33.7 |
Deck | Night Case in MVZ 1 | Night Case in MVZ 4 | Night Case in MVZ 5 | |||
---|---|---|---|---|---|---|
Passengers | Crew | Passengers | Crew | Passengers | Crew | |
1 | 128 | 18 | 124 | 2 | 109 | 2 |
2 | 225 | 2 | 139 | 2 | 108 | 2 |
3 | -- | -- | -- | -- | -- | -- |
4 | -- | 10 | -- | 10 | -- | 10 |
5 | 87 | 4 | -- | 18 | -- | 10 |
6 | 118 | 2 | 106 | 1 | 63 | 2 |
7 | 94 | 2 | 104 | 2 | 96 | 2 |
8 | 94 | 2 | 104 | 2 | 92 | 2 |
9 | 79 | 2 | 100 | 2 | 95 | 2 |
Deck | Facility ID | Initial Persons | D (p/m2) | FS [p/(m × s)] | S (m/s) | FC (p/s) |
---|---|---|---|---|---|---|
1 | C111 | 66 | 0.9 | 0.8 | 1.0 | 1.3 |
D111 | 1.2 | |||||
S111 | 0.8 | |||||
C112 | 64 | 0.9 | 0.8 | 1.0 | 1.3 | |
D112 | 1.2 | |||||
C113 | 16 | 0.7 | 0.7 | 1.1 | 0.8 | |
D113 | 0.8 | |||||
S112 | 0.8 | |||||
2 | C211 | 111 | 1.1 | 0.9 | 0.9 | 1.5 |
D211 | 1.5 | |||||
S211 | 1.3 | |||||
C212 | 108 | 1.1 | 0.9 | 0.9 | 2.0 | |
C213 | 8 | 0.3 | 0.4 | 1.1 | 0.5 | |
D212 | 1.7 | |||||
S212 | 1.3 |
Deck | MVZ 1 | MVZ 4 | MVZ 5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(s) | (s) | (s) | (s) | (s) | (s) | (s) | (s) | (s) | (s) | (s) | (s) | (s) | (s) | (s) | |
1 | 23.2 | 44.4 | 301.7 | 369.3 | 849.4 | 21.4 | 59.0 | 100.8 | 181.3 | 416.9 | 23.1 | 40.4 | 45.5 | 109.1 | 250.9 |
2 | 12.1 | 103.9 | 301.7 | 417.7 | 960.7 | 12.5 | 67.5 | 100.8 | 180.9 | 416.1 | 14.0 | 39.8 | 45.5 | 99.3 | 228.4 |
4 | 18.6 | 0.0 | 301.7 | 320.3 | 736.6 | 12.8 | 0.0 | 100.8 | 113.7 | 261.5 | 12.8 | 0.0 | 49.0 | 61.8 | 142.2 |
5 | 28.6 | 43.7 | 301.7 | 374.0 | 860.3 | 25.7 | 0.0 | 100.8 | 126.5 | 291.0 | 26.1 | 0.0 | 49.0 | 75.1 | 172.8 |
6 | 40.4 | 42.4 | 301.7 | 384.6 | 884.5 | 39.2 | 65.9 | 128.6 | 233.7 | 537.6 | 39.7 | 38.1 | 49.0 | 126.7 | 291.3 |
7 | 49.6 | 40.1 | 301.7 | 391.4 | 900.2 | 51.0 | 67.2 | 128.6 | 246.7 | 567.5 | 51.4 | 40.6 | 49.0 | 141.0 | 324.3 |
8 | 58.8 | 71.3 | 301.7 | 431.8 | 993.2 | 61.8 | 66.9 | 128.6 | 257.3 | 591.9 | 62.3 | 39.9 | 49.0 | 151.1 | 347.6 |
9 | 68.1 | 38.9 | 301.7 | 408.7 | 940.0 | 70.2 | 84.2 | 128.6 | 283.0 | 650.9 | 69.0 | 40.4 | 49.0 | 158.3 | 364.2 |
MVZ | No. | Route Code | No. | Route Code | No. | Route Code | No. | Route Code | No. | Route Code |
---|---|---|---|---|---|---|---|---|---|---|
MVZ 1 | 1 | MVZ1-E1 | 6 | MVZ1-E6 | 11 | MVZ1-E11 | 16 | MVZ1-E16 | 21 | MVZ1-E21 |
2 | MVZ1-E2 | 7 | MVZ1-E7 | 12 | MVZ1-E12 | 17 | MVZ1-E17 | 22 | MVZ1-E22 | |
3 | MVZ1-E3 | 8 | MVZ1-E8 | 13 | MVZ1-E13 | 18 | MVZ1-E18 | 23 | MVZ1-E23 | |
4 | MVZ1-E4 | 9 | MVZ1-E9 | 14 | MVZ1-E14 | 19 | MVZ1-E19 | |||
5 | MVZ1-E5 | 10 | MVZ1-E10 | 15 | MVZ1-E15 | 20 | MVZ1-E20 | |||
MVZ 4 | 1 | MVZ4-E1 | 4 | MVZ4-E4 | 7 | MVZ4-E7 | 10 | MVZ4-E10 | 13 | MVZ4-E13 |
2 | MVZ4-E2 | 5 | MVZ4-E5 | 8 | MVZ4-E8 | 11 | MVZ4-E11 | 14 | MVZ4-E14 | |
3 | MVZ4-E3 | 6 | MVZ4-E6 | 9 | MVZ4-E9 | 12 | MVZ4-E12 | |||
MVZ 5 | 1 | MVZ5-E1 | 4 | MVZ5-E4 | 7 | MVZ5-E7 | 10 | MVZ5-E10 | 13 | MVZ5-E13 |
2 | MVZ5-E2 | 5 | MVZ5-E5 | 8 | MVZ5-E8 | 11 | MVZ5-E11 | 14 | MVZ5-E14 | |
3 | MVZ5-E3 | 6 | MVZ5-E6 | 9 | MVZ5-E9 | 12 | MVZ5-E12 | 15 | MVZ5-E15 |
Population Groups—Passengers | Percentages (%) |
---|---|
Females < 30 years | 7 |
Females 30–50 years old | 7 |
Females > 50 years | 16 |
Females > 50, mobility impaired (1) | 10 |
Females > 50, mobility impaired (2) | 10 |
Males < 30 years | 7 |
Males 30–50 years old | 7 |
Males > 50 years | 16 |
Males > 50, mobility impaired (1) | 10 |
Males > 50, mobility impaired (2) | 10 |
Population Groups—Crew | Percentages (%) |
---|---|
Crew females | 50 |
Crew males | 50 |
MVZ | The Proposed Method (s) | Traditional Method (s) | Simulation Method (s) |
---|---|---|---|
MVZ 1 | 993.2 | 1221.0 | 871.2 |
MVZ 4 | 650.9 | 715.1 | 652.1 |
MVZ 5 | 364.2 | 396.8 | 325.5 |
The Proposed Method (Hours) | Traditional Method (Hours) | Simulation Method (Hours) | |
---|---|---|---|
Time required for evacuation analysis | 64 | 60 | 144 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, G.; Guo, Y.; Liu, C.; Huang, Y.; Chen, G. Assessment of Escape Safety of Cruise Ships Based on Dislocation Accumulation and Social Force Models. Appl. Sci. 2022, 12, 7998. https://doi.org/10.3390/app12167998
Li J, Wang G, Guo Y, Liu C, Huang Y, Chen G. Assessment of Escape Safety of Cruise Ships Based on Dislocation Accumulation and Social Force Models. Applied Sciences. 2022; 12(16):7998. https://doi.org/10.3390/app12167998
Chicago/Turabian StyleLi, Jianing, Gaoshuai Wang, Yong Guo, Chao Liu, Yiming Huang, and Gang Chen. 2022. "Assessment of Escape Safety of Cruise Ships Based on Dislocation Accumulation and Social Force Models" Applied Sciences 12, no. 16: 7998. https://doi.org/10.3390/app12167998
APA StyleLi, J., Wang, G., Guo, Y., Liu, C., Huang, Y., & Chen, G. (2022). Assessment of Escape Safety of Cruise Ships Based on Dislocation Accumulation and Social Force Models. Applied Sciences, 12(16), 7998. https://doi.org/10.3390/app12167998