Three-Dimensional Formation Control for Robot Swarms
Abstract
:1. Introduction
2. Literature Review
3. Assumptions and Definitions
3.1. Definitions
3.2. Assumptions
- (A1)
- An AR u can detect the relative coordinates of any of its closeAR.
- (A2)
- An AR u stores the relative coordinates of a frontierPt in .
- (A3)
- Initially (at sample-index 0), one has a connected path between any two ARs.
- (A4)
- can locate itself in global coordinates, while accessing the user-specified 3D shape. In addition, has a communication ability superior to all other ARs so that the leader can directly send a communication signal to any other AR inside the shape.
4. Formation Controls
4.1. Distributed Generating of a Spanning Tree
4.2. Distributed Rendezvous Control
4.3. Formation Controls for Expanding the Network
Algorithm 1: Formation controls |
|
Algorithm 2: EnableSensor(u,) |
|
- 1.
- The vector from m to the point in .
- 2.
- The vector from to m.
Analysis
- 1.
- The global coordinate of .
- 2.
- The vector from to .
- 1.
- The global coordinate of .
- 2.
- The vector from to .
5. Covering the Sensing Holes Inside the User-Specified Shape
Algorithm 3: Cover the sensing holes. |
|
Analysis
6. MATLAB Simulation Results
6.1. MATLAB Simulation of Algorithm 1
6.1.1. Change the Sensing Range
6.1.2. Change the User-Specified 3D Shape
6.1.3. Forming a Complicated 3D Shape
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, J.; Cheng, W.; Nagpal, R. Robust and Self-Repairing Formation Control for Swarms of Mobile Agents. In Proceedings of the 20th National Conference on Artificial Intelligence, AAAI’05, Pittsburgh, PA, USA, 9–13 July 2005; pp. 59–64. [Google Scholar]
- Liu, J.; Wang, Z.; Cui, J.H.; Zhou, S.; Yang, B. A Joint Time Synchronization and Localization Design for Mobile Underwater Sensor Networks. IEEE Trans. Mob. Comput. 2016, 15, 530–543. [Google Scholar] [CrossRef]
- Misra, S.; Ojha, T.; Mondal, A. Game-Theoretic Topology Control for Opportunistic Localization in Sparse Underwater Sensor Networks. IEEE Trans. Mob. Comput. 2015, 14, 990–1003. [Google Scholar] [CrossRef]
- Han, G.; Zhang, C.; Shu, L.; Rodrigues, J.J.P.C. Impacts of Deployment Strategies on Localization Performance in Underwater Acoustic Sensor Networks. IEEE Trans. Ind. Electron. 2015, 62, 1725–1733. [Google Scholar] [CrossRef]
- dell’Erba, R. Determination of Spatial Configuration of an Underwater Swarm with Minimum Data. Int. J. Adv. Robot. Syst. 2015, 12, 97. [Google Scholar] [CrossRef]
- Allotta, B.; Costanzi, R.; Fanelli, F.; Monni, N.; Paolucci, L.; Ridolfi, A. Sea currents estimation during AUV navigation using Unscented Kalman Filter. IFAC-PapersOnLine 2017, 50, 13668–13673. [Google Scholar] [CrossRef]
- Melim, A.; West, M. Towards autonomous navigation with the Yellowfin AUV. In Proceedings of the OCEANS’11 MTS/IEEE KONA, Waikoloa, HI, USA, 19–22 September 2011; pp. 1–5. [Google Scholar]
- Kelly, J.; Sukhatme, G.S. Visual-inertial simultaneous localization, mapping and sensor-to-sensor self-calibration. In Proceedings of the 2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation-(CIRA), Daejeon, Korea, 15–18 December 2009; pp. 360–368. [Google Scholar]
- Kim, J. Distributed Rendezvous of Heterogeneous Robots with Motion-Based Power Level Estimation. J. Intell. Robot. Syst. 2020, 100, 1417–1427. [Google Scholar] [CrossRef]
- Cortés, J.; Martínez, S.; Karatas, T.; Bullo, F. Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 2004, 20, 243–255. [Google Scholar] [CrossRef]
- Stergiopoulos, Y.; Kantaros, Y.; Tzes, A. Connectivity-aware coordination of robotic networks for area coverage optimization. In Proceedings of the 2012 IEEE International Conference on Industrial Technology, Athens, Greece, 19–21 March 2012; pp. 31–35. [Google Scholar]
- Siligardi, L.; Panerati, J.; Kaufmann, M.; Minelli, M.; Ghedini, C.; Beltrame, G.; Sabattini, L. Robust Area Coverage with Connectivity Maintenance. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 2202–2208. [Google Scholar]
- Alonso-Mora, J.; Baker, S.; Rus, D. Multi-robot formation control and object transport in dynamic environments via constrained optimization. Int. J. Robot. Res. 2017, 36, 1000–1021. [Google Scholar] [CrossRef]
- Vidal, R.; Shakernia, O.; Sastry, S. Formation control of nonholonomic mobile robots with omnidirectional visual servoing and motion segmentation. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), Taipei, Taiwan, 14–19 September 2003; Volume 1, pp. 584–589. [Google Scholar]
- Hu, J.; Sun, J.; Zou, Z.; Ji, D.; Xiong, Z. Distributed multi-robot formation control under dynamic obstacle interference. In Proceedings of the 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Boston, MA, USA 6–9 July 2020; pp. 1435–1440. [Google Scholar]
- Lin, J.; Yang, X.; Zheng, P.; Cheng, H. End-to-end Decentralized Multi-robot Navigation in Unknown Complex Environments via Deep Reinforcement Learning. In Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 4–7 August 2019; pp. 2493–2500. [Google Scholar]
- Amani, A.M.; Chen, G.; Jalili, M.; Yu, X.; Stone, L. Distributed Rigidity Recovery in Distance-Based Formations Using Configuration Lattice. IEEE Trans. Control. Netw. Syst. 2020, 7, 1547–1558. [Google Scholar] [CrossRef]
- Mishra, R.S.; Semwal, T.; Nair, S.B. A distributed epigenetic shape formation and regeneration algorithm for a swarm of robots. Proc. Genet. Evol. Comput. Conf. Companion 2018, 1505–1512. [Google Scholar]
- Berlinger, F.; Gauci, M.; Nagpal, R. Implicit coordination for 3D underwater collective behaviors in a fish-inspired robot swarm. Sci. Robot. 2021, 6, eabd8668. [Google Scholar] [CrossRef] [PubMed]
- Fathian, K.; Safaoui, S.; Summers, T.H.; Gans, N.R. Robust 3D Distributed Formation Control with Collision Avoidance And Application To Multirotor Aerial Vehicles. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 9209–9215. [Google Scholar]
- Aranda, M.; López-Nicolás, G.; Sagüés, C.; Zavlanos, M.M. Three-dimensional multirobot formation control for target enclosing. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 357–362. [Google Scholar]
- McCord, C.; Queralta, J.P.; Gia, T.N.; Westerlund, T. Distributed Progressive Formation Control for Multi-Agent Systems: 2D and 3D deployment of UAVs in ROS/Gazebo with RotorS. In Proceedings of the 2019 European Conference on Mobile Robots (ECMR), Prague, Czech Republic, 4–6 September 2019; pp. 1–6. [Google Scholar]
- Álvarez, D.; Gómez, J.V.; Garrido, S.; Moreno, L. 3D Robot Formations Path Planning with Fast Marching Square. J. Intell. Robot. Syst. 2015, 80, 507–523. [Google Scholar] [CrossRef]
- Paul, T.; Krogstad, T.R.; Gravdahl, J.T. UAV formation flight using 3D potential field. In Proceedings of the 2008 16th Mediterranean Conference on Control and Automation, Ajaccio, France, 25–27 June 2008; pp. 1240–1245. [Google Scholar]
- Douglas, B.W. Introduction to Graph Theory, 2nd ed.; Prentice Hall: Forsyth, IL, USA, 2001. [Google Scholar]
- Li, Y.C.; Choi, B.; Chong, J.W.; Oh, D. 3D Target Localization of Modified 3D MUSIC for a Triple-Channel K-Band Radar. Sensors 2018, 18, 1634. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Mora, J.; Montijano, E.; Schwager, M.; Rus, D. Distributed multi-robot formation control among obstacles: A geometric and optimization approach with consensus. In Proceedings of the Robotics and Automation (ICRA), 2016 IEEE International Conference, Stockholm, Sweden, 16–21 May 2016; pp. 5356–5363. [Google Scholar]
- Cortés, J.; Martínez, S.; Bullo, F. Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions. IEEE Trans. Autom. Control 2006, 51, 1289–1298. [Google Scholar] [CrossRef]
- Lin, J.; Morse, A.S.; Anderson, B.D.O. The multi-agent rendezvous problem. In Proceedings of the IEEE International Conference on Decision and Control, Maui, HI, USA, 9–12 December 2003; pp. 1508–1513. [Google Scholar]
- Ji, M.; Egerstedt, M. Distributed Coordination Control of Multi-Agent Systems While Preserving Connectedness. IEEE Trans. Robot. 2007, 23, 693–703. [Google Scholar] [CrossRef]
- Park, H.; Hutchinson, S. An efficient algorithm for fault-tolerant rendezvous of multi-robot systems with controllable sensing range. In Proceedings of the Robotics and Automation (ICRA), 2016 IEEE International Conference, Stockholm, Sweden, 16–21 May 2016; pp. 358–365. [Google Scholar]
- Li, Q.; De Rosa, M.; Rus, D. Distributed Algorithms for Guiding Navigation across a Sensor Network. In Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, MobiCom’03, San Diego, CA, USA, 14–19 September 2003; pp. 313–325. [Google Scholar]
- Li, Q.; Aslam, J.; Rus, D. Distributed Energy-conserving Routing Protocols for Sensor Networks. In Proceedings of the IEEE Hawaii International Conference on System Science, Big Island, HI, USA, 6–9 January 2003. [Google Scholar]
- Lavalle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
Parameters | Values |
---|---|
N (number of ARs) | 100 |
(radius of a senseSphere) | 50 (m) |
(AR’s maximum speed) | 5 (m/s) |
Q (number of rays surrounding an AR) | 400 |
(sampling interval) | 1 (s) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J. Three-Dimensional Formation Control for Robot Swarms. Appl. Sci. 2022, 12, 8078. https://doi.org/10.3390/app12168078
Kim J. Three-Dimensional Formation Control for Robot Swarms. Applied Sciences. 2022; 12(16):8078. https://doi.org/10.3390/app12168078
Chicago/Turabian StyleKim, Jonghoek. 2022. "Three-Dimensional Formation Control for Robot Swarms" Applied Sciences 12, no. 16: 8078. https://doi.org/10.3390/app12168078
APA StyleKim, J. (2022). Three-Dimensional Formation Control for Robot Swarms. Applied Sciences, 12(16), 8078. https://doi.org/10.3390/app12168078