
Citation: Kim, J. Three-Dimensional

Formation Control for Robot Swarms.

Appl. Sci. 2022, 12, 8078.

https://doi.org/10.3390/app12168078

Academic Editor: Alessandro

Gasparetto

Received: 4 July 2022

Accepted: 11 August 2022

Published: 12 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Three-Dimensional Formation Control for Robot Swarms
Jonghoek Kim

Electronic and Electrical Department, Sungkyunkwan University, Suwon 16419, Korea; jonghoek@gmail.com

Abstract: This article addresses a distributed 3D algorithm for coordinating a swarm of autonomous
robots (ARs) to spatially self-aggregate into an arbitrary shape based on only local interactions. Each
AR has local proximity sensors for measuring the relative coordinates of its nearby AR. We assume
that only a single AR, called the leader, can localize itself in global coordinate systems, while accessing
the arbitrary user-specified 3D shape. We further assume that the leader has a communication ability
superior to all other ARs so that the leader can directly send a communication signal to any other
AR inside the shape. Our aim is to make the ARs maneuver while maintaining a user-specified 3D
formation such that the network connection of all ARs is maintained during the maneuver. Our
approach results in a 3D formation shape and does not need the global localization of an AR, except
for the leader. To the best of our knowledge, our study is novel in the construction of a 3D formation
for covering an arbitrary shape such that network connection is maintained while ARs maneuver
based on local communication. We further show that the proposed control yields reliable accuracy
against significant AR failures and movement error. Utilizing MATLAB simulations, we demonstrate
the outperformance of the proposed formation controls.

Keywords: distributed network systems; 3D formation control; mobile sensor network; network
connection; user-specified 3D shape

1. Introduction

In this article, we tackle the problem of organizing autonomous robots (ARs) into
arbitrary self-sustaining 3D formations. Keeping formations is crucial for various tasks,
especially when the task requires collective action [1]. For instance, ARs may aggregate
for coordinated search and rescue, collectively maneuvering large objects, or exploring
unknown environments.

Formation controls in 3D environments (e.g., underwater space), where global posi-
tioning system (GPS) is not accessible, is not trivial [2–4]. In underwater mobile sensor
networks, many difficulties remain to be studied, especially in the communication between
robots, owing to unfriendly environments that limit the communication channel [5].

In this paper, we assume that each AR has local proximity sensors for measuring the
relative coordinates of its nearby AR. Moreover, it is assumed that only a single AR, called
the leader, can access the arbitrary user-specified 3D shape. We further assume that the
leader has a communication ability superior to all other ARs so that the leader can directly
send a communication signal to any other AR inside the shape. We further assume that only
the leader can localize itself in global coordinate systems. For instance, the leader can use
the localization approach based on inertial measurement units (IMU) [6], or visual–inertial
simultaneous localization and mapping (VI-SLAM) [7,8]. Here, VI-SLAM integrates a high
frequency imaging sensor and IMU for the robot’s localization.

Our aim is to make all ARs maneuver while forming a user-specified 3D formation such
that the network connection of all ARs is maintained during the maneuver. Our approach
results in a 3D formation shape, and one only requires global localization of the leader.

To the best of our knowledge, our study is novel in the construction and control of a
3D formation for covering an arbitrary shape such that the network connection is preserved
while every AR maneuvers based on local communication. We assume that there exists a

Appl. Sci. 2022, 12, 8078. https://doi.org/10.3390/app12168078 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12168078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7565-068X
https://doi.org/10.3390/app12168078
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12168078?type=check_update&version=1

Appl. Sci. 2022, 12, 8078 2 of 17

multi-hop communication link between any two ARs initially. This initial connection is
crucial since every AR maneuvers based on local communication only, while not depending
on global coordinate information.

In the proposed formation controls, we locate ARs one by one, until the network
entirely covers the arbitrary user-specified 3D shape. In the proposed 3D formation controls,
each AR spreads the network by tracking an edge of the network.

There may be a case in which the networked ARs entirely cover the user-specified 3D
shape, but we want to add more ARs into the shape. In this case, we apply distributed
rendezvous controls [9], while not moving the leader. Thereafter, the network begins
clustering toward the leader. After the network begins clustering, coverage holes are newly
formed in the 3D shape. Additional ARs are further located until they cover the holes in
the shape entirely.

Once a swarm of ARs are aggregated into a user-specified 3D shape, we can control the
ARs so that they maneuver in a desired direction while maintaining the network connection.
For the flocking maneuver, all ARs maneuver synchronized to the leader. We assume that
the leader has a communication ability superior to all other ARs so that the leader can
directly send a communication signal to any other AR inside the shape. Therefore, the
velocity command of the leader can be transmitted to all ARs inside the shape in real time.
The velocity of each AR is synchronized to that of the leader utilizing the communication
command transmitted from the leader.

As far as we know, our manuscript is novel in control of 3D formation for covering
an arbitrary shape, such that network connection is preserved while each AR maneuvers
based on local communication. We show that the proposed control yields reliable accuracy
against significant AR failures and movement error. Utilizing MATLAB simulations, we
demonstrate the outperformance of the proposed formation controls.

The remainder of this article is as follows: Section 2 reviews the literature related to
this study. Section 3 discusses assumptions and definitions utilized in our paper. Section 4
addresses the 3D formation controls. Section 5 addresses how to cover the sensing holes in
the user-specified 3D shape. MATLAB simulations are presented in Section 6. Conclusions
are addressed in Section 7.

2. Literature Review

There are many papers on mobile sensor systems in 2D environments. Refs. [10,11]
considered deploying a swarm of ARs into an unknown 2D environment for achieving
complete sensor coverage of the environment. The authors of [10,11] utilized Voronoi
tessellations for making all ARs evolve in time for increasing the network coverage based on
local communication. Furthermore, the authors of [12] implemented their coverage controls
utilizing real ARs.

There are many papers on formation controls in 2D environments. Considering 2D
environments with obstacles, Ref. [13] tackled the distributed formation control of multiple
robots. Ref. [14] considered the problem of letting multiple nonholonomic robots follow a de-
sired leader–follower formation under omnidirectional vision. The authors of [15] addressed
distributed multi-robot formation control in the face of dynamic obstacle interference. In [16],
a deep reinforcement learning (DRL)-based method was proposed to guide multiple robots
through unknown complex 2D environments, where the centroid of the robot team aims to
arrive at the goal while avoiding collisions and maintaining connectivity. Considering mobile
ARs in 2D environments, Ref. [17] proposed an online distributed algorithm based on the
lattice of configurations, in order to recover the formation when a sensing failure causes the
network to lose its rigidity.

Considering 2D environments, Ref. [1] discussed a decentralized algorithm for coor-
dinating multiple ARs to spatially self-aggregate into an arbitrary shape, utilizing local
communication only. The authors of [1] achieved multi-robot formation by allowing the
robots to disperse inside the given 2D shape. If an AR believes that it is inside the shape,
then it behaves like a gas particle with the shape as a closed container. Otherwise, the AR

Appl. Sci. 2022, 12, 8078 3 of 17

wanders randomly. However, random walk may lead to disconnected networks, which
leads to the loss of an AR. Ref. [18] presented a distributed algorithm that enables multiple
robots to form arbitrary shapes and regenerate the shapes when cut.

There are many papers on multi-agent formation control in 3D environments. Consid-
ering a fish-inspired robot swarm, Ref. [19] showed that dynamic 3D collective behaviors
can be achieved by measuring a robot’s neighbors, without any centralized controls. The
authors of [20] introduced a distributed control strategy for multiple agents, so that the
agents can achieve a desired 3D formation based on local relative position measurements.
Ref. [21] proposed a formation control method that enables multiple aerial robots to enclose
a 3D target by generating a given geometric formation surrounding the target. The authors
of [22] proposed a progressive assignment algorithm and formation control scheme that
extends leader–follower formations for enabling multi-robot cooperation with minimal,
one-way, local communication among agents. Ref. [23] developed a path planner for 3D
robot formations and addressed how to adapt the formation shape for avoiding obsta-
cles. Ref. [24] presented collision-free formation flight and reconfiguration for a team of
autonomous helicopters. The control scheme in [24] was based on potential fields with
the concept of a virtual leader. However, these papers on 3D formation controls did not
consider the construction of a 3D formation for covering an arbitrary shape, as presented
in our paper.

To the best of our knowledge, the proposed multi-agent system is novel in the con-
struction and control of a 3D formation for covering an arbitrary shape such that network
connection is preserved while every AR maneuvers based on local communication. This
article verifies that the proposed control scheme yields reliable accuracy against signifi-
cant AR failures and movement error. MATLAB simulations are used to demonstrate the
outperformance of the proposed formation controls.

3. Assumptions and Definitions
3.1. Definitions

We address the definitions used in this paper. Let min(a, b) return a smaller value
between a and b. According to graph theory [25], a graph G is defined as G = (V(G), E(G)),
in which V(G) represents the vertex set, and E(G) represents the edge set. In a graph, a
path is an alternative sequence of vertexes and edges. We say that G is connected if one can
find a connected path between any two vertexes in G. Any two end vertexes of an edge in
E(G) are neighbors to each other.

A tree T is a connected graph containing no cycles. A spanning tree of G is a tree having
all vertexes in G.

One vertex of T is selected as the root. Let v present one vertex in T. In T, p(v), the
parent of v, defines the neighbor of v along the path to the root. Furthermore, c(v), child of
v, defines a vertex, satisfying that v is the parent of c(v).

A vertex having no children is called the leaf. A descendant of v represents a vertex
which is either c(v) or is the descendant of c(v) (recursively). An ancestor of v represents a
vertex which is either p(v) or is the ancestor of p(v) (recursively).

Suppose N ARs are located in a 3D environment. Let ui represent the i-th AR (i ∈ {1, 2, . . . , N}).
In the inertial frame, let ui ∈ R3 define the 3D location of ui (i ∈ {1, 2, . . . , N}).

Every AR has local communication modules. Among all ARs, only the leader, say, u1,
is able to locate itself in global coordinates. In addition, the leader has a communication
ability superior to all other ARs so that the leader can directly send a communication signal
to any other AR inside the user-specified shape.

Initially, all ARs are positioned such that one can find a connected path between any two
ARs in the network. This initial network connection is crucial since each AR maneuvers through
local communication, while not relying on GPS. Utilizing the proposed formation controls,
every AR maneuvers, while guaranteeing that the network connection is maintained.

Appl. Sci. 2022, 12, 8078 4 of 17

Let rs present the maximum range of an AR local sensor. In addition, let rc present the
maximum range of AR local communication. Moreover, rsc is defined as

rsc = min(rs, rc). (1)

The coverage of an AR, say ui, represents a sphere with radius rsc, centered at ui. Let
senseSphere of an AR present the boundary of the AR coverage.

Q points are uniformly formed on the senseSphere of an AR ui. For instance, we
address the process of building Q = 20× 20 points on a senseSphere of ui. This method
is used in MATLAB simulations (see Section 6). Centered at the y-axis, we rotate a vector
[rsc, 0, 0] by an angle in [π

10 , 2π
10 , 3π

10 , . . . , 2π]. The rotation of θ with respect to the y-axis is
performed through the rotation matrix

R(θ) =

 c(θ) 0 s(θ)
0 1 0
−s(θ) 0 c(θ)

. (2)

Thereafter, centered at the z-axis, we rotate R(θ)[rsc, 0, 0]T by an angle in [π/10, 2 ×
π/10, 3× π/10 . . . , 2π]. The rotation of ψ with respect to the z-axis is performed through the
rotation matrix

R(ψ) =

 c(ψ) −s(ψ) 0
s(ψ) c(ψ) 0

0 0 1

. (3)

Thereafter, we calculate

fp(ψ, θ) = R(ψ)R(θ)[rsc, 0, 0]T . (4)

By adding ui to fp(ψ, θ), we obtain the 3D coordinates of a point on a senseSphere of
ui. ψ and θ are selected from [π/10, 2× π/10, 3× π/10 . . . , 2π], respectively. Therefore,
one calculates Q = 20× 20 points on a senseSphere of ui.

Among Q points of an AR ui, a shapePt is a point that is in the user-specified 3D shape.
In practice, shapePts can be determined, since u1 can access the 3D shape, and we can
localize ui. How to locate ui in global coordinates is proved in Theorem 2. u1 sends the
information of the user-specified shape to ui so that ui can find a shapePt in its local frame.

A frontierPt f (ui) of an AR ui is a shapePt of ui, where every point in f (ui) is outside
the sensing range of every other AR. Note that a frontierPt is in the user-specified 3D shape
since it is a shapePt. As Q→ ∞, we obtain densely spaced frontierPts on a senseSphere.

Let frontierInfty present the set of frontierPts as Q → ∞. This implies that a frontier-
Infty is a subset of a senseSphere. If every AR has no frontierInfty, then all of the ARs’
coverSpheres cover the entire space inside the user-specified 3D shape.

Let L(ui, uj) represent a straight line segment connecting two ARs ui and uj. Recall
that rsc was defined in (1). We assume that two ARs ui and uj can sense each other, in the
case where L(ui, uj) is not blocked by obstacles and the length of L(ui, uj) is shorter than rsc.
Moreover, ui and uj can communicate with each other, in the case where L(ui, uj) is not
blocked by obstacles and the length of L(ui, uj) is shorter than rsc. We say that two ARs ui
and uj are neighbors in the case where ui and uj can sense and communicate with each other.

Figure 1 shows the case in which an AR ui maneuvers toward a frontierPt f (ui). In
Figure 1, a sphere depicts ui. Figure 1 shows that ui maneuvers along a narrow tunnel. The
path of ui is plotted as yellow lines. Large dots on the path of ui indicate the ARs, which
are positioned along the path of ui. The senseSphere of each AR is plotted as a sphere with
dots. On the senseSphere of ui, frontierPts are plotted with dots.

Appl. Sci. 2022, 12, 8078 5 of 17

ui

Figure 1. The AR ui maneuvers toward a frontierPt f (ui). and the path of ui is plotted as yellow
lines. Large dots on the path of ui plot the ARs, which are positioned along the path of ui. On the
senseSphere of ui, frontierPts are plotted with dots.

Let ui(k) define ui at sample-index k. In the inertial frame, the process model of ui is

ui(k + 1) = ui(k) + Vi(k)× dt. (5)

Here, Vi(k) defines the velocity command of ui at sample-index k. The simple dynam-
ics in (5) are applicable to many autonomous vehicles. In practice, an AR maneuvers with a
limited speed. Therefore, let Si define the maximum speed of ui, i.e., ‖Vi(k)‖ ≤ Si for all k.

3.2. Assumptions

Two ARs ui and uj are nearby to each other, if ‖ui − uj‖ < 2× rsc is met. ui is a closeAR
of uj if ‖ui − uj‖ < 2× rsc is met. Every AR u uses the following assumptions:

(A1) An AR u can detect the relative coordinates of any of its closeAR.
(A2) An AR u stores the relative coordinates of a frontierPt in f (u).
(A3) Initially (at sample-index 0), one has a connected path between any two ARs.
(A4) u1 can locate itself in global coordinates, while accessing the user-specified 3D shape.

In addition, u1 has a communication ability superior to all other ARs so that the leader
can directly send a communication signal to any other AR inside the shape.

This paper considers an AR which can measure the relative coordinates of its closeAR
utilizing proximity sensor, thus Assumption (A1) is plausible. For instance, an AR, say,
u, generates signal pings for measuring a closeAR. Once the pings generated from u are
reflected from its closeAR, say, A, then u can estimate the elevation angle, azimuth angle,
and range to A through 3D multiple signal classification (MUSIC) algorithm [26].

An AR u obtains the relative coordinates of its closeAR through Assumption (A1).
Therefore, u is able to localize the senseSphere of its closeAR. Therefore, u is able to calculate
the relative coordinates of a frontierPt in f (u). Therefore, Assumption (A2) is plausible.

Every AR maneuvers utilizing local sensing measurements, thus Assumption (A3) is
crucial. To the best of our knowledge, other papers [27–31] on distributed multi-AR control
applied the initial connection assumption.

4. Formation Controls

The considered problem is as follows: construct a formation with a user-specified shape in a
3D environment utilizing multiple ARs. While ARs maneuver, they preserve the network connection.

4.1. Distributed Generating of a Spanning Tree

Before tacking the above problem, we address how to form a spanning tree in a
distributed fashion. We form a spanning tree T rooted at an AR u by applying a distributed
breadth first search (BFS) algorithm in [32]. Ref. [32] presented a distributed algorithm, so
that a node in the network can guide a moving object across the network to a designated

Appl. Sci. 2022, 12, 8078 6 of 17

goal. Algorithm 2 in [32] can be applied to make a spanning tree T rooted at u. The
spanning tree T is rooted at u, and T has an unique path from an AR to any other AR.

The goal sensor in Algorithm 2 of [32] represents the root, say ur, in this article. Each
AR u stores and updates hopsg(u) (the hop distance to the root ur). The root ur initializes
hopsg(ur) = 0. Every other AR initializes hopsg(u) = ∞ where u 6= ur.

Initially, ur broadcasts hopsg(ur) to all its neighbors. Suppose an AR u receives a
hop distance message from its neighbor, say n. In this case, u updates its hop distance
information as

hopsg(u) = min(hopsg(u), hopsg(n) + 1). (6)

Under (6), hopsg(u) can be updated to hopsg(n) + 1. In this case, the parent of u is
updated to n. Thereafter, u broadcasts hopsg(u) to its neighbors. Refs. [32,33] proved that
the number of message broadcasts of each AR is 1 in this algorithm. This implies that the
distributed BFS has the computational complexity O(1).

4.2. Distributed Rendezvous Control

Our aim is to construct a formation with a user-specified shape in a 3D environment
utilizing multiple ARs. While ARs maneuver, they must preserve the network connection.
This article addresses the formation controls (Algorithm 1) as follows. Before running the
formation controls, all ARs rendezvous at the leader in a distributed fashion. Once the
rendezvous is achieved, one satisfies that

‖uj − u1‖ < ε (7)

for all j ∈ {2, . . . , N}.
Here, ε� rsc is a small positive constant.
We form a spanning tree T whose root is the leader, by utilizing the distributed BFS in

Section 4.1. Based on the formed spanning tree T, Algorithm 2 in [9] is applied to make all
ARs rendezvous at the leader, while preserving network connection. Algorithm 2 in [9]
initiates by letting a leaf AR visit its ancestors in T sequentially, until it meets the leader. At
the instant when an AR meets all its descendants, the AR begins visiting its ancestors in T
sequentially, until it meets the leader. However, [9] handled 2D environments. Since our
article considers ARs in 3D environments, we address distributed rendezvous controls to
make an AR visit its ancestors in 3D environments.

Let pathT(ui, u1) define the path in T, from ui to the leader u1. Suppose that pathT(ui, u1)
consists of an AR set p1 → p2 → p3 . . .→ pend = u1. Consider the case where ui has just met pl
and the next AR to meet is pl+1 (l ∈ {1, 2, . . . , end− 1}).

In order to make ui maneuver toward pl+1, Vi(k) of ui in (5) is set as

Vi(k) = Si
pl+1 − ui(k)
‖pl+1 − ui(k)‖

. (8)

Here, pl+1−ui(k) is available under Assumption (A1). This implies that ui maneuvers
toward pl+1 utilizing local sensing measurements.

Under (8), ui maneuvers toward pl+1 with a constant speed Si. In the case where ui
meets pl+1, ui maneuvers toward the next AR pl+2. This process repeats until ui meets
pend = u1.

Suppose that all ARs rendezvous at the leader and that the leader cannot detect a
frontierPt in the user-specified 3D shape. Under Assumption (A4), the leader is able to
localize itself while accessing the user-specified 3D shape. Therefore, the leader maneuvers
toward the user-specified 3D shape slowly, until it can detect a frontierPt in the user-
specified shape.

While the leader maneuvers slowly, all other ARs keep maneuvering toward the leader
based on their local sensing measurements. Since all ARs are already rendezvoused at the

Appl. Sci. 2022, 12, 8078 7 of 17

leader, maneuvering toward the leader is feasible based on the local sensor of each AR. If
necessary, rendezvous controls can be applied by regenerating a tree T by applying the
distributed BFS addressed in this subsection.

4.3. Formation Controls for Expanding the Network

Once all ARs rendezvous at the leader, then every AR is controlled one at a time, such
that as more ARs arrive at their assigned positions, an uncovered space in the user-specified
3D shape reduces incrementally. The proposed formation controls (Algorithm 1) work by
sequentially locating ARs one by one, until the network fills the user-specified 3D shape.

Algorithm 1 is explained as follows. Once the rendezvous is finished, a tree T is
formed in a distributed fashion. For generating T, every AR ui stops maneuvering, while
utilizing its proximity sensor for measuring the relative coordinates of its neighbors. The
distributed BFS algorithm in Section 4.1 is applied for the distributed generation of T.

Initially, the leader u1 switches on its proximity sensor for covering the space close to
u1. u1 localizes its global position utilizing Assumption (A4). Thereafter, frontierPts of u1
are built.

Suppose an AR arrives at its assigned position. Thereafter, the AR switches on its
proximity sensor for covering its surroundings. For generating a connected network, an
AR maneuvers into an uncovered space within rsc distance units. As an AR arrives at its
assigned position, the AR switches on its proximity sensor with range rsc. See EnableSensor
function (Algorithm 2).

Algorithm 1 Formation controls

1: Initially, every AR will rendezvous at the leader under distributed rendezvous control
in Section 4.2;

2: S = [u1, u2, . . . , uN];
3: The leader u1 switches on its proximity sensor with range rsc and builds a frontierPt

inside the user-specified 3D shape;
4: i = N;
5: repeat
6: By applying the distributed BFS in Section 4.1, ui finds an AR with a frontierPt, which

has the smallest hop distance from ui;
7: if no frontierPt is detected by running the distributed BFS then
8: This algorithm is finished;
9: end if

10: Let u f present the found AR;
11: A frontierPt on the senseSphere of u f is set as fui ;
12: The AR ui maneuvers along the path to u f , then tracks the edge from u f to fui ;
13: if The AR ui arrives at its assigned position fui then
14: EnableSensor(ui,u f);
15: end if
16: i = i− 1;
17: until the index i becomes 1

Algorithm 2 EnableSensor(u,u f)

1: u switches on its proximity sensor;
2: u localizes itself by measuring the relative coordinates of u f ;
3: u builds a frontierPt inside the user-specified 3D shape;

In Algorithm 1, every AR is controlled one at a time with the following order:
uN → uN−1, . . . → u2. The AR uN maneuvers to arrive at its frontierPt fuN . There-
after, uN switches on its proximity sensor for covering its close space. FrontierPts of uN are
built accordingly. See Algorithm 2.

Appl. Sci. 2022, 12, 8078 8 of 17

Once uN arrives at its assigned position, uN−1 maneuvers until reaching its frontierPt
fuN−1 . Keep iterating this procedure until all ARs arrive at their assigned positions.

Consider the case in which ui+1 just turned on its proximity sensor for covering its
close space. Thereafter, ui finds an AR, say us, with a frontierPt, which has the smallest hop
distance from ui. The distributed BFS in Section 4.1 is applied for this search. Thereafter,
the frontierPt on the senseSphere of the found AR is set as fui .

An AR ui maneuvers along a path, say P, in the spanning tree T until reaching its
frontierPt fui . Considering the definition of the neighbor, the length of each line segment
along this path is shorter than rsc. In addition, the path is collision-free, since no obstacle
hinders the path. In this way, the proposed control considers obstacle avoidance of each AR.

At the instant when ui arrives at an AR in P, ui maneuvers toward the next AR in P,
since an AR can sense its neighbor in P. (8) addresses how to make ui maneuver toward
an AR in P utilizing local sensing measurements. In order to track along the path P, ui
measures an AR in P using its local sensor. At the instant when ui arrives at an AR, say A,
in P, ui detects the relative coordinates of the next AR in P. See Assumption (A1).

As ui arrives at us (the last AR in P), ui is able to maneuver toward fui under Assump-
tion (A2). After ui arrives at fui , ui switches on its proximity sensor to sense its close space.
See EnableSensor function (Algorithm 2).

Once ui switches on its proximity sensor, frontierPts inside the senseSphere of ui
disappear. This disappearance is achieved through the local sensing of ui. Consider the
case in which a point in f (m) is in the senseSphere of ui. The distance between m and a
point in f (m) is shorter than rsc. Thus, m is a closeAR of ui. ui is able to sense the relative
coordinates of m under Assumption (A1).

Consider the case where ui measures the relative coordinates of its closeAR m. The
vector from ui to a point in f (m) is the addition of the following two vectors, which are
accessible using Assumptions (A1) and (A2):

1. The vector from m to the point in f (m).
2. The vector from ui to m.

At the moment when ui switches on its proximity sensor, all frontierPts in the sens-
eSphere of ui disappear. Then, ui broadcasts the disappearance of the frontierPts to all
ARs through multi-hop communication. ui−1 then searches for its frontierPt fui−1 , and
maneuvers toward the found frontierPt. This repeats until i becomes 1 or no frontierPt is
detected utilizing the distributed BFS. Once i decreases to 1, then one has no remaining
ARs for covering a remaining frontierPt.

There may be a case in which the networked ARs entirely cover the user-specified 3D
shape, but we want to add more ARs into the 3D shape. In this case, we apply distributed
rendezvous controls in Section 4.2, while not moving the leader. Based on distributed
rendezvous controls, the network begins clustering toward the leader. After the network
begins clustering, coverage holes are newly formed in the 3D shape. Additional ARs are
further located until they cover the holes in the shape entirely. Covering the sensing holes
in the 3D shape is further handled in Section 5.

Analysis

We analyze the computational complexity of Algorithm 1. ui finds an AR with a fron-
tierPt, which has the smallest hop distance from ui. This search can be performed through
distributed BFS, whose computational complexity is O(1) [32,33]. Since i decreases from N to
1 in the worst case, the computational complexity of the loop in Algorithm 1 is O(N).

As Q increases to infinity, frontierPts on a senseSphere become the frontierInfty.
Theorem 1 proves that if an AR cannot find a frontierInfty, then the entire space inside the
user-specified shape is covered by coverSpheres.

Theorem 1. If an AR cannot find a frontierInfty, then the entire space inside the user-specified
shape is covered by coverSpheres.

Appl. Sci. 2022, 12, 8078 9 of 17

Proof. Under the transposition rule of propositional logic, the following statement is
proved: if one has an uncovered space inside the user-specified shape, then an AR is able
to find a frontierInfty.

Suppose that one has an uncovered space in the user-specified shape. Let O present
this uncovered space. Using the definition of a frontierInfty, at least one AR can find a
frontierInfty on the boundary of O. Therefore, an AR is able to find this frontierInfty.

If Q is not so large, then frontierPts may represent a frontierInfty coarsely. Therefore,
Theorem 1 may not always hold.

In Algorithm 1, an AR ui maneuvers along a path, say P, until reaching fui . Theorem 2
implies that ui applies local communication only for its maneuver. In addition, network
connection is assured during the maneuver. Theorem 2 further proves that as ui arrives at
fui , we are able to locate ui in global coordinates.

Theorem 2. Consider the case where all ARs maneuver under Algorithm 1. While an AR ui
maneuvers along a path, say P, until reaching fui , the maneuver of ui does not lead to disconnected
networks. While ui maneuvers along P, ui applies local communication (one hop communication)
only. As ui arrives at fui , we are able to locate ui in the global coordinates.

Proof. In Algorithm 1, all ARs rendezvous at the leader before the formation controls are
initiated. Therefore, the maneuver of ui does not lead to disconnected networks.

An AR ui maneuvers along a path, say P, until reaching fui . Let {m1 → m2 → . . .→
mend} represent the order of ARs along P until reaching fui . After reaching mj (j ≤ end− 1),
ui maneuvers toward mj+1. Furthermore, after reaching mend, ui maneuvers toward fui .

One proves that while ui maneuvers along P, ui applies local sensing measurements
only. At the instant when ui encounters mj, ui derives the relative coordinates of mj+1. mj
is a neighbor of mj+1. Thus, ui applies local sensing measurements to maneuver from mj to
mj+1. This local measurement is feasible under Assumption (A1).

One proves that when ui arrives at its associated position fui , we can locate ui in global
coordinates. We prove by deduction.

In Algorithm 1, i starts from N and decreases to 1 as time elapses. At the initial stage
of Algorithm 1, one considers the case where i is N. The global coordinate of uN is derived
from the addition of the following two vectors:

1. The global coordinate of u1.
2. The vector from u1 to uN .

The vector from u1 to uN is available utilizing the proximity sensor of uN . Additionally,
the leader u1 is localized in global coordinates.

Next, consider the case where i 6= N. For i 6= N, the global coordinate of ui is
calculated as the addition of the following two vectors:

1. The global coordinate of mend.
2. The vector from mend to ui.

The vector from ui to mend is available utilizing the proximity sensor of uN .
This theorem is proved.

5. Covering the Sensing Holes Inside the User-Specified Shape

There may be a case where the networked ARs entirely cover the user-specified 3D
shape, but we want to add more ARs into the shape. In this case, we apply distributed
rendezvous controls in Section 4.2, while not moving the leader. After the network begins
clustering under the rendezvous controls in Section 4.2, coverage holes are newly formed
in the user-specified 3D shape. Additional ARs are further located until they cover all holes
in the user-specified shape entirely. Covering the sensing holes in the 3D shape is handled
in this section.

Furthermore, covering the sensing holes is useful when AR failures happen. Suppose
that ARs are positioned for covering the user-specified 3D shape through the formation

Appl. Sci. 2022, 12, 8078 10 of 17

controls in our paper. As time elapses, some ARs may fail. In addition, an intruder may
destroy some ARs, hence coverage holes inside the user-specified shape are formed. To
tackle this case, we address formation controls for covering all sensing holes inside the
user-specified shape.

Suppose that only Nh ARs are located inside the user-specified shape. Suppose that
new M ARs vi (i ∈ {1, 2, . . . , M}) are located such that at least one AR is connected to the
existing tree T, which contains Nh ARs.

We use Algorithm 3 for covering all sensing holes inside the user-specified shape.
We locate these new M ARs, in order to cover all holes in the shape. Initially, M ARs
rendezvous at the leader under the rendezvous algorithms in [9]. Thereafter, a new tree T is
initialized by applying the distributed BFS in Section 4.1 to the new M ARs. In Algorithm 3,
T = Tnew ∪ T implies that Tnew is merged with the existing tree T to form a new tree T.

Algorithm 3 Cover the sensing holes

1: Suppose that only Nh ARs are located inside the user-specified shape, while forming a
tree T;

2: Initially, M ARs rendezvous at the leader;
3: S = [v1, v2, . . . , vM];
4: New tree Tnew is initialized by applying the distributed BFS in Section 4.1 to the new M

ARs;
5: T = T ∪ Tnew;
6: i = M;
7: repeat
8: By applying the distributed BFS in Section 4.1, vi finds an AR with a frontierPt, which

has the smallest hop distance from vi;
9: Let us present the found AR;

10: A frontierPt on the senseSphere of us is set as fvi ;
11: The AR vi maneuvers along the path to us, then tracks the edge from us to fvi ;
12: if vi arrives at its assigned position fvi then
13: EnableSensor(vi,us);
14: end if
15: i = i− 1;
16: until the index i becomes 0 or no frontierPt is detected under the distributed BFS;

Analysis

Suppose that M is sufficiently large to cover all sensing holes in the 3D shape.
Theorems 1 and 2 are used to analyze Algorithm 3.

This subsection analyzes the computational complexity of Algorithm 3. vi finds an AR
with a frontierPt, which has the smallest hop distance from vi. This search can be performed
utilizing distributed BFS, whose computational complexity is O(1) [34]. Since i decreases
from M to 1 in the worst case, the computational complexity of the loop in Algorithm 3
is O(M).

6. MATLAB Simulation Results

Table 1 summarized the parameters in our paper.

Table 1. The simulation parameters.

Parameters Values

N (number of ARs) 100
rsc (radius of a senseSphere) 50 (m)
Si (AR’s maximum speed) 5 (m/s)

Q (number of rays surrounding an AR) 400
dt (sampling interval) 1 (s)

Appl. Sci. 2022, 12, 8078 11 of 17

Initially, the leader u1 is located at the origin. We simulate the case where ARs are
randomly deployed inside the restricted space with size 70× 70× 70 in meters. Thus, the
i-th AR (i ∈ {2, . . . , N}) is located randomly as follows:

ui = [70× rand, 70× rand, 70× rand]T . (9)

Here, rand returns a random number in the interval [0,1].
Under the rendezvous controls in Section 4.2, we first make all ARs rendezvous at the

leader located at the origin. Thereafter, Algorithm 1 is applied to make the ARs cover the
user-specified 3D shape.

In practice, there is process noise in the the process model of ui (5). Therefore, instead
of (5), ui maneuvers under

ui(k + 1) = ui(k) + Vi(k)× dt + [N × randn, N × randn, N × randn]T . (10)

Here, N is the strength of the process noise. We use N = 1 meter. In (10), randn returns
a value with zero mean Gaussian noise with standard deviation 1.

6.1. MATLAB Simulation of Algorithm 1

One demonstrates the effectiveness of Algorithm 1 through MATLAB simulations. We
consider the case in which the user-specified 3D shape is a sphere with radius 100, centered
at the origin. Figure 2 shows the path of each maneuvering AR until the user-specified
3D shape is entirely covered. Here, Algorithm 1 is utilized for formation controls. The
path of a maneuvering AR is depicted with yellow line segments. The final position of a
maneuvering AR is depicted as a blue diamond. See that blue diamonds are marked at the
end points of each line segment.

−100

−50

0

50

100

−100

−50

0

50

100
−100

−50

0

50

100

z
(m

)

x(m)y(m)

Figure 2. The path of each maneuvering AR until the user-specified 3D shape (sphere with radius 100)
is entirely covered (rsc = 50 m). The path of a maneuvering AR is depicted with yellow line segments.
The final position of a maneuvering AR is depicted as a blue diamond. See that blue diamonds are
marked at the end points of each line segment.

Figure 3 presents the ARs’ final positions under Algorithm 1. Among 100 ARs, 66 ARs
maneuver for covering the user-specified 3D shape, while (100-66) ARs are located at the
leader. In other words, Algorithm 1 is finished as i = 100− 66 since no frontierPt is detected
at this instant. The ARs consume 4115 s until the 3D shape is entirely covered. MATLAB
takes 42 s to run the simulation.

Appl. Sci. 2022, 12, 8078 12 of 17

−50

0

50

−50

0

50

−50

0

50
z
(m

)

x(m)y(m)

Figure 3. The ARs’ final positions under our formation controls (Algorithm 1) for covering the
user-specified sphere shape (rsc = 50 m).

Once a swarm of ARs are aggregated into a user-specified 3D shape, one can control all
ARs so that they maneuver in a desired direction while maintaining the network connection.
For the flocking maneuver, all ARs maneuver while synchronized to the leader. Under
Assumption (A4), the velocity command of the leader can be transmitted to all ARs inside
the shape in real time. The velocity of each AR is synchronized to that of the leader, utilizing
the communication command transmitted from the leader.

6.1.1. Change the Sensing Range

One next presents the effect of changing rsc. The sensing range rsc varies from 50 to
70 m. This implies that the radius of a senseSphere is 70 m.

Under the rendezvous controls in Section 4.2, we first make all ARs rendezvous at the
leader located at the origin. Thereafter, Algorithm 1 is applied to make the ARs cover the
3D sphere, while setting rsc as 70 m. Figure 4 shows the path of each maneuvering AR until
the 3D sphere is entirely covered. The path of a maneuvering AR is depicted with green
line segments. The final position of a maneuvering AR is depicted as a blue diamond. See
that blue diamonds are marked at end points of each line segment.

Figure 5 presents the final position of each AR under Algorithm 1. Among 100 ARs,
only 34 ARs maneuver for covering the user-specified sphere, while (100-34) ARs do not
maneuver at all. Compared to the case in which rsc = 50 m, increasing rsc to 70 decreases
the number of maneuvering ARs. The ARs consume 2323 s until the user-specified sphere
is entirely covered. A total of 17 s are consumed to perform the MATLAB simulation.

Appl. Sci. 2022, 12, 8078 13 of 17

−100

−50

0

50

100

−100

−50

0

50

100
−100

−50

0

50

100

z
(m

)

x(m)y(m)

Figure 4. The path of each maneuvering AR until the 3D sphere is entirely covered (rsc = 70 m). The
path of a maneuvering AR is depicted with green line segments. The final position of a maneuvering
AR is depicted as a blue diamond. See that blue diamonds are marked at end points of each
line segment.

−50

0

50

−50

0

50

−50

0

50

z
(m

)

x(m)y(m)

Figure 5. The final position of each AR under our formation controls (Algorithm 1) for covering the
user-specified sphere shape. We use rsc = 70 m.

6.1.2. Change the User-Specified 3D Shape

There may be a case in which the networked ARs entirely cover the user-specified 3D
shape, but we want to change the shape to a new shape. We next address how to change
the user-specified 3D shape from a sphere to a box shape. The user-specified shape is a box,
which has height (z) as 200/3, width (y) as 200/3, and length (x) as 300 in meters.

The sensing range rsc is set as 50 m. Utilizing the rendezvous controls in Section 4.2,
we first make all ARs rendezvous at the leader located at the origin. Thereafter, Algorithm 1
is applied to make the ARs cover the user-specified 3D box, while setting rsc as 50 m.

Figure 6 shows the path of each maneuvering AR until the user-specified box is entirely
covered. Here, Algorithm 1 is utilized for formation controls. The path of a maneuvering
AR is depicted with magenta line segments. The final position of a maneuvering AR is

Appl. Sci. 2022, 12, 8078 14 of 17

depicted as a blue diamond. See that blue diamonds are marked at the end points of each
line segment.

0

100

200

300

−50

0

50

100
0

20

40

60

80

z
(m

)

x(m)y(m)

Figure 6. The path of each maneuvering AR until the user-specified box is entirely covered (rsc = 50 m).
The path of a maneuvering AR is depicted with magenta line segments. The final position of a
maneuvering AR is depicted as a blue diamond. See that blue diamonds are marked at end points of
each line segment.

Figure 7 presents the ARs’ final positions under Algorithm 1. Among 100 ARs, 32 ARs
maneuver for covering the user-specified box shape, while (100− 32) ARs are located at
the leader. In other words, Algorithm 1 is finished as i = 100− 32, since no frontierPt is
detected at this instant. The ARs consume 1689 s until the 3D shape is entirely covered.
MATLAB consumes 16 s to perform the simulation.

0

50

100

150

200

250

0
20

40
60

0

20

40

60

z
(m

)

y(m)

x(m)

Figure 7. The ARs’ final locations under our formation controls (Algorithm 1) for covering the
user-specified box shape (rsc = 50 m).

6.1.3. Forming a Complicated 3D Shape

We next address how to change the user-specified 3D shape from a box shape to a
complicated shape (the union of two boxes). The user-specified shape is complicated, which
is set as the union of two connected boxes: one box has height (z) as 200/3, width (y) as
200/3, and length (x) as 300 in meters, and another box has height (z) as 200, width (y) as
200/3, and length (x) as 200/3 in meters.

The sensing range rsc is set as 50 m. Figure 8 shows the path of each maneuvering
AR until the user-specified complicated shape is entirely covered. Here, Algorithm 1 is

Appl. Sci. 2022, 12, 8078 15 of 17

utilized for formation controls. The path of a maneuvering AR is depicted with red line
segments. The final position of a maneuvering AR is depicted as a blue diamond. See that
blue diamonds are marked at the end points of each line segment.

0

100

200

300

0

20

40

60

80
0

50

100

150

200

z
(m

)

x(m)y(m)

Figure 8. The path of each maneuvering AR until the user-specified complicated shape is entirely
covered (rsc = 50 m). The path of a maneuvering AR is depicted with red line segments. The final
position of a maneuvering AR is depicted as a blue diamond. See that blue diamonds are marked at
the end points of each line segment.

Figure 9 presents the ARs’ final positions under Algorithm 1. Among 100 ARs, 46 ARs
maneuver for covering the user-specified complicated shape, while (100-46) ARs are located
at the leader. In other words, Algorithm 1 is finished as i = 100− 46, since no frontierPt
is detected at this instant. The ARs consume 3116 s until the 3D shape is entirely covered.
MATLAB consumes 26 s to perform the simulation.

0

50

100

150

200

250

0

50

0

50

100

150

z
(m

)

y(m)

x(m)

Figure 9. The ARs’ final locations under our formation controls (Algorithm 1) for covering the
user-specified complicated shape (rsc = 50 m).

7. Conclusions

This article addresses a distributed 3D algorithm for coordinating a swarm of ARs to
spatially self-aggregate into an arbitrary shape, utilizing local communication only. We
make all ARs form a user-specified 3D formation such that the connection of all ARs is
preserved during the maneuver. Our control scheme leads to a 3D formation for covering
the given shape. Moreover, our approach only requires the global localization of the leader
among all ARs.

To the best of our knowledge, this study is novel in building a 3D formation for
covering a given shape such that network connection is maintained while ARs maneuver

Appl. Sci. 2022, 12, 8078 16 of 17

based on local communication only. We show that the proposed formation control yields
reliable accuracy in handling significant AR failures and movement error. Once a swarm of
ARs is aggregated into a user-specified 3D shape, the leader can maneuver synchronized to
all other ARs by sharing its velocity command with all other ARs.

Utilizing MATLAB simulations, we demonstrate the outperformance of the proposed
formation controls. The proposed formation controls can be used in the case where the
user-specified 3D shape varies as time goes on. Whenever the shape varies, we apply
distributed rendezvous controls in Section 4.2, while not moving the leader. Once all ARs
achieve rendezvous, they are redistributed by applying Algorithm 1 again. In the future,
we plan to perform experiments to demonstrate the proposed formation controls using
real ARs.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cheng, J.; Cheng, W.; Nagpal, R. Robust and Self-Repairing Formation Control for Swarms of Mobile Agents. In Proceedings of

the 20th National Conference on Artificial Intelligence, AAAI’05, Pittsburgh, PA, USA, 9–13 July 2005; pp. 59–64.
2. Liu, J.; Wang, Z.; Cui, J.H.; Zhou, S.; Yang, B. A Joint Time Synchronization and Localization Design for Mobile Underwater

Sensor Networks. IEEE Trans. Mob. Comput. 2016, 15, 530–543. [CrossRef]
3. Misra, S.; Ojha, T.; Mondal, A. Game-Theoretic Topology Control for Opportunistic Localization in Sparse Underwater Sensor

Networks. IEEE Trans. Mob. Comput. 2015, 14, 990–1003. [CrossRef]
4. Han, G.; Zhang, C.; Shu, L.; Rodrigues, J.J.P.C. Impacts of Deployment Strategies on Localization Performance in Underwater

Acoustic Sensor Networks. IEEE Trans. Ind. Electron. 2015, 62, 1725–1733. [CrossRef]
5. dell’Erba, R. Determination of Spatial Configuration of an Underwater Swarm with Minimum Data. Int. J. Adv. Robot. Syst. 2015,

12, 97. [CrossRef]
6. Allotta, B.; Costanzi, R.; Fanelli, F.; Monni, N.; Paolucci, L.; Ridolfi, A. Sea currents estimation during AUV navigation using

Unscented Kalman Filter. IFAC-PapersOnLine 2017, 50, 13668–13673. [CrossRef]
7. Melim, A.; West, M. Towards autonomous navigation with the Yellowfin AUV. In Proceedings of the OCEANS’11 MTS/IEEE

KONA, Waikoloa, HI, USA, 19–22 September 2011; pp. 1–5.
8. Kelly, J.; Sukhatme, G.S. Visual-inertial simultaneous localization, mapping and sensor-to-sensor self-calibration. In Proceedings

of the 2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation-(CIRA), Daejeon, Korea,
15–18 December 2009; pp. 360–368.

9. Kim, J. Distributed Rendezvous of Heterogeneous Robots with Motion-Based Power Level Estimation. J. Intell. Robot. Syst. 2020,
100, 1417–1427. [CrossRef]

10. Cortés, J.; Martínez, S.; Karatas, T.; Bullo, F. Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 2004,
20, 243–255. [CrossRef]

11. Stergiopoulos, Y.; Kantaros, Y.; Tzes, A. Connectivity-aware coordination of robotic networks for area coverage optimization.
In Proceedings of the 2012 IEEE International Conference on Industrial Technology, Athens, Greece, 19–21 March 2012; pp. 31–35.

12. Siligardi, L.; Panerati, J.; Kaufmann, M.; Minelli, M.; Ghedini, C.; Beltrame, G.; Sabattini, L. Robust Area Coverage with
Connectivity Maintenance. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal,
QC, Canada, 20–24 May 2019; pp. 2202–2208.

13. Alonso-Mora, J.; Baker, S.; Rus, D. Multi-robot formation control and object transport in dynamic environments via constrained
optimization. Int. J. Robot. Res. 2017, 36, 1000–1021. [CrossRef]

14. Vidal, R.; Shakernia, O.; Sastry, S. Formation control of nonholonomic mobile robots with omnidirectional visual servoing
and motion segmentation. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat.
No.03CH37422), Taipei, Taiwan, 14–19 September 2003; Volume 1, pp. 584–589.

15. Hu, J.; Sun, J.; Zou, Z.; Ji, D.; Xiong, Z. Distributed multi-robot formation control under dynamic obstacle interference. In
Proceedings of the 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Boston, MA, USA,
6–9 July 2020; pp. 1435–1440.

16. Lin, J.; Yang, X.; Zheng, P.; Cheng, H. End-to-end Decentralized Multi-robot Navigation in Unknown Complex Environments
via Deep Reinforcement Learning. In Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation
(ICMA), Tianjin, China, 4–7 August 2019; pp. 2493–2500.

http://doi.org/10.1109/TMC.2015.2410777
http://dx.doi.org/10.1109/TMC.2014.2338293
http://dx.doi.org/10.1109/TIE.2014.2362731
http://dx.doi.org/10.5772/61035
http://dx.doi.org/10.1016/j.ifacol.2017.08.2528
http://dx.doi.org/10.1007/s10846-020-01243-8
http://dx.doi.org/10.1109/TRA.2004.824698
http://dx.doi.org/10.1177/0278364917719333

Appl. Sci. 2022, 12, 8078 17 of 17

17. Amani, A.M.; Chen, G.; Jalili, M.; Yu, X.; Stone, L. Distributed Rigidity Recovery in Distance-Based Formations Using Configura-
tion Lattice. IEEE Trans. Control. Netw. Syst. 2020, 7, 1547–1558. [CrossRef]

18. Mishra, R.S.; Semwal, T.; Nair, S.B. A distributed epigenetic shape formation and regeneration algorithm for a swarm of robots.
Proc. Genet. Evol. Comput. Conf. Companion 2018, 1505–1512.

19. Berlinger, F.; Gauci, M.; Nagpal, R. Implicit coordination for 3D underwater collective behaviors in a fish-inspired robot swarm.
Sci. Robot. 2021, 6, eabd8668. [CrossRef] [PubMed]

20. Fathian, K.; Safaoui, S.; Summers, T.H.; Gans, N.R. Robust 3D Distributed Formation Control with Collision Avoidance And
Application To Multirotor Aerial Vehicles. In Proceedings of the 2019 International Conference on Robotics and Automation
(ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 9209–9215.

21. Aranda, M.; López-Nicolás, G.; Sagüés, C.; Zavlanos, M.M. Three-dimensional multirobot formation control for target enclosing.
In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18
September 2014; pp. 357–362.

22. McCord, C.; Queralta, J.P.; Gia, T.N.; Westerlund, T. Distributed Progressive Formation Control for Multi-Agent Systems: 2D
and 3D deployment of UAVs in ROS/Gazebo with RotorS. In Proceedings of the 2019 European Conference on Mobile Robots
(ECMR), Prague, Czech Republic, 4–6 September 2019; pp. 1–6.

23. Álvarez, D.; Gómez, J.V.; Garrido, S.; Moreno, L. 3D Robot Formations Path Planning with Fast Marching Square. J. Intell. Robot.
Syst. 2015, 80, 507–523. [CrossRef]

24. Paul, T.; Krogstad, T.R.; Gravdahl, J.T. UAV formation flight using 3D potential field. In Proceedings of the 2008 16th
Mediterranean Conference on Control and Automation, Ajaccio, France, 25–27 June 2008; pp. 1240–1245.

25. Douglas, B.W. Introduction to Graph Theory, 2nd ed.; Prentice Hall: Forsyth, IL, USA, 2001.
26. Li, Y.C.; Choi, B.; Chong, J.W.; Oh, D. 3D Target Localization of Modified 3D MUSIC for a Triple-Channel K-Band Radar. Sensors

2018, 18, 1634. [CrossRef] [PubMed]
27. Alonso-Mora, J.; Montijano, E.; Schwager, M.; Rus, D. Distributed multi-robot formation control among obstacles: A geometric

and optimization approach with consensus. In Proceedings of the Robotics and Automation (ICRA), 2016 IEEE International
Conference, Stockholm, Sweden, 16–21 May 2016; pp. 5356–5363.

28. Cortés, J.; Martínez, S.; Bullo, F. Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions.
IEEE Trans. Autom. Control 2006, 51, 1289–1298. [CrossRef]

29. Lin, J.; Morse, A.S.; Anderson, B.D.O. The multi-agent rendezvous problem. In Proceedings of the IEEE International Conference
on Decision and Control, Maui, HI, USA, 9–12 December 2003; pp. 1508–1513.

30. Ji, M.; Egerstedt, M. Distributed Coordination Control of Multi-Agent Systems While Preserving Connectedness. IEEE Trans.
Robot. 2007, 23, 693–703. [CrossRef]

31. Park, H.; Hutchinson, S. An efficient algorithm for fault-tolerant rendezvous of multi-robot systems with controllable sensing
range. In Proceedings of the Robotics and Automation (ICRA), 2016 IEEE International Conference, Stockholm, Sweden,
16–21 May 2016; pp. 358–365.

32. Li, Q.; De Rosa, M.; Rus, D. Distributed Algorithms for Guiding Navigation across a Sensor Network. In Proceedings of the 9th
Annual International Conference on Mobile Computing and Networking, MobiCom’03, San Diego, CA, USA, 14–19 September
2003; pp. 313–325.

33. Li, Q.; Aslam, J.; Rus, D. Distributed Energy-conserving Routing Protocols for Sensor Networks. In Proceedings of the IEEE
Hawaii International Conference on System Science, Big Island, HI, USA, 6–9 January 2003.

34. Lavalle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006.

http://dx.doi.org/10.1109/TCNS.2020.2984683
http://dx.doi.org/10.1126/scirobotics.abd8668
http://www.ncbi.nlm.nih.gov/pubmed/34043581
http://dx.doi.org/10.1007/s10846-015-0187-1
http://dx.doi.org/10.3390/s18051634
http://www.ncbi.nlm.nih.gov/pubmed/29783782
http://dx.doi.org/10.1109/TAC.2006.878713
http://dx.doi.org/10.1109/TRO.2007.900638

	Introduction
	 Literature Review
	 Assumptions and Definitions
	Definitions
	Assumptions

	Formation Controls
	Distributed Generating of a Spanning Tree
	Distributed Rendezvous Control
	Formation Controls for Expanding the Network

	Covering the Sensing Holes Inside the User-Specified Shape
	MATLAB Simulation Results
	MATLAB Simulation of Algorithm 1
	Change the Sensing Range
	Change the User-Specified 3D Shape
	Forming a Complicated 3D Shape

	Conclusions
	References

