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Abstract

:

This work presents a novel hybrid algorithm called GA-RRHC based on genetic algorithms (GAs) and a random-restart hill-climbing (RRHC) algorithm for the optimization of the flexible job shop scheduling problem (FJSSP) with high flexibility (where every operation can be completed by a high number of machines). In particular, different GA crossover and simple mutation operators are used with a cellular automata (CA)-inspired neighborhood to perform global search. This method is refined with a local search based on RRHC, making computational implementation easy. The novel point is obtained by applying the CA-type neighborhood and hybridizing the aforementioned two techniques in the GA-RRHC, which is simple to understand and implement. The GA-RRHC is tested by taking four banks of experiments widely used in the literature and comparing their results with six recent algorithms using relative percentage deviation (RPD) and Friedman tests. The experiments demonstrate that the GA-RRHC is a competitive method compared with other recent algorithms for instances of the FJSSP with high flexibility. The GA-RRHC was implemented in Matlab and is available on Github.
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1. Introduction


Production planning is a priority factor in modern manufacturing systems [1], where a critical aspect is the scheduling of operations and resource allocation [2]. Each industry must find a better solution for its respective production scheduling jobs to execute efficient manufacturing on time or launch new products to meet market demands satisfactorily [3].



This paper analyses the topic of task scheduling with flexible machines, also known as the flexible job shop scheduling problem (FJSSP), especially concerning instances with high flexibility, where many machines can process the same operation. The FJSSP reflects the current problem faced by manufacturing industries in the allocation of limited but highly flexible resources to perform tasks in the shortest possible time [4].



In the FJSSP, the goal is to find the most appropriate job sequencing, with each job involving operations with precedence restrictions, in an environment where several machines can perform the same operation but quite possibly in different processing times. Thus, the FJSSP is an NP-hard combinatorial problem where for a bigger number of jobs, there is an exponentially higher number of possible solutions [5]. It is thus impossible to review all solutions to find the optimal scheduling in a suitable time that minimizes the processing time of all operations [6].



Many mathematical methods have been proposed to resolve scheduling problems [7]; some works have approached the FJSSP using the branch and bound method [8], linear programming [9], or Lagrangian relaxation [10]. These methods ensure global convergence and have worked very well in solving small instances, but their computational time makes them impractical for problems with dozens of scheduling operations [6]. That is why many researchers have chosen to move toward hybrid heuristic and metaheuristic techniques.



Over the years, distinct metaheuristic methods have been applied to solve combinatorial problems, including evolutionary algorithms using the survival of the fittest; an example is genetic algorithms (GAs) [11,12]. Other metaheuristics are ant colony optimization (ACO) [13], particle swarm optimization (PSO) [14], tabu search (TS) [15], etc. These algorithms have been adapted to different programming problems, finding good solutions with low computational time.



The FJSSP is an extension of the classic job shop scheduling problem [16]. In the inital problem, the optimal allocation of operations is sought on a set of fixed machines. In the FJSSP, several feasible machines can perform the same operation, often with distinct processing times.



Two problems must be considered to solve an instance of the FJSSP: the order of operations and the assignment of machines. In [17], the FJSSP is approached heuristically, applying dispatch rules and tabu search and further introducing 15 instances with different numbers of tasks and machines. Since this work, different heuristics and metaheuristics conducting some hybrid searches have been investigated to solve this problem.



An algorithm using TS and a simplified computation of the makespan are explained in [18], highlighting the importance of critical operations for local search. In [19], a hybrid algorithm (HA) using GA and TS is proposed to minimize the makespan. Its model maintains a good balance between exploitation and exploration. In [20], a multi-objective problem (MO-FJSP) is addressed applying the non-sorting genetic algorithm (NSGA-II) together with a bee evolutionary guide (BEG-NSGA-II) to minimize the makespan, the workload of the most-busy machine, and the total workload.



In [21], a combination of genetic algorithm and a variable neighborhood descent method is shown to optimize a multi-objective version that takes into account the makespan, the total workload, and the workload of the most-busy machine, using two methods of local search. Another hybrid algorithm using the PSO and TS is presented in [22], again for a multi-objective problem. The use of different variable neighborhoods (VNs) to refine the local search is proposed in [23] to minimize the makespan. Another algorithm combining TS and VNs is described in [24] for a different multi-target version of the FJSSP. In [25], the FJSSP is studied considering maintenance costs, where a hybrid genetic algorithm (HGA) uses a local search based on simulated annealing (SA). The combination of the Harmony Search (HS) algorithm with other heuristic and random techniques is analyzed in [26] to handle two discrete vectors, one for the sequence of operations and the other for machine allocation, to minimize makespan. Another hybrid algorithm between artificial bees and TS is presented in [27], where the quality and diversity of solutions is rated with three metrics.



Task rescheduling is investigated in [28], for which another hybrid technique was proposed using a two-stage artificial bee colony algorithm with three rescheduling strategies. Another hybrid method is introduced in [29] by applying an artificial bee colony algorithm (ABC) and a TS, introducing new reprogramming processes. In [30], a hybrid algorithm is implemented using PSO with random-restart hill-climbing (RRHC), obtaining a competitive and straightforward algorithm compared with other techniques. Another hybrid algorithm based on GA is presented in [31] for a new specification of the FJSSP that considers the human factor as a multi-objective problem. In [32], a PSO-GA hybrid algorithm is proposed to minimize the workload and the makespan. The minimization of inventory costs and total workflow are studied in [33], which involves a hybrid algorithm between the ABC algorithm and the modified migrating birds optimization (MMBO) algorithm to obtain satisfactory results. Another hybrid method is put forth in [34] based on SA and saving heuristics to minimize the energy consumption of machines, taking into account their deterioration to determine the precise processing time. In [35], the FJSSP with fuzzy times is solved with a hybrid multi-verse optimization (HMVO) algorithm. A hybrid approach to general scheduling problems is discussed in [36], considering batch dimensions, rework, and shelf-life constraints for defective items. The algorithm applies late acceptance hill-climbing (LAHC) and analytic procedures to accelerate the process. The computational results show the benefits of using hybridization techniques. In [37], a two-stage GA (2SGA) is developed; the first stage is to choose the order of operations and the selection of machines simultaneously, and the second is to include new variants that avoid population stagnation. A hybrid algorithm that combines brain storming optimization (BSO) with LAHC is advanced in [38]; the BSO is adapted to the FJSSP to explore the search space by grouping the solutions, and the exploitation is performed with the LAHC. The hybridization of the human learning optimization (HLO) algorithm and the PSO is analyzed in [39], again applying the HLO for global search and an adaptation of the PSO to refine the local search.



The above-mentioned works suggest that hybrid approaches are still a developing research trend in solving the FJSSP and its variants, for which many of these works use GA in conjunction with another technique for local search.



However, to our knowledge, no work has applied GA operators based on a cellular automata-inspired neighborhood to explore solutions and their hybridization with the RRHC for the refinement of these solutions.



This article proposes a new hybrid technique called GA-RRHC that combines two metaheuristic techniques: the first for global search using genetic algorithm (GA) operators and a neighborhood based on concepts of cellular automata (CA) used mostly on the programming of the order of operations. As a second step, each solution is refined by a local search that applies random-restart hill-climbing (RRHC), in particular, to make the best selection of machines for critical operations, which is more convenient for problems with high flexibility. Restart is used as a simple strategy to avoid premature convergence of solutions.



The contribution of this research lies in the original use of two types of easy-to-implement operators to define a robust hybrid technique that finds satisfactory solutions to instances of the FJSSP for minimizing the processing time of all the jobs (or makespan). The GA-RRHC was implemented in Matlab and is available on Github https://github.com/juanseck/GA-RRHC (accessed on 5 August 2022).



The structure of this article is as follows: Section 2 provides the formal presentation of the FJJSP. Section 3 proposes the new GA-RRHC method explaining the genetic operators used, the CA-inspired neighborhood for the evolution of the population of solutions, and the operation of the RRHC to refine each solution. Section 4 discusses the parameter adjustment of the GA-RRHC, the comparison with six other recently published algorithms in four FJSSP datasets commonly used in the literature, making a statistical analysis based on the non-parametric Friedman test and the ranking by the relative percentage deviation (RPD). Section 5 gives the concluding comments of this manuscript.




2. Description of the FJSSP


The flexible job shop scheduling problem (FJSSP) consists of a set   J = {  J 1  ,  J 2  , …  J n  }   of n jobs and a set   M = {  M 1  ,  M 2  , …  M m  }   with m machines. Each job   J i   has   n i   operations    O  J i   =  {  O  i , 1   ,  O  i , 2   , … ,  O  i ,  n i    }   . Each operation   O  i , j    can be performed by one machine from a set of feasible machines    M  i , j   ⊆ M  , for   1 ≤ i ≤ n   and   1 ≤ j ≤  n i   . The processing time of   O  i , j    in   M k   is represented by   p  i , j , k   , and   o = ∑  n i    is the total number of operations.



It is necessary to carry out all operations to complete a job, respecting the operation precedence. The FJSSP has the following conditions: (1) At the start, all jobs and all machines are available. (2) Each operation can only be performed by one machine. (3) A machine cannot be interrupted when processing an operation. (4) Every machine can perform one operation at the same time. (5) Once defined, the order of operations cannot be changed. (6) Machine breakdowns are not considered. (7) Different jobs have no precedence restrictions of operations. (8) The machines do not depend on each other. (9) The processing time includes the preparation of the machines and the transfer of operations.



One solution of an FJSSP instance includes two parts, a sequence of operations that respects the precedence constraints for each job, and the assignment of a feasible machine to each operation. The objective of this paper is to calculate the sequence of operations and the assignment of machines that minimize the makespan   C  m a x   , the total time needed to complete all jobs, as defined in Equation (1).


  m i n  {  C  m a x   }   w h e r e     C  m a x   = m a x  {  C i  }  ,  f o r    1 ≤ i ≤ n  



(1)







  C i   is the time when all operations in   J i   are completed, subject to:


  1 ≤ i ≤ n ,  1 ≤ j ≤  n i  ,  1 ≤ k ≤ m    s u c h   t h a t     M k  ∈  M  i , j   ,   p  i , j , k   > 0  



(2)






   s  i , j , k   +  p  i , j , k   ≤  s  i , j + 1 , k    



(3)






   X  i , j , k   =      1 ,     i f f   o p e r a t i o n    O  i , j     i s   p r o c e s s e d   o n    M k        0 ,     o t h e r w i s e       



(4)






   ∑  k = 1  m   X  i , j , k   = 1  



(5)






   ∑  i = 1  n   ∑  j = 1   n i    X  i , j , k   = 1  



(6)







In this formulation, the start time of operation   O  i , j    in   M k   is   s  i , j , k   . The processing time of every operation greater than 0 is reviewed in Equation (2). The precedence between operations of the same job is considered in Equation (3). Equation (4) is an assignment record of one operation to a valid machine; Equation (5) represents that each operation is processed by only one machine. The constraint in Equation (6) guarantees that, at any time, every machine can process only one operation.



Table 1 provides an example of an FJSSP instance with three jobs, two operations per job, and three machines, where all machines can perform all operations. A possible solution to this problem is presented in the Gantt chart in Figure 1.




3. Genetic Algorithm and Random-Restart Hill-Climbing (GA-RRHC)


The idea of using a genetic algorithm with a random-restart hill-climbing (GA-RRHC) algorithm is to propose a method that is easy to understand and implement and simultaneously capable of obtaining competitive results compared with other techniques in the optimization of different FJSSP instances.



The GA-RRHC uses a genetic algorithm as a global search method, mainly using job-based crossover (JBX) and precedence operation crossover (POX), and as mutation, the swapping of two operations and the shift of three-position jobs for the sequences of operations. Two-point crossover and mutation by changing feasible machines at random are used for machine allocation. These operators have been previously used to resolve instances of the FJSSP and have shown good [19] results. A contribution of this work is the method of applying these operators using a neighborhood inspired by cellular automata (CA), where each solution chooses several neighbors. Crossover and mutation are applied for each neighbor, and from all the neighboring solutions, the best one replaces the original. This idea has already been explored in the global–local neighborhood search (GLNSA) algorithm, although using different operators [40].



The local search in the GA-RRHC applies a random-restart hill-climbing (RRHC) algorithm to refine the machine selection for the critical operations of each solution. The RRHC has been used successfully in the FJSSP [30], although not in combination with a GA, which represents another contribution of this work. An advantage of RRHC is its easy implementation, unlike other techniques for discrete problems such as simulated annealing or tabu search [41].



In short, the GA-RRHC generates a random population of solutions. A neighborhood of new solutions produced with genetic operators is taken for each solution, and the best one is chosen. This new solution is refined with the RRHC. The optimization loop repeats until a limit of iterations is met, or a best solution is not calculated after a certain number of repetitions.



3.1. Encoding and Decoding Solutions


Initially, the GA-RRHC generates a random population of   S n   solutions called smart-cells. Each smart-cell comprises two sequences, one for the operations (  O S  ) and the other for the machine assigned to each operation (  M S  ). Both sequences have o elements. The GA-RRHC uses the decoding described in [19].



In the sequence   O S  , each job   J i   appears   n i   times (a permutation with repetitions). The sequence   M S   has o elements and is divided into n parts. The ith part holds the machines selected to process the job   J i   and has as many elements as   n i  . Figure 2 depicts the codification of the solution in the Gantt diagram of Figure 1.



To decode the solution,   O S   is read from left to right. The jth occurrence of   J i   signifies that operation   O  i , j    must be processed. This encoding allows that any permutation with repetitions represents a rightful sequence   O S  . For each part i of   M S  , the jth value represents the machine processing   O  i , j   .




3.2. Qualitative Description of the GA


Each iteration of the GA used in this work involves a selection stage to refine the population of smart-cells, favoring those with lower makespan. Inspired by the CA neighborhood concept [42], for each smart-cell, a neighborhood of new solutions is produced with different crossover and mutation operators. The one with the lowest makespan is chosen as the new smart-cell. The operators used for each part of the GA are described below.



3.2.1. Population Selection


Two types of selection are used in this stage: elitism and tournament. Elitism selects a proportion   E p   of the best smart-cells for the next iteration without change, guaranteeing that their information remains available to improve the rest of the population. Genetic operators and RRHC will not be applied in elite smart-cells. A tournament selection is used to select the rest of the smart-cells. Random pairs of smart-cells are chosen, and for each pair, the smart-cell with the lowest makespan is selected for the next iteration.




3.2.2. Crossover Operators


Smart-cell crossover uses two operators for   O S   sequences, each type of crossover is applied with   50 %   probability. The first is the precedence operator (POX), where the set of jobs is divided into two random subsets   J A   and   J B   such that    J A  ∪  J B  = J   and    J A  ∩  J B  = ∅  . For two sequences   O  S 1    and   O  S 2   , two new sequences   O  S 1 ′    and   O  S 2 ′    are obtained. The operations of jobs   J A   are placed in   O  S 1 ′    in the same order as in   O  S 1   . The operations of   J B   fill the empty positions of   O  S 1 ′   , keeping the order from left to right (seriatim) in which they appear in   O  S 2   . The analogous process is carried out to form   O  S 2 ′    by first taking the operations of   J A   at the same positions as   O  S 2   . The empty spaces of   O  S 2 ′    are filled with the operations of   J B   in   O  S 1    seriatim. Figure 3 exemplifies the POX crossover with three jobs and six operations.



The second operator is the job-based crossover (JBX), which also defines the subsets   J A   and   J B  . From two sequences   O  S 1    and   O  S 2   ,   O  S 1 ′    is obtained in the same way. The difference lies in the specification of   O  S 2 ′   , first taking the operations of   J B   in the same positions as   O  S 2   . Next, the empty spaces of   O  S 2 ′    are filled with the operations of   J A   in   O  S 1    seriatim. Figure 4 presents an example of a JBX crossover with three jobs and six operations.



A two-point crossover is used for the sequences   M S  . For two sequences   M  S 1    and   M  S 2   , two random positions   1 <  a 1  <  a 2  < o   are chosen. A new sequence   M  S 1 ′    is obtained by taking the elements of   M  S 1    at positions   [ 1 ,  a 1  − 1 ]   and   [  a 2  + 1 , o ]   and from   M  S 2    at positions   [ a 1 , a 2 ]  . Similarly, a new sequence   M  S 2 ′    is formed by exchanging the roles of   M  S 1    and   M  S 2   . Figure 5 presents a two-point cross for three machines and six operations.




3.2.3. Mutation Operators


Smart-cells mutation uses two operators over the   O S   sequences, and each type of mutation is used with   50 %   of probability. The first is swap mutation, where two positions of   O S   are selected and their elements swapped to obtain   O  S ′   . An example is in Figure 6.



The second mutation is the random change of positions for operations of three different jobs. Three positions of   O S   belonging to different jobs are selected and their positions randomly swapped to obtain   O  S ′   . Three operations from different jobs are chosen since exchanging their positions in   O S   would not generate a new solution if the operations were from the same job. Moreover, a more significant perturbation is achieved by selecting three operations. This is suitable for the exploration stage and to escape local minima, especially in cases with a more significant number of jobs and operations. This type of mutation was proposed by [19], obtaining good results. An example is depicted in Figure 7.



For the sequence   M S  , a mutation of assigned machines is applied;   ⌊ o / 2 ⌋   random positions are chosen, and for those positions, feasible random machines, different from the initial selection, are chosen. One example is presented in Figure 8.




3.2.4. CA-Type Neighborhood to Apply Genetic Operators


According to Eiben and Smith [43], an evolutionary algorithm is an optimization strategy modelled around the evolution of different biological systems. If a system shows dynamic behaviors applicable in solving complex problems, it can be a source of inspiration to define new evolutionary algorithms, regardless of whether these systems are natural or artificial.



CAs are elemental discrete dynamical systems capable of generating complex global behaviors [42,44]. The simplest model, known as elementary CA, is discrete in states and time; it consists of a linear array of cells with an initial assigned state, which can be a number or color. Each cell keeps or changes its state depending on its present state and those of its neighbors on either side, having a whole neighborhood of three cells. This process is applied synchronously to update the state of all cells.



This CA-type neighborhood has been successfully applied in different optimization algorithms [45,46,47,48]. However, to our knowledge, this type of neighborhood has not yet been applied with genetic operators for the FJSSP. In this work, to explore the solution space, each smart-cell will generate l new neighboring solutions using crossover and mutation. The best of these l solutions (with the smallest makespan) is selected to update to the original smart-cell. Figure 9 shows the CA-type neighborhood implemented in the proposed algorithm.



The previous genetic operators perform the global search mainly to improve the   O S   sequence of each smart-cell. Next, the local search method for optimizing the   M S   sequences of each smart-cell is described.





3.3. Random-Restart Hill-Climbing (RRHC)


A local search method is intended to exploit the information of the smart-cells to decrease the value of their makespan. The general idea is to start from each smart-cell and make small changes to improve the makespan. The metaheuristic used is the random-restart hill-climbing (RRHC) [30]. The RRHC can restart the search from a solution with a makespan worse than the original one after a given number of steps to escape local minima. The whole process ends after a fixed number of steps.



The critical operations of the smart-cell are first detected to apply the RRHC. These operations define the value of the makespan, and these operations are linked by job or by a machine whose sum of processing times from the beginning to the end gives the makespan as a result, with no idle times between these operations [18].



A record of the previous task of each operation is kept when calculating the makespan to know which are the critical operations of a smart-cell, where the initial operations of each job do not have a previous operation. This record allows a fast computation of the critical operations by simply taking one of the last operations with a completion time identical to the makespan. Subsequently, previous operations on the same machine and at the same job are analyzed, taking that with end time equal to the start time of the present operation. A random pick is made if the same completion time is held by both previous operations. The procedure is repeated until an operation with no preceding operation is reached. Figure 10 presents the critical path of the solution represented in the Gantt diagram of Figure 1.



From the set of critical operations, one is taken at random, and a different feasible machine is chosen to have a new sequence   M  S ′   . Additionally, another critical operation with probability   α c   is selected, and is swapped with any other operation in   O S   to have a new sequence   O  S ′    and generate a different solution. Figure 11 shows a makespan improvement changing the machine assignment of a critical operation.



The RRHC is applied for   H n   iterations, having a pile of    H r  <  H n    new solutions generated through the described process. If one of these solutions improves the makespan, this solution replaces the smart-cell, emptying the pile. If the makespan of the original smart-cell has not been improved after   H r   iterations, a new random solution is taken from the pile to restart the climbing. Since the RRHC focuses on improving machine allocation, it works best for instances with high flexibility.




3.4. Integration of the GA-RRHC Algorithm


Algorithm 1 depicts the GA-RRHC pseudocode. Figure 12 illustrates the flowchart of the proposed method. After the GA-RRHC parameters are defined, the smart-cell population is generated, evaluated, and selected. GA operators are applied in a CA-like neighborhood for a global search to update every smart-cell. Next, each smart-cell is improved by a local search performed by the RRHC. Finally, the best smart-cell is returned.  



	Algorithm 1: Pseudocode of the GA-RRHC
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4. Results of Experiments


The GA-RRHC was coded in Matlab R2015a (TM) on an Intel Xeon W machine with 128 GB of RAM and running at 2.3 GHz. The source code is available on Github https://github.com/juanseck/GA-RRHC (accessed on 5 August 2022). Four datasets were taken to test the effectiveness of the GA-RRHC. These datasets have been widely used in the specialized literature, with instances having different degrees of flexibility. A flexibility rate between 0 and 1 is specified as  β  = (flexibility average/number of machines). A high value of  β  means that the same operation can be processed by more machines.



The first experiment takes the Kacem dataset [49], with five instances of which four have a value of   β = 1   (full flexibility). The BRdata dataset is used for the second experiment and consists of 10 instances, from 10 to 20 jobs and 4 to 15 machines, with partial flexibility   ( β ≤ 0.35 )   [17]. The third and fourth datasets are the Rdata and Vdata datasets, with each having 43 problems going from 6 to 30 jobs and 6 to 15 machines. The Rdata set has a maximum value of   β ≤ 0.4  , while all instances of the   V d a t a   set have a rate of   β = 0.5  , which means that half of the machines can perform each operation [50]. These datasets are available at https:/people.idsia.ch/~monaldo/fjsp.html (accessed on 5 August 2022).



4.1. GA-RRHC Parameter Tuning


The GA-RRHC has nine parameters that control its operation. The total number of iterations is   G n  ;   G b   is the limit of stagnation iterations,   S n   is the number of smart-cells,   E p   is the proportion of elite smart-cells, and l is the number of neighbors of each smart-cell generated by the genetic operators. Further,   α m   is the probability of mutation of a solution,   H n   is the number of RRHC iterations,   H r   are the iterations to restart the RRHC, and   α c   is the probability of moving a critical operation in the RRHC.



For the first three parameters   (  G n  = 250 ,  G b  = 50 ,  S n  = 100 )  , the values used in [19,38] were employed as a reference since these works obtained good results in minimizing the makespan. These parameter values are typically used in specialized publications and are comparable to those utilized by methods employed in the following sections to compare the performance of the GA-RRHC.



To adjust the other parameters, different levels of each parameter were taken to minimize the   m t 20   instance of the Vdata dataset and the best combination of parameters was chosen.



For   E p  , the values   0.02   and   0.04   were tested, the parameter l was tested between 2 and 3, and the values   0.1   and   0.2   were tested for   α m  . For the RRHC, the values between 80 and 100 and between 30 and 40 were taken to tune   H n   and   H r   respectively. For   α c  , the values   0.025   and   0.05   were proved. In this way, 64 different combinations of parameters were taken; for each combination, 30 independent runs were performed, selecting the set of parameters with the least average makespan. Table 2 shows the GA-RRHC parameters to analyze its results in the rest of the instances.




4.2. Comparison with Other Methods


Six algorithms published between 2016 and 2021 were used to compare the GA-RRHC performance. These algorithms include the global–local neighborhood search algorithm (GLNSA) [40], the hybrid algorithm (HA) [19], the greedy randomized adaptive search procedure (GRASP) [51], the hybrid brain storm optimization and late acceptance hill-climbing (HBSO-LAHC) [38], the improved Jaya algorithm (IJA) [52], and the two-level PSO (TlPSO) [53].



Comparing the execution times of the different algorithms is not appropriate since these were implemented in different architectures and languages and with different programming skills. That is why this work compares these algorithms using their computational complexity concerning the total operation number   ( O ( o ) )  . To use a standard notation for all algorithms, the number of solutions will be represented by X, the iteration number by   G n  , the number of local search iterations by   H n  , and m is the number of machines. The CA-inspired neighborhood algorithms (GA-RRHC and GLNSA) satisfy that   X =  S n  l  , where l is the number of neighbors in the global search.



The GLNSA uses elitism to select solutions and generates l neighbors with insertion, swapping, path-relinking operators, a machine mutation, and a tabu search on   S n   solutions. The GRASP calculates a Gantt chart and then applies a greedy local search which is quadratic with respect to o. The HA applies four genetic operations for each solution and then a TS to select different machines for the critical operations. The HBSO-LAHC uses a clustering of solutions, which requires calculating the distance between them, and then applies four strategies and three neighborhoods for each solution, with one of them on critical operations. For the local search, a hill-climbing algorithm with late acceptance for   H n   steps is applied in each solution. The IJA is a modified Java algorithm that applies three exchange procedures to each solution and a local search with the random exchange of blocks of critical operations. Finally, the TlPSO uses two modifications of the PSO: the first is applied to improve the order of operations, and in each iteration of the first PSO, another PSO is used for the allocation of machines.



Table 3 presents the algorithms ordered from least to most complex, with    S n  < X <  H n    since   H n   usually has a high value concerning obtaining a better local search. This table shows that the GA-RRHC has computational complexity comparable to recently proposed state-of-the-art algorithms.



This analysis only considers the complexity inherent in modifying the order of operations and the machine assignment in a solution. The computational complexity for calculating the makespan or tracking the critical operations is not considered since all the algorithms use them. Thus, the analysis only focuses on the computational processes that make each method different.




4.3. Kacem Dataset


In every experiment described in this work, the selected methods were tested with the same datasets as those exposed in their references, making the presented analysis reliable. For each instance, 30 independent runs were executed and the smallest makespan obtained was taken. The best values reported in their respective papers were taken for the other algorithms.



For the Kacem dataset, the HBSO-LAHC does not report results, and only the GLNSA and IJA report complete results. Table 4 presents the outcomes of the GA-RRHC, where n indicates the number of jobs, m the number of machines, and  β  the flexibility rate of each instance. These problems have total flexibility and start with fewer jobs and machines until they reach a high dimensionality.



Figure 13 presents the number of best results obtained for each algorithm in this dataset. Table 4 exposes that the GA-RRHC calculates the best makespan values besides the GLNSA and IJA, confirming the satisfactory operation of the GA-RRHC for instances with high flexibility.




4.4. Brandimarte Dataset


For the rest of the experiments, the relative percentage deviation (  R P D  ) and Friedman’s non-parametric test were employed to compare the GA-RRHC with the other methods [54]. The   R P D   is defined in Equation (7);   B O V   is the best-obtained makespan by each algorithm, and   B K V   is the best-known makespan for each problem.


  R P D =   B O V − B K V   B O V   × 100  



(7)







Table 5 provides the results of the GA-RRHC compared with the other methods for the BRdata dataset. In each case, the smallest obtained makespan is marked with *.



It can be seen in Table 5 that the GA-RRHC calculates the least makespan in eight cases, behind the HA and IJA, and with the same optimal results as the GRASP. Figure 14 shows the number of best results obtained for each algorithm in this dataset.



Table 6 shows the ranking of each method based on the average   R P D  , as well as the value p of the non-parametric Friedman pairwise test, comparing the GA-RRHC with each of the other algorithms. The GA-RRHC secured the second place among the compared algorithms, obtaining a value of   p < 0.05   with the BSO-LAHC and GRASP.



Figure 15 gives the signed difference between the average RPD of the GA-RRHC against the other methods in pairs. A negative difference means an inferior performance in contrast to the GA-RRHC.



This analysis indicates that the GA-RRHC is statistically competitive with the other four best algorithms for optimizing the BRdata dataset.




4.5. Rdata Dataset


This experiment takes the 43 instances of the Rdata dataset, with a flexibility rate  β  ranging from   0.13   to   0.4  . The results generated by the GA-RRHC are compared in Table 7 with those obtained by the GLNSA, HA, and IJA, which are the methods that report results for this dataset. Figure 16 depicts the number of best results obtained for each algorithm in this dataset, where the GA-RRHC calculated the 23 best values, behind the HA and IJA.



Table 8 sorts each algorithm with its average   R P D   and the comparative Friedman test. From the results, it can be noted that the GA-RRHC ranked third overall, as might be expected in instances with low flexibility. The statistical analysis shows no significant difference with the IJA.



Figure 17 shows the difference between the GA-RRHC and the other methods for the average RPD. A negative value means again an inferior performance compared to the GA-RRHC.



This experiment verifies that the GA-RRHC performs comparably to the IJA for problems with low flexibility and outperforms the GLNSA.




4.6. Vdata Dataset


This experiment takes the 43 instances of the Vdata dataset, all of which have a flexibility rate   β = 0.5  . The results generated by the GA-RRHC have been compared again with those obtained by the GLNSA, HA, and IJA (Table 9).



Figure 18 presents the number of best results obtained for each algorithm in this dataset, where the GA-RRHC calculated the 43 best values, the same as the HA and superior to the GLNSA and IJA.



Table 10 shows the ranking, the average   R P D  , and the non-parametric Friedman pairwise test values of each algorithm. The results show that the GA-RRHC obtained the first place concerning the RPD of the 43 problems, and the results indicate a significant difference with the IJA.



Figure 19 depicts the difference of the average RPD between the GA-RRHC and the other methods.




4.7. Generated Large Dataset


The previous experiments proved the correct performance of the GA-RRHC. However, the largest instance considers only 30 jobs, 10 machines, and 300 operations, which can be insufficient in real-world cases. Consequently, three randomly generated large instances were studied using the parameters established by [17,55]. These instances are named VL01, VL02, and VL03, considering from 50 to 80 jobs, from 20 to 50 machines, and from 704 to 2773 operations, with a flexibility rate   β = 0.75  . Since these instances have not been used before in previous studies, we only apply the GLNSA for comparison, whose code is available in Github https://github.com/juanseck/GLNSA-FJSP-2020 (accessed on 5 August 2022).



Table 11 shows that GA-RRHC performs much better than GLNSA, with enhanced performance for an increasing problem dimension. Figure 20 presents three examples, one for each VL instance, of the optimization process achieved by the GA-RRHC. In the Gantt charts, it is remarkable how the idle times decrease from initial random solutions and the continuous convergence to calculate the minimum makespan.



These results corroborate that the GA-RRHC exhibits a performance comparable to recent algorithms recognized for their robustness in optimizing this type of problem, mainly for instances with high flexibility, and with competitive computational complexity.





5. Conclusions


This paper has described a hybrid algorithm that applies a global search with genetic crossover and mutation operators in a CA-like neighborhood. These operators mainly optimize the sequence of operations. Random-restart hill-climbing performs a local search to allocate the best machine to each critical operation. This GA-RRHC feature makes it suitable for FJSSP instances with high flexibility.



The CA-like neighborhood allows the concurrent application of genetic operations, which gives the GA-RRHC a better exploration capability. Hill-climbing uses a similar number of iterations compared to other algorithms and is easy to implement, reflecting a satisfactory complexity. Four popular datasets (covering 101 problems) were used for the numerical experimentation of the GA-RRHC. The results expose good performance compared to recent algorithms taken as reference, especially for instances with high flexibility.



The GA-RRHC opens a new way to apply CA-like neighborhoods that concurrently apply the exploration and exploitation operators to solve task scheduling problems; for instance, the flowshop, the job shop, or the open shop cases.



As a possible future work, it is suggested to use another type of exploitation technique such as simulated annealing, similar to the one proposed in [56], to reduce the complexity of the local search. Other variants of scaling algorithms can be tested for optimizing the sequences of operations to solve FJSSP instances with low flexibility, in addition to extending this methodology for the optimization of multi-objective problems.
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Figure 1. Gantt diagram of one possible solution for the FJSSP in Table 1. 
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Figure 2. Coding of the solution in the Gantt diagram of Figure 1 in sequences   O S   and   M S  . 
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Figure 3. Example of a precedence operation crossover (POX). 
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Figure 4. Example of a job-based crossover (JBX). 
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Figure 5. A two-point crossover example. 
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Figure 6. Example of swapping mutation. 
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Figure 7. Example of three job mutation. 
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Figure 8. Example of machine mutation. 






Figure 8. Example of machine mutation.



[image: Applsci 12 08050 g008]







[image: Applsci 12 08050 g009 550] 





Figure 9. CA-type neighborhood used in the GA-RRHC. Colors represent the selection and modification of different smart-cells. 
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Figure 10. Critical path of the solution described in Figure 1. 
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Figure 11. New solution obtained by selecting another random machine of a critical operation. 
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Figure 12. GA-RRHC flowchart. 
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Figure 13. Number of best results per algorithm for the Kacem dataset. 
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Figure 14. Number of best results per algorithm for the BRdata dataset. 
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Figure 15. Comparison of the RPD difference per algorithm for the BRdata dataset. 
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Figure 16. Number of best results per algorithm for the Rdata dataset. 
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Figure 17. Comparison of the RPD difference per algorithm for the Rdata dataset. 
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Figure 18. Number of best results per algorithm for the Vdata dataset. 






Figure 18. Number of best results per algorithm for the Vdata dataset.



[image: Applsci 12 08050 g018]







[image: Applsci 12 08050 g019 550] 





Figure 19. Comparison of the RPD difference per algorithm for the Vdata dataset. 
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Figure 20. Comparison of the RPD difference per algorithm for the Vdata dataset. 
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Table 1. Example of an FJSSP with 3 jobs, 3 operations per job, and 3 machines.
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	Job
	Op.
	    M 1    
	    M 2    
	    M 3    





	   J 1   
	   O  1 , 1    
	3
	4
	4



	
	   O  1 , 2    
	1
	2
	1



	   J 2   
	   O  2 , 1    
	2
	3
	3



	
	   O  2 , 2    
	3
	3
	2



	   J 3   
	   O  3 , 1    
	3
	3
	3



	
	   O  3 , 2    
	2
	2
	1
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Table 2. Parameters selected for the execution of the GA-RRHC.
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	    G n    
	total iterations of the algorithm
	250



	   G b   
	limit of stagnation iterations
	50



	   S n   
	number of smart-cells
	100



	   E p   
	proportion of elite smart-cells
	0.02



	l
	neighbors of each smart-cell
	3



	   α m   
	mutation probability
	0.1



	   H n   
	iterations of the RRHC
	100



	   H r   
	iterations to restart the RRHC
	30



	   α c   
	probability of moving a critical operation in the RRHC
	0.05
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Table 3. Computational complexity of the methods used in the experiments.
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	Method
	Complexity
	Rank





	TlPSO
	   O ( o  (  G n   ( 2 X +  G n  2 X )  )  )   
	1



	GA-RRHC
	   O ( o  (  G n   (  S n  + X +  S n   H n  m )  )  )   
	2



	GLNSA
	   O ( o  (  G n   (  S n  + X +  S n   H n  m )  )  )   
	2



	IJA
	   O ( o  (  G n   ( 3 X + X  H n  m )  )    
	3



	HA
	   O ( o  (  G n   ( 4 X + X  H n  m )  )  )   
	4



	HBSO-LAHC
	   O ( o  (  G n   ( 4 X + X  H n  m )  )  )   
	4



	GRASP
	   O (  o 2   (  G n  ∗  H n  )  )   
	5
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Table 4. Kacem dataset results.
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	Instance
	n × m
	   β   
	GA-RRHC
	GLNSA
	GRASP
	HA
	IJA
	TlPSO





	K1
	4 × 5
	1.
	11
	11
	−
	−
	11
	11



	K2
	8 × 8
	0.81
	14
	14
	14
	14
	14
	14



	K3
	10 × 7
	1
	11
	11
	−
	−
	11
	−



	K4
	10 × 10
	1
	7
	7
	7
	7
	7
	7



	K5
	15 × 10
	1
	11
	11
	11
	11
	11
	−
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Table 5. BRdata dataset results.






Table 5. BRdata dataset results.





	Instance
	n × m
	   β   
	BKV
	BSO-LAHC
	GA-RRHC
	GLNSA
	GRASP
	HA
	IJA
	TlPSO





	MK01
	10 × 6
	0.2
	36
	40 *
	40 *
	40 *
	40 *
	40 *
	40 *
	40 *



	MK02
	10 × 6
	0.35
	24
	26 *
	26 *
	26 *
	26 *
	26 *
	27
	26 *



	MK03
	15 × 8
	0.3
	204
	204 *
	204 *
	204 *
	204 *
	204 *
	204 *
	204 *



	MK04
	15 × 8
	0.2
	48
	60 *
	60 *
	60 *
	60 *
	60 *
	60 *
	60 *



	MK05
	15 × 4
	0.15
	168
	173
	172 *
	173
	172 *
	172 *
	172 *
	173



	MK06
	10 × 15
	0.3
	33
	61
	58
	58
	64
	57 *
	57 *
	60



	MK07
	20 × 5
	0.3
	133
	141
	139 *
	139 *
	139 *
	139 *
	139 *
	139 *



	MK08
	20 × 10
	0.15
	523
	523 *
	523 *
	523 *
	523 *
	523 *
	523 *
	523 *



	MK09
	20 × 10
	0.3
	299
	307 *
	307 *
	307 *
	307 *
	307 *
	307 *
	307 *



	MK10
	20 × 15
	0.2
	165
	204
	198
	205
	205
	197 *
	197 *
	205
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Table 6. Algorithm ranking and Friedman test value for BRdata dataset.






Table 6. Algorithm ranking and Friedman test value for BRdata dataset.





	Algorithm:
	BSO-LAHC
	GA-RRHC
	GLNSA
	GRASP
	HA
	IJA
	TlPSO





	Average   R P D  :
	11.3881
	10.6710
	11.0121
	11.4890
	10.5289
	11.2665
	11.2017



	Rank:
	6
	2
	3
	7
	1
	5
	4



	p-value:
	0.0455
	~
	0.1573
	0.0435
	0.1643
	0.0803
	0.0833
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Table 7. Rdata dataset results, best makespan values are marked with *.






Table 7. Rdata dataset results, best makespan values are marked with *.





	Instance
	n × m
	   β   
	BKV
	GA-RRHC
	GLNSA
	HA
	IJA





	mt06
	6 × 6
	   0.33   
	47
	47 *
	47 *
	47 *
	47 *



	mt10
	10 × 10
	   0.2   
	686
	686 *
	686 *
	686 *
	686 *



	mt20
	20 × 5
	   0.4   
	1022
	1022 *
	1022 *
	1024
	1024



	la01
	10 × 5
	   0.4   
	570
	571
	571
	570 *
	571



	la02
	10 × 5
	   0.4   
	529
	530 *
	530 *
	530 *
	530 *



	la03
	10 × 5
	   0.4   
	477
	477 *
	477 *
	477 *
	477 *



	la04
	10 × 5
	   0.4   
	502
	502 *
	502 *
	502 *
	502 *



	la05
	10 × 5
	   0.4   
	457
	457 *
	457 *
	457 *
	457 *



	la06
	15 × 5
	   0.4   
	799
	799 *
	799 *
	799 *
	799 *



	la07
	15 × 5
	   0.4   
	749
	749 *
	749 *
	749 *
	749 *



	la08
	15 × 5
	   0.4   
	765
	765 *
	765 *
	765 *
	765 *



	la09
	15 × 5
	   0.4   
	853
	853 *
	853 *
	853 *
	853 *



	la10
	15 × 5
	   0.4   
	804
	804 *
	804 *
	804 *
	804 *



	la11
	20 × 5
	   0.4   
	1071
	1071 *
	1071 *
	1071 *
	1071 *



	la12
	20 × 5
	   0.4   
	936
	936 *
	936 *
	936 *
	936 *



	la13
	20 × 5
	   0.4   
	1038
	1038 *
	1038 *
	1038 *
	1038 *



	la14
	20 × 5
	   0.4   
	1070
	1070 *
	1070 *
	1070 *
	1070 *



	la15
	20 × 5
	   0.4   
	1089
	1089 *
	1089 *
	1090
	1090



	la16
	10 × 10
	   0.2   
	717
	717 *
	717 *
	717 *
	717 *



	la17
	10 × 10
	   0.2   
	646
	646 *
	646 *
	646 *
	646 *



	la18
	10 × 10
	   0.2   
	666
	666 *
	666 *
	666 *
	666 *



	la19
	10 × 10
	   0.2   
	647
	700 *
	700 *
	700
	702



	la20
	10 × 10
	   0.2   
	756
	756 *
	756 *
	756 *
	760



	la21
	15 × 10
	   0.2   
	808
	850
	852
	835 *
	854



	la22
	15 × 10
	   0.2   
	737
	770
	774
	760 *
	760 *



	la23
	15 × 10
	   0.2   
	816
	850
	854
	840 *
	852



	la24
	15 × 10
	   0.2   
	775
	810
	826
	806 *
	806 *



	la25
	15 × 10
	   0.2   
	752
	800
	803
	789 *
	803



	la26
	20 × 10
	   0.2   
	1056
	1070
	1075
	1061 *
	1061 *



	la27
	20 × 10
	   0.2   
	1085
	1100
	1109
	1089 *
	1109



	la28
	20 × 10
	   0.2   
	1075
	1090
	1096
	1079 *
	1081



	la29
	20 × 10
	   0.2   
	993
	999
	1008
	997 *
	997 *



	la30
	20 × 10
	   0.2   
	1068
	1088
	1096
	1078 *
	1078 *



	la31
	30 × 10
	   0.2   
	1520
	1521 *
	1527
	1521 *
	1521 *



	la32
	30 × 10
	   0.2   
	1657
	1667
	1667
	1659 *
	1659 *



	la33
	30 × 10
	   0.2   
	1497
	1500
	1504
	1499 *
	1499 *



	la34
	30 × 10
	   0.2   
	1535
	1539
	1540
	1536 *
	1536 *



	la35
	30 × 10
	   0.2   
	1549
	1553
	1555
	1550 *
	1555



	la36
	15 × 15
	   0.13   
	1016
	1050
	1053
	1028 *
	1050



	la37
	15 × 15
	   0.13   
	989
	1092
	1093
	1074 *
	1092



	la38
	15 × 15
	   0.13   
	943
	995
	999
	960 *
	995



	la39
	15 × 15
	   0.13   
	966
	1030
	1034
	1024 *
	1031



	la40
	15 × 15
	   0.13   
	955
	998
	997
	970 *
	993
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Table 8. Algorithm ranking and Friedman test value for Rdata dataset.






Table 8. Algorithm ranking and Friedman test value for Rdata dataset.





	Algorithm:
	GA-RRHC
	GLNSA
	HA
	IJA





	Average   R P D  :
	   1.5761   
	   1.7768   
	   1.0872   
	   1.5155   



	Rank:
	3
	4
	1
	2



	p-value:
	~
	   0.0001   
	   0.0001   
	   0.9195   
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Table 9. Vdata dataset results, best makespan values are marked with *.






Table 9. Vdata dataset results, best makespan values are marked with *.





	Instance
	n × m
	   β   
	BKV
	GA-RRHC
	GLNSA
	HA
	IJA





	mt06
	6 × 6
	   0.5   
	47
	47 *
	47 *
	47 *
	47 *



	mt10
	10 × 10
	   0.5   
	655
	655 *
	655 *
	655 *
	655 *



	mt20
	20 × 5
	   0.5   
	1022
	1022 *
	1022 *
	1022 *
	1024



	la01
	10 × 5
	   0.5   
	570
	570 *
	570 *
	570 *
	571



	la02
	10 × 5
	   0.5   
	529
	529 *
	529 *
	529 *
	529 *



	la03
	10 × 5
	   0.5   
	477
	477 *
	477 *
	477 *
	477 *



	la04
	10 × 5
	   0.5   
	502
	502 *
	502 *
	502 *
	502 *



	la05
	10 × 5
	   0.5   
	457
	457 *
	457 *
	457 *
	457 *



	la06
	15 × 5
	   0.5   
	799
	799 *
	799 *
	799 *
	799 *



	la07
	15 × 5
	   0.5   
	749
	749 *
	749 *
	749 *
	749 *



	la08
	15 × 5
	   0.5   
	765
	765 *
	765 *
	765 *
	765 *



	la09
	15 × 5
	   0.5   
	853
	853 *
	853 *
	853 *
	853 *



	la10
	15 × 5
	   0.5   
	804
	804 *
	804 *
	804 *
	804 *



	la11
	20 × 5
	   0.5   
	1071
	1071 *
	1071 *
	1071 *
	1071 *



	la12
	20 × 5
	   0.5   
	936
	936 *
	936 *
	936 *
	936 *



	la13
	20 × 5
	   0.5   
	1038
	1038 *
	1038 *
	1038 *
	1038 *



	la14
	20 × 5
	   0.5   
	1070
	1070 *
	1070 *
	1070 *
	1070 *



	la15
	20 × 5
	   0.5   
	1089
	1089 *
	1089 *
	1089 *
	1089 *



	la16
	10 × 10
	   0.5   
	717
	717 *
	717 *
	717 *
	717 *



	la17
	10 × 10
	   0.5   
	646
	646 *
	646 *
	646 *
	646 *



	la18
	10 × 10
	   0.5   
	663
	663 *
	663 *
	663 *
	665



	la19
	10 × 10
	   0.5   
	617
	617 *
	617 *
	617 *
	618



	la20
	10 × 10
	   0.5   
	756
	756 *
	756 *
	756 *
	758



	la21
	15 × 10
	   0.5   
	800
	804 *
	806
	804 *
	806



	la22
	15 × 10
	   0.5   
	733
	737 *
	737 *
	738
	738



	la23
	15 × 10
	   0.5   
	809
	813 *
	813 *
	813 *
	813 *



	la24
	15 × 10
	   0.5   
	773
	777 *
	777
	777 *
	778



	la25
	15 × 10
	   0.5   
	751
	754 *
	754
	754 *
	754 *



	la26
	20 × 10
	   0.5   
	1052
	1053 *
	1054
	1053 *
	1054



	la27
	20 × 10
	   0.5   
	1084
	1085 *
	1085 *
	1085 *
	1085 *



	la28
	20 × 10
	   0.5   
	1069
	1070 *
	1070 *
	1070 *
	1070 *



	la29
	20 × 10
	   0.5   
	993
	994 *
	994 *
	994 *
	994 *



	la30
	20 × 10
	   0.5   
	1068
	1069 *
	1069 *
	1069 *
	1069 *



	la31
	30 × 10
	   0.5   
	1520
	1520 *
	1520 *
	1520 *
	1521



	la32
	30 × 10
	   0.5   
	1657
	1658 *
	1658 *
	1658 *
	   1658 *   



	la33
	30 × 10
	   0.5   
	1497
	1497 *
	1497 *
	1497 *
	1497 *



	la34
	30 × 10
	   0.5   
	1535
	1535 *
	1535 *
	1535 *
	1535 *



	la35
	30 × 10
	   0.5   
	1549
	1549 *
	1549 *
	1549 *
	1549 *



	la36
	15 × 15
	   0.5   
	948
	948 *
	948 *
	948 *
	950



	la37
	15 × 15
	   0.5   
	986
	986 *
	986 *
	986 *
	986 *



	la38
	15 × 15
	   0.5   
	943
	943 *
	943 *
	943 *
	943 *



	la39
	15 × 15
	   0.5   
	922
	922 *
	922 *
	922 *
	922 *



	la40
	15 × 15
	   0.5   
	955
	955 *
	955 *
	955 *
	956
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Table 10. Algorithm ranking and Friedman test value for Vdata dataset.






Table 10. Algorithm ranking and Friedman test value for Vdata dataset.





	Algorithm:
	GA-RRHC
	GLNSA
	HA
	IJA





	Average   R P D  :
	   0.0693   
	   0.0772   
	   0.0724   
	   0.1177   



	Rank:
	1
	3
	2
	4



	p-value:
	~
	   0.1573   
	   0.3173   
	   0.0005   










[image: Table] 





Table 11. Experiment with large instances.






Table 11. Experiment with large instances.





	
Instance

	
    n × m    

	
o

	
GLNSA

	
GA-RRHC






	

	

	

	
Best

	
Avg.

	
Best

	
Avg.




	
VL01

	
   50 × 20   

	
704

	
592

	
   617.3   

	
551

	
   570.9   




	
VL02

	
   60 × 30   

	
1246

	
759

	
   781.3   

	
705

	
   717.8   




	
VL03

	
   80 × 50   

	
2773

	
1155

	
   1183.1   

	
1041

	
   1058.4   
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