
Citation: Mohr, J.; Kleinschrodt, C.;

Tremmel, S.; Rieg, F. Compatibility

Improvement of Interrelated Items in

Exchange Files—A General Method

for Supporting the Data Integrity of

Digital Twins. Appl. Sci. 2022, 12,

8099. https://doi.org/10.3390/

app12168099

Academic Editor: Dimitris Mourtzis

Received: 12 June 2022

Accepted: 10 August 2022

Published: 12 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Compatibility Improvement of Interrelated Items in Exchange
Files—A General Method for Supporting the Data Integrity of
Digital Twins
Johannes Mohr *, Claudia Kleinschrodt, Stephan Tremmel and Frank Rieg

Engineering Design and CAD, University of Bayreuth, Universitaetsstr. 30, 95447 Bayreuth, Germany
* Correspondence: johannes.mohr@uni-bayreuth.de

Abstract: Stakeholders in the industry are increasingly using digital twins to take advantage of
continuous digitization. The widely used methods for transferring partial models of digital twins
within various heterogeneous systems rely on standardized, neutral file-based exchange. However,
using differently implemented routines in the pre- and postprocessors of the systems engaged during
data transmission leads to compatibility problems. Complete information transfer is not guaranteed,
although potentially all information is available in the individual exchange file. To utilize the full
potential of digital twins, this paper presents a method for directly adapting the content stored in an
exchange file to systematically achieve compatibility. In the first step, we define a general structure
to specify interrelated, nonconforming objects that are stored in the exchange file. We present five
conditions that specify a compatibility problem in the following steps. On this basis, the applicant
can solve various exchange problems for the indicated scenario in the third step. After explaining
the approach in general terms, we demonstrate its generality by discussing two diverging use cases
based on the exchange formats STEP and INP. We implemented the method in software terms, and
the implementation indicates that this method can fix compatibility problems in an automated way.

Keywords: Abaqus INP; compatibility improvement; data transfer; digital twin; industry 4.0; STEP

1. Introduction

Flexible, individualized mass production is increasingly dominating the industry.
In addition, companies see themselves confronted with enormous competitive pressure.
To meet these challenges, companies are using digital twins to harness the advantages
of powerful computers [1–4]. To date, there is no distinct definition of the term digital
twin [5,6]. However, the broad consensus is that it represents a virtual image of a physical
asset, meaning that a digital twin needs a physical complement. Sensors or databases
connect the corresponding asset and its virtual representation. Overall, the use of digital
twins offers a variety of benefits. For example, they enable prototypes to be tested in detail
in the early product development phase. Moreover, they provide the possibility of indicating
defects or of monitoring and regulating processes autonomously during the usage phase of
the product. In addition, digital twins allow the applicant to determine the reliability of a
product at the end of its life. This then helps to prevent early, uneconomical disposal [5,7,8].

A digital twin usually consists of several partial models that are used in computer-
aided design (CAD) or electronic systems, for example. These models either represent
a three-dimensional (3D) geometry or characterize two-dimensional (2D) layouts, such
as integrated circuits. Further partial models include analysis models used in computer-
aided engineering (CAE) systems to perform calculations, such as strength analyses, flow
simulations, and electromagnetic field analyses [9–12].

Various exchange files store and transfer partial models. The data integrity of digital
twins and their partial models saved in exchange files is essential. This paper refers to the
general classical definition of data integrity according to Courtney [13]. For Courtney, data

Appl. Sci. 2022, 12, 8099. https://doi.org/10.3390/app12168099 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12168099
https://doi.org/10.3390/app12168099
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1644-563X
https://doi.org/10.3390/app12168099
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12168099?type=check_update&version=2

Appl. Sci. 2022, 12, 8099 2 of 19

have integrity if they meet or exceed requirements related to the user’s expected quality.
However, requirements are highly context-dependent. In general, we can summarize that
integer data must be error-free, up-to-date, complete, self-explanatory, and reliable [13–16].

Providing and processing high-quality data still poses a severe problem, however. For
instance, exchanging information between different systems is a frequent source of data
quality issues. Moreover, the correct interpretation of an exchange file is not always possible
despite the presence of all potential information. One leading cause for this is a deviating
implementation of export and import routines in the pre- and postprocessors. This means
that a preprocessor of a source system writes out conflicting information that the postpro-
cessor of a target system cannot interpret correctly. Frequently, the standards on which the
exchange format is founded merely represent framework conditions for implementation.
A correct interpretation remains open to the system manufacturers involved. Adopting
a transfer file to the requirements of a target system guarantees error-free import [15,17].
Accordingly, this paper shows a general method for solving exchange problems by adapting
the information stored in an exchange file to ensure that a postprocessor can interpret the
file without compatibility errors.

To demonstrate this method, we proceed as follows. Section 2 first explains basic
information regarding data exchange and extraction, as well as regarding file formats
used for transferring partial models. It also provides an overview of the Standard for the
Exchange of Product Data (STEP) and Abaqus Input (INP) exchange formats. Section 3
describes the proposed compatibility improvement method. We first explain the three steps
necessary to increase the compatibility of a transfer file. After providing an overview of
the approach, we explain each step in detail. Section 4 outlines two use cases based on
the INP and STEP formats explained in the previous sections. To validate the method, we
implemented it in the form of a software solution, which is addressed in Section 5. This is
followed by a discussion of the results in Section 6 and the conclusions in Section 7.

2. Materials
2.1. Fundamentals of Data Exchange and Extraction

In recent years, the importance of neutral file-based exchange methods has increased.
To ensure continuous, loss-free data flow between different systems, several standards have
been developed, such as Drawing Exchange Format (DXF) [18], INP [19], and STEP [20].
To provide semantic interoperability, researchers increasingly use ontologies to exchange
geometric and semantic product information consistently, especially in the context of
digital twins and the semantic web. For this purpose, different possibilities for creating
an ontology are available, such as the open source ontology editor Protégé developed by
Stanford University [21]. Standardized languages, such as the Web Ontology Language
(OWL), are widely used for the creation process [22]. The translation is usually done by
mapping the data semantics using an intermediate common model data ontology. Up- and
downstream are either system-specific ontologies or neutral interchange formats. However,
conversion of the complete content may result in information loss, or in the worst case,
direct mapping is not possible [23–27]. Furthermore, none of the approaches consider
directly adapting the contents of a file to establish compatibility between systems, thus
minimizing the conversion process and loss. Ontology exchange methods are also difficult
to apply when data are not available in an analog ontology form. To intercept a wide range
of different partial models, the present work focuses on standardized, neutral file-based
exchange since this type of exchange is still standard and widely used [9,15,25,28].

During data exchange through neutral, system-independent exchange files, the source
system exports the file in the first step. Here, a preprocessor converts the system-specific
internal binary format to a neutral data format. A postprocessor in the target system converts
the file to the internal structure of the target system [29,30]. Figure 1 shows the process below.

Appl. Sci. 2022, 12, 8099 3 of 19

Appl. Sci. 2022, 12, 8099 3 of 20

neutral file-based exchange since this type of exchange is still standard and widely used
[9,15,25,28].

During data exchange through neutral, system-independent exchange files, the
source system exports the file in the first step. Here, a preprocessor converts the system-
specific internal binary format to a neutral data format. A postprocessor in the target sys-
tem converts the file to the internal structure of the target system [29,30]. Figure 1 shows
the process below.

Figure 1. Process flow of neutral file-based data exchange.

To manipulate data internally, directly at the file level, we first need to extract it and
make it accessible. Using external methods, such as application programming interfaces
(APIs), is unsuitable because they do not allow information to be adapted to another target
system [31]. There are several approaches in the engineering context in the sub-field of
academic research on feature extraction. Some methods are not advanced enough, while
others have been replaced with more efficient techniques [29,31–34]. In general, graph-
based approaches [35–37], heuristic-based methods [38–42], volume decomposition, and,
most recently, artificial neural networks [33,43,44] are currently being used. The present
contribution refers to heuristic approaches, as they offer the possibility of extracting items
and specifying context-specific compatibility issues precisely. In the course of heuristic-
based methods, features are generalized as templates consisting of characteristic rule pat-
terns. If the predefined conditions are matched, then the appropriate pattern is recognized
as the respective feature [38–42].

2.2. Fundamentals of File Formats
A file format is a convention or set of rules for representing data in a file. Structuring

allows the underlying communication process to be standardized and facilitates the com-
parability of further data processing [45].

A large number of different file formats exist for storing information. Specific formats
have been established for diverse areas of use. For example, the German Institute for
Standardization (DIN) 26100 provides an overview of the potential formats for each do-
main. The norm defines a structure for the data exchange of standardized and non-stand-
ardized products. A compressed container file bundles all relevant partial models saved
in exchange files. The applicator creates a separate folder in the container for each area of

Figure 1. Process flow of neutral file-based data exchange.

To manipulate data internally, directly at the file level, we first need to extract it and
make it accessible. Using external methods, such as application programming interfaces
(APIs), is unsuitable because they do not allow information to be adapted to another target
system [31]. There are several approaches in the engineering context in the sub-field of
academic research on feature extraction. Some methods are not advanced enough, while
others have been replaced with more efficient techniques [29,31–34]. In general, graph-
based approaches [35–37], heuristic-based methods [38–42], volume decomposition, and,
most recently, artificial neural networks [33,43,44] are currently being used. The present con-
tribution refers to heuristic approaches, as they offer the possibility of extracting items and
specifying context-specific compatibility issues precisely. In the course of heuristic-based
methods, features are generalized as templates consisting of characteristic rule patterns. If
the predefined conditions are matched, then the appropriate pattern is recognized as the
respective feature [38–42].

2.2. Fundamentals of File Formats

A file format is a convention or set of rules for representing data in a file. Structur-
ing allows the underlying communication process to be standardized and facilitates the
comparability of further data processing [45].

A large number of different file formats exist for storing information. Specific formats
have been established for diverse areas of use. For example, the German Institute for
Standardization (DIN) 26100 provides an overview of the potential formats for each domain.
The norm defines a structure for the data exchange of standardized and non-standardized
products. A compressed container file bundles all relevant partial models saved in exchange
files. The applicator creates a separate folder in the container for each area of use in the
root directory. The standard specifies a non-exhaustive selection of formats stored in the
respective folder, which Table 1 lists [9].

Appl. Sci. 2022, 12, 8099 4 of 19

Table 1. Valid file formats in a container file per area of use, according to DIN 26100 [9].

File Format Area of Use Ordinary Encoding

AVI Multimedia Binary

DXF 2D-documentation,
-graphics, -contours Text

GSD, TXT General descriptions Text

H, I Computer numerical control (CNC)
programming Text

IO General descriptions Binary
JPG, PNG Image, sketch, multimedia Binary

JT 3D-representations—detailed and basic Binary
NC CNC programming Binary
P21 ISO properties Text
PDF Catalog data, 2D-documentation Binary

STEP, STL, INP 3D-representations (detailed and basic) Text

XML

International Standards Organization
(ISO) and DIN properties, general

descriptions, catalog data,
documentation, application data

Text

Inside a transfer file, the information is encoded in binary or plain text, mainly using
the American Standard Code for Information (ASCII) or the Universal Coded Character
Set Transformation Format (UTF-8). In general, both binary and plain text-encoded files
are suitable for manipulation. Since text-based files are easier to trace than non-text files,
the present work focuses on this file type. Hex editors also allow tracking and adaptation
of the byte sequences of a binary file [45].

Regarding file adaption, the relationships within a file are of particular importance.
If, for example, information A references information B, a change to A may lead to the
invalidity of B. The three following basic referencing types can be distinguished:

• Hierarchy—A tree structure arranges the stored data. A root element represents the
top level and contains the entirety of the information saved in the document. Child
elements divide the root element, which can be subdivided into deeper nestings. The
lowest level in each case represents the direct data.

• Relation—Each stored piece of information has a unique identification key that links
the data using references. The keys can be either numbers or strings.

• Block—Blocks in the file store the data. Each block represents a coherent piece of
information, and unions have no or only a weak connection to one another.

One of the commonalities among the reference types is that single units, which we
refer to as “items,” bundle logically related information. In a given communicative context,
a single piece of information is a minor representation of facts that can be interpreted
independently and fixed permanently as discrete signs [46]. The items are advantageous
because they can be extracted, analyzed, and improved. Table 2 below shows three ex-
emplary items based on the hierarchical Extensible Markup Language (XML) format, the
relational format STEP, and the block Heidenhain (H) format [20,47,48].

The method presented in this paper for resolving compatibility issues is suitable for
all three reference types mentioned. Special considerations arise due to the identification of
keys for relational structures, which is why the present contribution focuses on analyzing
the representative, relational, and widespread exchange formats STEP and INP.

Appl. Sci. 2022, 12, 8099 5 of 19

Table 2. Basic reference types in exchange files.

Reference
Type

Schematic
Representation

File
Format

Exemplary
Area of Use

Exemplary
Item

Hierarchy

Appl. Sci. 2022, 12, 8099 5 of 20

Table 2. Basic reference types in exchange files.

Reference Type
Schematic

Representation
File

Format
Exemplary
Area of Use

Exemplary
Item

Hierarchy

XML General
Description

Product
feature

Relation

STEP 3D-representa-
tions

Coordinate
system

Block

H
CNC

programming Drill hole

The method presented in this paper for resolving compatibility issues is suitable for
all three reference types mentioned. Special considerations arise due to the identification
of keys for relational structures, which is why the present contribution focuses on analyz-
ing the representative, relational, and widespread exchange formats STEP and INP.

2.3. Fundamentals of the STEP File Format
STEP is an international standard for exchanging, storing, archiving, and transform-

ing product data, which the ISO 10303 series defines. From the beginning, the focus of the
conceptual design is on the representability of industry-independent product information
for the entire life cycle. Consequently, applicants use the standard in a wide variety of
application areas, such as CAD, computer-aided manufacturing (CAM), and product data
management (PDM) systems [49]. Due to this wide range of uses, separate application
protocols (AP) define these areas. Furthermore, individual parts of the standard describe
single protocols. All examples in this paper rely on AP 214 (“Core data for automotive
mechanical design processes”) due to its sufficiently wide distribution [15,50].

A STEP file, whose formal structure is defined in ISO 10303-21 [51], is provided as an
uncompressed ASCII file. Figure 2 shows a section of a STEP file. The reader can see that
instances of entities store the information line by line. Entities defined in APs are compa-
rable to classes in conventional object-oriented programming languages. Accordingly, an
AP specifies unique entities that can be instantiated multiple times in a STEP file. Each
piece of information holds an inimitable identification key (e.g., #47). Furthermore, an en-
tity can obtain various attributes, such as strings and numerical values, which are ap-
pended to the instance in parentheses. Referencing different instances is done by specify-
ing the key of the referenced information as an attribute.

XML General
Description

Product
feature

Relation

Appl. Sci. 2022, 12, 8099 5 of 20

Table 2. Basic reference types in exchange files.

Reference Type
Schematic

Representation
File

Format
Exemplary
Area of Use

Exemplary
Item

Hierarchy

XML General
Description

Product
feature

Relation

STEP 3D-representa-
tions

Coordinate
system

Block

H
CNC

programming Drill hole

The method presented in this paper for resolving compatibility issues is suitable for
all three reference types mentioned. Special considerations arise due to the identification
of keys for relational structures, which is why the present contribution focuses on analyz-
ing the representative, relational, and widespread exchange formats STEP and INP.

2.3. Fundamentals of the STEP File Format
STEP is an international standard for exchanging, storing, archiving, and transform-

ing product data, which the ISO 10303 series defines. From the beginning, the focus of the
conceptual design is on the representability of industry-independent product information
for the entire life cycle. Consequently, applicants use the standard in a wide variety of
application areas, such as CAD, computer-aided manufacturing (CAM), and product data
management (PDM) systems [49]. Due to this wide range of uses, separate application
protocols (AP) define these areas. Furthermore, individual parts of the standard describe
single protocols. All examples in this paper rely on AP 214 (“Core data for automotive
mechanical design processes”) due to its sufficiently wide distribution [15,50].

A STEP file, whose formal structure is defined in ISO 10303-21 [51], is provided as an
uncompressed ASCII file. Figure 2 shows a section of a STEP file. The reader can see that
instances of entities store the information line by line. Entities defined in APs are compa-
rable to classes in conventional object-oriented programming languages. Accordingly, an
AP specifies unique entities that can be instantiated multiple times in a STEP file. Each
piece of information holds an inimitable identification key (e.g., #47). Furthermore, an en-
tity can obtain various attributes, such as strings and numerical values, which are ap-
pended to the instance in parentheses. Referencing different instances is done by specify-
ing the key of the referenced information as an attribute.

STEP 3D-representations Coordinate
system

Block

Appl. Sci. 2022, 12, 8099 5 of 20

Table 2. Basic reference types in exchange files.

Reference Type
Schematic

Representation
File

Format
Exemplary
Area of Use

Exemplary
Item

Hierarchy

XML General
Description

Product
feature

Relation

STEP 3D-representa-
tions

Coordinate
system

Block

H
CNC

programming Drill hole

The method presented in this paper for resolving compatibility issues is suitable for
all three reference types mentioned. Special considerations arise due to the identification
of keys for relational structures, which is why the present contribution focuses on analyz-
ing the representative, relational, and widespread exchange formats STEP and INP.

2.3. Fundamentals of the STEP File Format
STEP is an international standard for exchanging, storing, archiving, and transform-

ing product data, which the ISO 10303 series defines. From the beginning, the focus of the
conceptual design is on the representability of industry-independent product information
for the entire life cycle. Consequently, applicants use the standard in a wide variety of
application areas, such as CAD, computer-aided manufacturing (CAM), and product data
management (PDM) systems [49]. Due to this wide range of uses, separate application
protocols (AP) define these areas. Furthermore, individual parts of the standard describe
single protocols. All examples in this paper rely on AP 214 (“Core data for automotive
mechanical design processes”) due to its sufficiently wide distribution [15,50].

A STEP file, whose formal structure is defined in ISO 10303-21 [51], is provided as an
uncompressed ASCII file. Figure 2 shows a section of a STEP file. The reader can see that
instances of entities store the information line by line. Entities defined in APs are compa-
rable to classes in conventional object-oriented programming languages. Accordingly, an
AP specifies unique entities that can be instantiated multiple times in a STEP file. Each
piece of information holds an inimitable identification key (e.g., #47). Furthermore, an en-
tity can obtain various attributes, such as strings and numerical values, which are ap-
pended to the instance in parentheses. Referencing different instances is done by specify-
ing the key of the referenced information as an attribute.

H CNC
programming Drill hole

2.3. Fundamentals of the STEP File Format

STEP is an international standard for exchanging, storing, archiving, and transforming
product data, which the ISO 10303 series defines. From the beginning, the focus of the
conceptual design is on the representability of industry-independent product information
for the entire life cycle. Consequently, applicants use the standard in a wide variety of
application areas, such as CAD, computer-aided manufacturing (CAM), and product data
management (PDM) systems [49]. Due to this wide range of uses, separate application
protocols (AP) define these areas. Furthermore, individual parts of the standard describe
single protocols. All examples in this paper rely on AP 214 (“Core data for automotive
mechanical design processes”) due to its sufficiently wide distribution [15,50].

A STEP file, whose formal structure is defined in ISO 10303-21 [51], is provided
as an uncompressed ASCII file. Figure 2 shows a section of a STEP file. The reader
can see that instances of entities store the information line by line. Entities defined in
APs are comparable to classes in conventional object-oriented programming languages.
Accordingly, an AP specifies unique entities that can be instantiated multiple times in
a STEP file. Each piece of information holds an inimitable identification key (e.g., #47).
Furthermore, an entity can obtain various attributes, such as strings and numerical values,
which are appended to the instance in parentheses. Referencing different instances is done
by specifying the key of the referenced information as an attribute.

Appl. Sci. 2022, 12, 8099 6 of 20

Figure 2. Required instances in a STEP-AP214-exchange file to represent the item coordinate system
in the CAD system Creo Parametric 6.0.5.0.

An item bundles different, related instances. Figure 2, for example, shows the re-
quirements in a STEP exchange file for representing a 3D coordinate system in the CAD
program Creo Parametric 6.0.5.0. The starting point of the item is an initial instance of the
entity AXIS2_PLACEMENT_3D (#47), which links subsequent unit parts. The initial ref-
erence refers to the three following instances (#44, #45, #46). The entity CARTE-
SIAN_POINT (#44) defines the origin of the coordinate system. In our case, this matches
the global coordinate system. Accordingly, the x-, y-, and z-coordinates equal 0.E0. Two
instances of the entity DIRECTION (#45 and #46) define the orientation of the two axes of
the coordinate system. The third axis is orthogonal to the two directions and is not part of
the write-out of the preprocessor [15].

2.4. Fundamentals of the INP File Format
Abaqus input files are encoded in ASCII and contain finite element analysis models.

They store nodes, elements, materials, and the initial conditions of the respective model
for performing simulations in the CAE context. Since the format documentation is pub-
licly provided, systems other than the CAE software Abaqus also use specifications to
import and export analysis models [19]. Figure 3 below shows an example of the basic
structure of an INP file for saving geometry, as this knowledge is needed to follow the
described use case in Section 4.2.

Figure 3. Basic internal structure of geometry of an Abaqus INP file.

Different blocks divide the file content into discrete areas, with each area introduced
by a keyword line. A keyword line starts with precisely one asterisk, while at least two

Figure 2. Required instances in a STEP-AP214-exchange file to represent the item coordinate system
in the CAD system Creo Parametric 6.0.5.0.

An item bundles different, related instances. Figure 2, for example, shows the require-
ments in a STEP exchange file for representing a 3D coordinate system in the CAD program
Creo Parametric 6.0.5.0. The starting point of the item is an initial instance of the entity
AXIS2_PLACEMENT_3D (#47), which links subsequent unit parts. The initial reference
refers to the three following instances (#44, #45, #46). The entity CARTESIAN_POINT (#44)
defines the origin of the coordinate system. In our case, this matches the global coordinate

Appl. Sci. 2022, 12, 8099 6 of 19

system. Accordingly, the x-, y-, and z-coordinates equal 0.E0. Two instances of the entity
DIRECTION (#45 and #46) define the orientation of the two axes of the coordinate system.
The third axis is orthogonal to the two directions and is not part of the write-out of the
preprocessor [15].

2.4. Fundamentals of the INP File Format

Abaqus input files are encoded in ASCII and contain finite element analysis models.
They store nodes, elements, materials, and the initial conditions of the respective model for
performing simulations in the CAE context. Since the format documentation is publicly
provided, systems other than the CAE software Abaqus also use specifications to import
and export analysis models [19]. Figure 3 below shows an example of the basic structure of
an INP file for saving geometry, as this knowledge is needed to follow the described use
case in Section 4.2.

Appl. Sci. 2022, 12, 8099 6 of 20

Figure 2. Required instances in a STEP-AP214-exchange file to represent the item coordinate system
in the CAD system Creo Parametric 6.0.5.0.

An item bundles different, related instances. Figure 2, for example, shows the re-
quirements in a STEP exchange file for representing a 3D coordinate system in the CAD
program Creo Parametric 6.0.5.0. The starting point of the item is an initial instance of the
entity AXIS2_PLACEMENT_3D (#47), which links subsequent unit parts. The initial ref-
erence refers to the three following instances (#44, #45, #46). The entity CARTE-
SIAN_POINT (#44) defines the origin of the coordinate system. In our case, this matches
the global coordinate system. Accordingly, the x-, y-, and z-coordinates equal 0.E0. Two
instances of the entity DIRECTION (#45 and #46) define the orientation of the two axes of
the coordinate system. The third axis is orthogonal to the two directions and is not part of
the write-out of the preprocessor [15].

2.4. Fundamentals of the INP File Format
Abaqus input files are encoded in ASCII and contain finite element analysis models.

They store nodes, elements, materials, and the initial conditions of the respective model
for performing simulations in the CAE context. Since the format documentation is pub-
licly provided, systems other than the CAE software Abaqus also use specifications to
import and export analysis models [19]. Figure 3 below shows an example of the basic
structure of an INP file for saving geometry, as this knowledge is needed to follow the
described use case in Section 4.2.

Figure 3. Basic internal structure of geometry of an Abaqus INP file.

Different blocks divide the file content into discrete areas, with each area introduced
by a keyword line. A keyword line starts with precisely one asterisk, while at least two

Figure 3. Basic internal structure of geometry of an Abaqus INP file.

Different blocks divide the file content into discrete areas, with each area introduced by
a keyword line. A keyword line starts with precisely one asterisk, while at least two asterisks
introduce a comment line, which a postprocessor ignores during parsing. A keyword line
can contain optional parameters in addition to the introductory label, and commas separate
the parameters from one another. Furthermore, the heading block describes the name of
the analysis (C:\RetainingRing). The data lines of the following node block then give the
x-, y-, and z-coordinates of the mesh nodes describing the geometry. The first number per
data line represents the corresponding node number and is assigned in ascending order.
The element sets grouped by type follow the nodes. Figure 3 presents the two-node truss
element (T3D2), four-node rigid element (CPS4), and eight-node brick element (C3D8)
types. The T3D2 elements represent lines, the CPS4 elements characterize surfaces, and
the T3D2 elements show volumes. Lastly, referenced, summarized nodes build up the
elements. For example, the nodes with references 1, 45, 751, and 124 compose the surface
with reference 785 from Figure 3 [19,52,53].

3. Proposed Method
3.1. General Description of the Steps of the Compatibility Improvement Approach

To adapt an exported exchange file, we suggest the three steps shown in Figure 4.
Knowledge of the target system-compliant item structure (TSI) of the respective item is
indispensable for determining the cause of the error. In addition, to detect the faulty item in
the transfer file and identify differences, we also need to use the source system-compliant
item structure (SSI). Accordingly, the first step covers the universal, file-independent
definition of SSI and TSI. In the second step, we suggest comparing the SSI and TSI

Appl. Sci. 2022, 12, 8099 7 of 19

instances to highlight the discrepancies that cause misinterpretation. Pairwise conditions
for the respective instances are suitable for this purpose, as described in the following
subsection. Knowledge about the SSI, TSI, and connecting conditions allows us to adapt
corresponding items in different exchange files in the last step.

Appl. Sci. 2022, 12, 8099 7 of 20

asterisks introduce a comment line, which a postprocessor ignores during parsing. A key-
word line can contain optional parameters in addition to the introductory label, and com-
mas separate the parameters from one another. Furthermore, the heading block describes
the name of the analysis (C:\RetainingRing). The data lines of the following node block
then give the x-, y-, and z-coordinates of the mesh nodes describing the geometry. The
first number per data line represents the corresponding node number and is assigned in
ascending order. The element sets grouped by type follow the nodes. Figure 3 presents
the two-node truss element (T3D2), four-node rigid element (CPS4), and eight-node brick
element (C3D8) types. The T3D2 elements represent lines, the CPS4 elements characterize
surfaces, and the T3D2 elements show volumes. Lastly, referenced, summarized nodes
build up the elements. For example, the nodes with references 1, 45, 751, and 124 compose
the surface with reference 785 from Figure 3 [19,52,53].

3. Proposed Method
3.1. General Description of the Steps of the Compatibility Improvement Approach

To adapt an exported exchange file, we suggest the three steps shown in Figure 4.
Knowledge of the target system-compliant item structure (TSI) of the respective item is
indispensable for determining the cause of the error. In addition, to detect the faulty item
in the transfer file and identify differences, we also need to use the source system-compli-
ant item structure (SSI). Accordingly, the first step covers the universal, file-independent
definition of SSI and TSI. In the second step, we suggest comparing the SSI and TSI in-
stances to highlight the discrepancies that cause misinterpretation. Pairwise conditions
for the respective instances are suitable for this purpose, as described in the following
subsection. Knowledge about the SSI, TSI, and connecting conditions allows us to adapt
corresponding items in different exchange files in the last step.

Figure 4. Schematic illustration of the compatibility improvement approach.

3.2. Description of the Individual Steps of the Compatibility Improvement Approach
3.2.1. First Step—Definition of Universal Item Structures

In the course of defining universal item structures, we recommend analyzing a trans-
fer file from the source and target systems separately. This procedure helps identify the
entities and instances for the respective unit. In both programs, the item to be identified
has to be created and exported analogously. It is essential that only the required infor-
mation to represent an item is determined. Various methods are suitable for the recogni-
tion process, as has been elaborated on by previous researchers [15,54].

Figure 4. Schematic illustration of the compatibility improvement approach.

3.2. Description of the Individual Steps of the Compatibility Improvement Approach
3.2.1. First Step—Definition of Universal Item Structures

In the course of defining universal item structures, we recommend analyzing a transfer
file from the source and target systems separately. This procedure helps identify the entities
and instances for the respective unit. In both programs, the item to be identified has to
be created and exported analogously. It is essential that only the required information to
represent an item is determined. Various methods are suitable for the recognition process,
as has been elaborated on by previous researchers [15,54].

However, a challenge arises with the extracted units. The determined structures only
refer to the considered file and cannot be used independently of the use case. This occurs
due to internal factors, such as deviating keys, references, and attributes. For example, the
name, position, and orientation of a coordinate system all depend on the user’s preferences.
We propose using operations representing parts of the item to describe these discrepancies.

Moreover, we distinguish between special and standard operations. The former
are parts that can differ across items, such as the orientation and the specific name of a
coordinate system. Reference and differentiation operations are sub-specifications of special
operations. With standard operations, however, we do not subdivide further. We assume
that this categorization is sufficient for fully describing diverse items, as we have tested it
on various examples. Our work resulted in the following three operation types:

• Reference operation—This is a part of an instance representing a key or reference
within an item.

• Differentiation operation—This is a segment of an instance that describes attributes
that vary across items.

• Standard operations—This is a part of an instance without any special meaning. It is
a static string that does not differ across items, and standard operations serve as the
basic framework.

For example, Figure 5 shows the operations for the item coordinate system from
Figure 2. The keys and references, such as #47, are declared as reference operations. The
name, the values of the coordinates of the origin, and orientation represent differentiation
operations since they may differ across items. As all other data are standard operations
that are identical for each item, we transfer them directly to Figure 5.

Appl. Sci. 2022, 12, 8099 8 of 19

Appl. Sci. 2022, 12, 8099 8 of 20

However, a challenge arises with the extracted units. The determined structures only
refer to the considered file and cannot be used independently of the use case. This occurs
due to internal factors, such as deviating keys, references, and attributes. For example, the
name, position, and orientation of a coordinate system all depend on the user’s prefer-
ences. We propose using operations representing parts of the item to describe these dis-
crepancies.

Moreover, we distinguish between special and standard operations. The former are
parts that can differ across items, such as the orientation and the specific name of a coor-
dinate system. Reference and differentiation operations are sub-specifications of special
operations. With standard operations, however, we do not subdivide further. We assume
that this categorization is sufficient for fully describing diverse items, as we have tested it
on various examples. Our work resulted in the following three operation types:
• Reference operation—This is a part of an instance representing a key or reference

within an item.
• Differentiation operation—This is a segment of an instance that describes attributes

that vary across items.
• Standard operations—This is a part of an instance without any special meaning. It is

a static string that does not differ across items, and standard operations serve as the
basic framework.
For example, Figure 5 shows the operations for the item coordinate system from Fig-

ure 2. The keys and references, such as #47, are declared as reference operations. The
name, the values of the coordinates of the origin, and orientation represent differentiation
operations since they may differ across items. As all other data are standard operations
that are identical for each item, we transfer them directly to Figure 5.

Figure 5. General structure of the item coordinate system for the CAD system Creo Parametric
6.0.5.0.

In summary, the result of the first step is a universal, file-independent item structure
for both the source and the target system.

3.2.2. Second Step—Definition of Conditions
In this step, it is necessary to highlight the differences between SSI and TSI by defin-

ing opposing conditions. Analyzing the determined structures from the previous step pro-
vides the basis for identifying error causes during imports. The relationships are, in many
cases, non-trivial. Moreover, repeated modification of the exchange file from the source
system according to the required instances for an error-free import into the target system
helps trace correlations.

An examination of various use cases shows that the differentiation of the five condi-
tions is sufficient to cover all the considered scenarios. To begin, we distinguish between
conditions for instances that exist in both the SSI and the TSI:
• Homogeneous—An instance is needed in the source and the target system to inter-

pret correctly and is identical in both setups.
• Heterogeneous—An instance is present in both structures to be compared but differs

in certain places. For example, a reference to another instance is missing.

Figure 5. General structure of the item coordinate system for the CAD system Creo Parametric 6.0.5.0.

In summary, the result of the first step is a universal, file-independent item structure
for both the source and the target system.

3.2.2. Second Step—Definition of Conditions

In this step, it is necessary to highlight the differences between SSI and TSI by defining
opposing conditions. Analyzing the determined structures from the previous step provides
the basis for identifying error causes during imports. The relationships are, in many cases,
non-trivial. Moreover, repeated modification of the exchange file from the source system
according to the required instances for an error-free import into the target system helps
trace correlations.

An examination of various use cases shows that the differentiation of the five condi-
tions is sufficient to cover all the considered scenarios. To begin, we distinguish between
conditions for instances that exist in both the SSI and the TSI:

• Homogeneous—An instance is needed in the source and the target system to interpret
correctly and is identical in both setups.

• Heterogeneous—An instance is present in both structures to be compared but differs
in certain places. For example, a reference to another instance is missing.

Moreover, we develop the following three conditions to identify instances found either
in the SSI or TSI:

• Positive—An instance only exists in the TSI, and this is necessary for an error-free
import.

• Negative—An instance only exists in the SSI, and this leads to a misinterpretation in
the target system.

• Neutral—An instance only exists in the SSI, and this does not lead to a misinterpreta-
tion in the target system.

We assume that this condition classification is sufficient to describe a large number of
different use cases. To our knowledge, there are no more cases to distinguish between.

3.2.3. Third Step—Adaptation of Items

Before the actual adaptation, we extract the items under consideration. Since the file
originates from the source system, the SSI is the basis for the extraction process. Regular
expressions (regex) are particularly suitable for the search. A regex describes an abstract
pattern that matches a string of characters [55]. In particular, a regex is ideal for improved
tracking. Furthermore, wildcards offer the opportunity to reach special operations. Search
patterns can directly include standard operations since they represent the basic structure of
an item and do not differ across items.

If items are available, the applicant should first check whether they are already compat-
ible. Conformity is present if only homogeneous or neutral conditions exist. Heterogeneous,
positive, or negative conditions imply that individual instances of the item structures be-
tween the source and target systems differ. These then serve as the cause of the compatibility
problem.

If incompatibility can be determined, all defined conditions must be processed iter-
atively to consider all relationships and progressively create the compatible item. It is
advantageous to start with the conditions on the SSI since newly generated information
of the TSI may refer to already existing instances. Conditions involving SSI are either

Appl. Sci. 2022, 12, 8099 9 of 19

homogeneous, heterogeneous, negative, or neutral. We keep information with a homoge-
neous condition unchanged since they do not differ. We need to remove the error-causing
negative instances and adapt differing heterogeneous instances. Neutral conditions are
a particular case. We can either keep or remove them since they are neither needed for a
correct interpretation nor interfere with it. However, as retention ensures compatibility
with the source system, this option is preferred.

Subsequently, iteration of the instances of the TSI takes place. Here, we only consider
positive ones since the pairwise homogeneous and heterogeneous conditions are already
handled during the SSI iteration. Moreover, negative and neutral conditions occur only in
connection with instances of SSI. We need to generate information with a positive condition
since it does not exist in the transfer file so far. The values for the special operations result
from references within the item and permissible values from the context or standards on
which the format is based.

At this point, we note a dilemma related to negative, positive, and heterogeneous
conditions. More precisely, removing an instance with a negative condition, generating
new information with a positive condition, and modifying data with a heterogeneous
condition can all lead to misinterpretations in the source system. This circumstance is
difficult to avoid. Consequently, creating a functional transfer file for both the source and
target systems is challenging. We recommend a repeated inverse source system conform
adjustment of the transfer file to reimport it error-free into the originating system.

In summary, the results of the iterations of the third step are conform and insertable
items. Figure 6 represents an overview of the conditions with their respective consequences
on the right side and a summary of the first two steps described in the previous two
subsections, outlined in dashed lines.

Appl. Sci. 2022, 12, 8099 10 of 20

Figure 6. Key findings of the item adaption.

4. Case Studies
This section describes two use cases that demonstrate the method developed in the

previous section. The first example, the exchange of a sketch, can be classified as moder-
ate. The postprocessor of the target system used here is capable of importing the sketch.
However, certain necessary information is lost. We rank the second example, the transfer
of a retaining ring model, as severe because the target system cannot import the object.
We want to highlight that the described examples are relatively simple compatibility use
cases. In other words, they are trivial enough to show that the approach is developed yet
complex enough to address all relevant aspects. Nevertheless, the method presented in
this paper is also suitable for more complex use cases and other exchange formats.

4.1. Sketch Exchange via STEP
As the first example, we use the exchange of a rhombic-shaped sketch between the

CAD systems Creo Parametric 6.0.5.0 (Parametric Technology Corporation, Bosten, MA,
USA) and Catia V5 2019 (Dassault Systèmes, Vélizy-Villacoublay, France), which Figure
7 illustrates below. Sketches are a commonly used design element. A significant feature is
that they are colored after being transferred from a source to a target system. For example,
automatic recognition uses coloring to determine specific geometries [56]. However, the
import of a colored sketch, which is created in Creo and exported as a STEP-AP214 file
and then imported into Catia with standard settings, results in a loss of color information,
even though potentially all data for the coloring is available in the transfer file [15]. As a
result, the sketch is blanket colored in white by the postprocessor of Catia.

Figure 7. Lossy data exchange of a sketch between the CAD systems Creo and Catia.

Figure 6. Key findings of the item adaption.

4. Case Studies

This section describes two use cases that demonstrate the method developed in the
previous section. The first example, the exchange of a sketch, can be classified as moder-
ate. The postprocessor of the target system used here is capable of importing the sketch.
However, certain necessary information is lost. We rank the second example, the transfer
of a retaining ring model, as severe because the target system cannot import the object. We
want to highlight that the described examples are relatively simple compatibility use cases.
In other words, they are trivial enough to show that the approach is developed yet complex
enough to address all relevant aspects. Nevertheless, the method presented in this paper is
also suitable for more complex use cases and other exchange formats.

4.1. Sketch Exchange via STEP

As the first example, we use the exchange of a rhombic-shaped sketch between the
CAD systems Creo Parametric 6.0.5.0 (Parametric Technology Corporation, Bosten, MA,

Appl. Sci. 2022, 12, 8099 10 of 19

USA) and Catia V5 2019 (Dassault Systèmes, Vélizy-Villacoublay, France), which Figure 7
illustrates below. Sketches are a commonly used design element. A significant feature is
that they are colored after being transferred from a source to a target system. For example,
automatic recognition uses coloring to determine specific geometries [56]. However, the
import of a colored sketch, which is created in Creo and exported as a STEP-AP214 file and
then imported into Catia with standard settings, results in a loss of color information, even
though potentially all data for the coloring is available in the transfer file [15]. As a result,
the sketch is blanket colored in white by the postprocessor of Catia.

Appl. Sci. 2022, 12, 8099 10 of 20

Figure 6. Key findings of the item adaption.

4. Case Studies
This section describes two use cases that demonstrate the method developed in the

previous section. The first example, the exchange of a sketch, can be classified as moder-
ate. The postprocessor of the target system used here is capable of importing the sketch.
However, certain necessary information is lost. We rank the second example, the transfer
of a retaining ring model, as severe because the target system cannot import the object.
We want to highlight that the described examples are relatively simple compatibility use
cases. In other words, they are trivial enough to show that the approach is developed yet
complex enough to address all relevant aspects. Nevertheless, the method presented in
this paper is also suitable for more complex use cases and other exchange formats.

4.1. Sketch Exchange via STEP
As the first example, we use the exchange of a rhombic-shaped sketch between the

CAD systems Creo Parametric 6.0.5.0 (Parametric Technology Corporation, Bosten, MA,
USA) and Catia V5 2019 (Dassault Systèmes, Vélizy-Villacoublay, France), which Figure
7 illustrates below. Sketches are a commonly used design element. A significant feature is
that they are colored after being transferred from a source to a target system. For example,
automatic recognition uses coloring to determine specific geometries [56]. However, the
import of a colored sketch, which is created in Creo and exported as a STEP-AP214 file
and then imported into Catia with standard settings, results in a loss of color information,
even though potentially all data for the coloring is available in the transfer file [15]. As a
result, the sketch is blanket colored in white by the postprocessor of Catia.

Figure 7. Lossy data exchange of a sketch between the CAD systems Creo and Catia. Figure 7. Lossy data exchange of a sketch between the CAD systems Creo and Catia.

The analysis of a STEP-AP214 exchange file from Creo and Catia results in generally
valid item structures in the first step. Each file stores a sketch, and Figures 8 and 9 illustrate
the extracted assemblies. Attributes, such as the names and lengths of individual instances
and the references used, are generalized to make the structures comparable, independent
of the concrete use case.

Appl. Sci. 2022, 12, 8099 11 of 20

The analysis of a STEP-AP214 exchange file from Creo and Catia results in generally
valid item structures in the first step. Each file stores a sketch, and Figures 8 and 9 illustrate
the extracted assemblies. Attributes, such as the names and lengths of individual instances
and the references used, are generalized to make the structures comparable, independent
of the concrete use case.

Figure 8. Source system (Creo) conforms to the item structure of the sketch coloring.

Figure 9. Target system (Catia) conforms to the item structure of the sketch coloring.

Figure 8 demonstrates that the preprocessor applies indirect coloring in the Creo
case. More precisely, the DRAUGHTING_PRE_DEFINED_COLOUR (ref1.8) instance,
which contains the color information in att1.14, is linked to a single curve segment via the
STYLED_ITEM (ref1.4) instance. The curve segment is then connected to the initial in-
stance, COMPOSITE_CURUVE (ref1.1), by references ref1.2 and ref1.3.

An analysis of the TSI in Figure 9 shows that the postprocessor of Catia expects direct
coloring of the initial instance COMPOSITE_CURVE (ref2.1). Accordingly, the entity
SYLED_ITEM (ref2.2) directly refers to the initial instance.

In both cases, the entities MECHANICAL_DESIGN_GEOMETRIC_PRESENTA-
TION_REPRESENTATION (ref1.9 and ref 2.7) provide a representation. The instances
link to direct and indirect coloring, respectively.

In the second step, defining the relationships between the item structures developed
in the previous step is necessary to highlight the differences that cause incompatibility.
Figures 8 and 9 show the conditions on the right side. The initial instances COMPO-
SITE_CURVE (ref1.1 and ref2.1) are identical in both setups, and the data are thus homo-
geneous. As the postprocessor of Catia expects immediate coloring, which the preproces-
sor in Creo does not provide, a direct coloring of the initial instance must be newly gen-
erated. Due to non-existence, we declare information ref2.2 to ref2.6 as positive. Catia does
not require the original indirect coloring for an error-free import, but it does not interfere
if it is retained. Thus, instances ref1.2 to ref1.8 are neutral. Both structures contain the
entity MECHANICAL_DESIGN_GEOMETRIC_PRESENTATION_REPRESENTATION
(ref1.9 and ref2.7). Furthermore, the exported instance misses a reference to the entity

Figure 8. Source system (Creo) conforms to the item structure of the sketch coloring.

Appl. Sci. 2022, 12, 8099 11 of 20

The analysis of a STEP-AP214 exchange file from Creo and Catia results in generally
valid item structures in the first step. Each file stores a sketch, and Figures 8 and 9 illustrate
the extracted assemblies. Attributes, such as the names and lengths of individual instances
and the references used, are generalized to make the structures comparable, independent
of the concrete use case.

Figure 8. Source system (Creo) conforms to the item structure of the sketch coloring.

Figure 9. Target system (Catia) conforms to the item structure of the sketch coloring.

Figure 8 demonstrates that the preprocessor applies indirect coloring in the Creo
case. More precisely, the DRAUGHTING_PRE_DEFINED_COLOUR (ref1.8) instance,
which contains the color information in att1.14, is linked to a single curve segment via the
STYLED_ITEM (ref1.4) instance. The curve segment is then connected to the initial in-
stance, COMPOSITE_CURUVE (ref1.1), by references ref1.2 and ref1.3.

An analysis of the TSI in Figure 9 shows that the postprocessor of Catia expects direct
coloring of the initial instance COMPOSITE_CURVE (ref2.1). Accordingly, the entity
SYLED_ITEM (ref2.2) directly refers to the initial instance.

In both cases, the entities MECHANICAL_DESIGN_GEOMETRIC_PRESENTA-
TION_REPRESENTATION (ref1.9 and ref 2.7) provide a representation. The instances
link to direct and indirect coloring, respectively.

In the second step, defining the relationships between the item structures developed
in the previous step is necessary to highlight the differences that cause incompatibility.
Figures 8 and 9 show the conditions on the right side. The initial instances COMPO-
SITE_CURVE (ref1.1 and ref2.1) are identical in both setups, and the data are thus homo-
geneous. As the postprocessor of Catia expects immediate coloring, which the preproces-
sor in Creo does not provide, a direct coloring of the initial instance must be newly gen-
erated. Due to non-existence, we declare information ref2.2 to ref2.6 as positive. Catia does
not require the original indirect coloring for an error-free import, but it does not interfere
if it is retained. Thus, instances ref1.2 to ref1.8 are neutral. Both structures contain the
entity MECHANICAL_DESIGN_GEOMETRIC_PRESENTATION_REPRESENTATION
(ref1.9 and ref2.7). Furthermore, the exported instance misses a reference to the entity

Figure 9. Target system (Catia) conforms to the item structure of the sketch coloring.

Figure 8 demonstrates that the preprocessor applies indirect coloring in the Creo
case. More precisely, the DRAUGHTING_PRE_DEFINED_COLOUR (ref1.8) instance,
which contains the color information in att1.14, is linked to a single curve segment via
the STYLED_ITEM (ref1.4) instance. The curve segment is then connected to the initial
instance, COMPOSITE_CURUVE (ref1.1), by references ref1.2 and ref1.3.

An analysis of the TSI in Figure 9 shows that the postprocessor of Catia expects
direct coloring of the initial instance COMPOSITE_CURVE (ref2.1). Accordingly, the entity
SYLED_ITEM (ref2.2) directly refers to the initial instance.

Appl. Sci. 2022, 12, 8099 11 of 19

In both cases, the entities MECHANICAL_DESIGN_GEOMETRIC_PRESENTATION_
REPRESENTATION (ref1.9 and ref2.7) provide a representation. The instances link to direct
and indirect coloring, respectively.

In the second step, defining the relationships between the item structures developed
in the previous step is necessary to highlight the differences that cause incompatibility.
Figures 8 and 9 show the conditions on the right side. The initial instances COMPOS-
ITE_CURVE (ref1.1 and ref2.1) are identical in both setups, and the data are thus homoge-
neous. As the postprocessor of Catia expects immediate coloring, which the preprocessor
in Creo does not provide, a direct coloring of the initial instance must be newly gener-
ated. Due to non-existence, we declare information ref2.2 to ref2.6 as positive. Catia does
not require the original indirect coloring for an error-free import, but it does not inter-
fere if it is retained. Thus, instances ref1.2 to ref1.8 are neutral. Both structures contain
the entity MECHANICAL_DESIGN_GEOMETRIC_PRESENTATION_REPRESENTATION
(ref1.9 and ref2.7). Furthermore, the exported instance misses a reference to the entity
STYLED_ITEM, which we need to generate in the context of immediate coloring. Due to
missing information, data ref1.9 and ref2.7 must be classified as heterogeneous.

The third step is the actual adaptation of the item. Figure 10 shows a specific adapted
item. In the case of the generalized, newly added attributes att2.4 and att2.5, standard-
compliant values from ISO 10303-214 are inserted [50]. For att2.6, the attribute “blue” is
inputted, which is already found in the extracted item from Creo. The heterogeneous
entity MECHANICAL_DESIGN_GEOMETRIC_PRESENTATION_REPRESENTATION ref-
erences the STYLED_ITEM (#196) instance of the newly added direct coloring with the
references #196 to #200. The names of the generated data have been newly added. Keep-
ing instances with a neutral condition ensures error-free interpretation in both the source
and target systems. Inserting the item from Figure 10 into the previously incompatible
exchange file provides the correct coloring of the sketch in Catia and Creo, which then
solves compatibility issues.

Appl. Sci. 2022, 12, 8099 12 of 20

STYLED_ITEM, which we need to generate in the context of immediate coloring. Due to
missing information, data ref1.9 and ref2.7 must be classified as heterogeneous.

The third step is the actual adaptation of the item. Figure 10 shows a specific adapted
item. In the case of the generalized, newly added attributes att2.4 and att2.5, standard-
compliant values from ISO 10303-214 are inserted [50]. For att2.6, the attribute “blue” is
inputted, which is already found in the extracted item from Creo. The heterogeneous en-
tity MECHANICAL_DESIGN_GEOMETRIC_PRESENTATION_REPRESENTATION
references the STYLED_ITEM (#196) instance of the newly added direct coloring with the
references #196 to #200. The names of the generated data have been newly added. Keeping
instances with a neutral condition ensures error-free interpretation in both the source and
target systems. Inserting the item from Figure 10 into the previously incompatible ex-
change file provides the correct coloring of the sketch in Catia and Creo, which then solves
compatibility issues.

Figure 10. Adapted, compatible sketch coloring for an error-free import into Catia.

4.2. Retaining Ring Exchange via INP
The second example is the transfer of a retaining ring model. The freeware program

Gmsh 4.8.4 (developed by Christophe Geuzaine and Jean-François Remacle) is widely used
for finite element mesh generation. We use it to create a grid structure of the retaining ring
[57]. As export settings, we choose the INP format with default settings. Standard linear tetra-
hedra (element type C3D8) build up the mesh. To perform a linear-static analysis based on the
exported mesh, we import the INP file into the freeware program Z88Aurora V5 (Engineering
Design and CAD, University of Bayreuth, Bayreuth, Germany). The latter software is utilized
in the field of finite element method (FEM) [58]. Again, we have chosen standard import set-
tings. However, loading the model is not possible, even if all relevant information is available
in the exchange file. Figure 11 illustrates this process.

Figure 11. Failed data exchange of a retaining ring model between the finite element mesh generator
Gmsh and FEM software Z88.

Figure 10. Adapted, compatible sketch coloring for an error-free import into Catia.

4.2. Retaining Ring Exchange via INP

The second example is the transfer of a retaining ring model. The freeware program
Gmsh 4.8.4 (developed by Christophe Geuzaine and Jean-François Remacle) is widely used
for finite element mesh generation. We use it to create a grid structure of the retaining
ring [57]. As export settings, we choose the INP format with default settings. Standard
linear tetrahedra (element type C3D8) build up the mesh. To perform a linear-static analysis
based on the exported mesh, we import the INP file into the freeware program Z88Aurora
V5 (Engineering Design and CAD, University of Bayreuth, Bayreuth, Germany). The latter
software is utilized in the field of finite element method (FEM) [58]. Again, we have chosen
standard import settings. However, loading the model is not possible, even if all relevant
information is available in the exchange file. Figure 11 illustrates this process.

Appl. Sci. 2022, 12, 8099 12 of 19

Appl. Sci. 2022, 12, 8099 12 of 20

STYLED_ITEM, which we need to generate in the context of immediate coloring. Due to
missing information, data ref1.9 and ref2.7 must be classified as heterogeneous.

The third step is the actual adaptation of the item. Figure 10 shows a specific adapted
item. In the case of the generalized, newly added attributes att2.4 and att2.5, standard-
compliant values from ISO 10303-214 are inserted [50]. For att2.6, the attribute “blue” is
inputted, which is already found in the extracted item from Creo. The heterogeneous en-
tity MECHANICAL_DESIGN_GEOMETRIC_PRESENTATION_REPRESENTATION
references the STYLED_ITEM (#196) instance of the newly added direct coloring with the
references #196 to #200. The names of the generated data have been newly added. Keeping
instances with a neutral condition ensures error-free interpretation in both the source and
target systems. Inserting the item from Figure 10 into the previously incompatible ex-
change file provides the correct coloring of the sketch in Catia and Creo, which then solves
compatibility issues.

Figure 10. Adapted, compatible sketch coloring for an error-free import into Catia.

4.2. Retaining Ring Exchange via INP
The second example is the transfer of a retaining ring model. The freeware program

Gmsh 4.8.4 (developed by Christophe Geuzaine and Jean-François Remacle) is widely used
for finite element mesh generation. We use it to create a grid structure of the retaining ring
[57]. As export settings, we choose the INP format with default settings. Standard linear tetra-
hedra (element type C3D8) build up the mesh. To perform a linear-static analysis based on the
exported mesh, we import the INP file into the freeware program Z88Aurora V5 (Engineering
Design and CAD, University of Bayreuth, Bayreuth, Germany). The latter software is utilized
in the field of finite element method (FEM) [58]. Again, we have chosen standard import set-
tings. However, loading the model is not possible, even if all relevant information is available
in the exchange file. Figure 11 illustrates this process.

Figure 11. Failed data exchange of a retaining ring model between the finite element mesh generator
Gmsh and FEM software Z88.
Figure 11. Failed data exchange of a retaining ring model between the finite element mesh generator
Gmsh and FEM software Z88.

We trace the exchange error back to faulty element sets. Comparing the SSI from
Figure 12 with the TSI from Figure 13, we note that the preprocessor in Gmsh exports
unwanted line and surface element blocks (ELSET att1.1 to exclusively att1.1+y) in addition
to the relevant volume elements (ELSET form inclusively att1.1+y). However, the postpro-
cessor of Z88 does not expect line and surface elements. It also demands only one volume
element set block.

Appl. Sci. 2022, 12, 8099 13 of 20

We trace the exchange error back to faulty element sets. Comparing the SSI from Fig-
ure 12 with the TSI from Figure 13, we note that the preprocessor in Gmsh exports un-
wanted line and surface element blocks (ELSET att1.1 to exclusively att1.1+y) in addition
to the relevant volume elements (ELSET form inclusively att1.1+y). However, the postpro-
cessor of Z88 does not expect line and surface elements. It also demands only one volume
element set block.

Figure 12. Source system (Gmsh) conforms to the item structure of the element set blocks.

Figure 13. Target system (Z88) conforms to the item structure of the element set blocks.

In the second step, we assign conditions based on the structures from the previous
step. We classify the additional line and surface element sets as negative because they
must be removed to ensure error-free importing of the considered INP file in Z88. Nota-
bly, deleting element sets leads to peculiarity. There may be nodes that do not appear in
any element set. Unused nodes should be evaluated as negative since they must be re-
moved from the INP file to ensure an error-free data transfer. A merging of the remaining
volumes is necessary to ensure compatibility, and we only need to keep the first keyword
line of the volume element set blocks. We rank the remaining keyword lines as negative
since we must delete them from the file to ensure compatibility. The concrete specification
of the node numbers of each element set and their references must be kept, which is why
we classify them as homogeneous. Furthermore, we rate the introductory comment line
as neutral since the postprocessor ignores the line.

In the third step, we adapt the incompatible items. Figure 14 shows an example of a
modified element-set block. All line and area element sets are no longer part of the item,
and all remaining volume element sets are merged by removing all keyword lines except
the first one. The replacement of the element set block extracted from the original INP file,
and replacing it with the adapted block shown in Figure 14 ensures an error-free import.
The process allows a structural mechanics analysis of the retaining ring model in Z88.

Figure 12. Source system (Gmsh) conforms to the item structure of the element set blocks.

Appl. Sci. 2022, 12, 8099 13 of 20

We trace the exchange error back to faulty element sets. Comparing the SSI from Fig-
ure 12 with the TSI from Figure 13, we note that the preprocessor in Gmsh exports un-
wanted line and surface element blocks (ELSET att1.1 to exclusively att1.1+y) in addition
to the relevant volume elements (ELSET form inclusively att1.1+y). However, the postpro-
cessor of Z88 does not expect line and surface elements. It also demands only one volume
element set block.

Figure 12. Source system (Gmsh) conforms to the item structure of the element set blocks.

Figure 13. Target system (Z88) conforms to the item structure of the element set blocks.

In the second step, we assign conditions based on the structures from the previous
step. We classify the additional line and surface element sets as negative because they
must be removed to ensure error-free importing of the considered INP file in Z88. Nota-
bly, deleting element sets leads to peculiarity. There may be nodes that do not appear in
any element set. Unused nodes should be evaluated as negative since they must be re-
moved from the INP file to ensure an error-free data transfer. A merging of the remaining
volumes is necessary to ensure compatibility, and we only need to keep the first keyword
line of the volume element set blocks. We rank the remaining keyword lines as negative
since we must delete them from the file to ensure compatibility. The concrete specification
of the node numbers of each element set and their references must be kept, which is why
we classify them as homogeneous. Furthermore, we rate the introductory comment line
as neutral since the postprocessor ignores the line.

In the third step, we adapt the incompatible items. Figure 14 shows an example of a
modified element-set block. All line and area element sets are no longer part of the item,
and all remaining volume element sets are merged by removing all keyword lines except
the first one. The replacement of the element set block extracted from the original INP file,
and replacing it with the adapted block shown in Figure 14 ensures an error-free import.
The process allows a structural mechanics analysis of the retaining ring model in Z88.

Figure 13. Target system (Z88) conforms to the item structure of the element set blocks.

In the second step, we assign conditions based on the structures from the previous
step. We classify the additional line and surface element sets as negative because they
must be removed to ensure error-free importing of the considered INP file in Z88. Notably,
deleting element sets leads to peculiarity. There may be nodes that do not appear in any
element set. Unused nodes should be evaluated as negative since they must be removed
from the INP file to ensure an error-free data transfer. A merging of the remaining volumes
is necessary to ensure compatibility, and we only need to keep the first keyword line of
the volume element set blocks. We rank the remaining keyword lines as negative since
we must delete them from the file to ensure compatibility. The concrete specification of
the node numbers of each element set and their references must be kept, which is why we
classify them as homogeneous. Furthermore, we rate the introductory comment line as
neutral since the postprocessor ignores the line.

In the third step, we adapt the incompatible items. Figure 14 shows an example of a
modified element-set block. All line and area element sets are no longer part of the item,

Appl. Sci. 2022, 12, 8099 13 of 19

and all remaining volume element sets are merged by removing all keyword lines except
the first one. The replacement of the element set block extracted from the original INP file,
and replacing it with the adapted block shown in Figure 14 ensures an error-free import.
The process allows a structural mechanics analysis of the retaining ring model in Z88.

Appl. Sci. 2022, 12, 8099 14 of 20

Figure 14. Adapted, compatible element sets for an error-free import into Z88.

5. Validation
The presented method was implemented in software within the ViWAT project

funded by the European Regional Development Fund (EFRE) [15,59–61]. This research
project aims to provide product developers and engineers of small- and medium-sized
enterprises (SMEs) with an efficient and easy-to-use software program for the independ-
ent analysis, control, and correction of exchange data for partial tool models according to
DIN 4000/4003. The peculiarity is related to the models being available in heterogeneous
sources, according to DIN 26100 [9]. The project addresses the challenges of item extrac-
tion, cross-file information validation, and item adaptation based on the extraction. The
implementation of the method demonstrates that it is capable of extracting and adapting
items from a wide variety of sources.

For example, Table 3 shows two exchange models for tools according to DIN 4003-87
[62] and DIN 4003-126 [63]. The tools are designed in Creo according to standards. The
table displays the tools in CATIA after importing both with and without previous item
adaptations. Here, the program can automatically recognize and adapt the cutting part
line for several models, which is identified by a blue-colored sketch according to the
standard. In addition, Table 4 below shows the import result in Z88 for the meshes of the
T-slot cutter, according to DIN 4003-87 [62]. It also displays the described retaining ring
with and without item adaption. We meshed the geometries in Gmsh. Overall, these ex-
amples show that the presented method is suitable for automated adaptation of various
models.

Table 3. Demonstration of the item adaptation using the example of sketch coloring (for clarity, the
sketches have been highlighted).

Classification Model in CATIA without
Previous Item Adaption

Model in CATIA with
Previous Item Adaption

T-slot cutter
according to

DIN 4003-87 [62]
(excerpt)

Step reamer
according to

DIN 4003-126
[63]

Figure 14. Adapted, compatible element sets for an error-free import into Z88.

5. Validation

The presented method was implemented in software within the ViWAT project funded
by the European Regional Development Fund (EFRE) [15,59–61]. This research project
aims to provide product developers and engineers of small- and medium-sized enterprises
(SMEs) with an efficient and easy-to-use software program for the independent analysis,
control, and correction of exchange data for partial tool models according to DIN 4000/4003.
The peculiarity is related to the models being available in heterogeneous sources, according to
DIN 26100 [9]. The project addresses the challenges of item extraction, cross-file information
validation, and item adaptation based on the extraction. The implementation of the method
demonstrates that it is capable of extracting and adapting items from a wide variety of sources.

For example, Table 3 shows two exchange models for tools according to DIN 4003-
87 [62] and DIN 4003-126 [63]. The tools are designed in Creo according to standards. The
table displays the tools in CATIA after importing both with and without previous item
adaptations. Here, the program can automatically recognize and adapt the cutting part line
for several models, which is identified by a blue-colored sketch according to the standard.
In addition, Table 4 below shows the import result in Z88 for the meshes of the T-slot
cutter, according to DIN 4003-87 [62]. It also displays the described retaining ring with and
without item adaption. We meshed the geometries in Gmsh. Overall, these examples show
that the presented method is suitable for automated adaptation of various models.

Table 3. Demonstration of the item adaptation using the example of sketch coloring (for clarity, the
sketches have been highlighted).

Classification Model in CATIA without
Previous Item Adaption

Model in CATIA with
Previous Item Adaption

T-slot cutter
according to

DIN 4003-87 [62]
(excerpt)

Appl. Sci. 2022, 12, 8099 14 of 20

Figure 14. Adapted, compatible element sets for an error-free import into Z88.

5. Validation
The presented method was implemented in software within the ViWAT project

funded by the European Regional Development Fund (EFRE) [15,59–61]. This research
project aims to provide product developers and engineers of small- and medium-sized
enterprises (SMEs) with an efficient and easy-to-use software program for the independ-
ent analysis, control, and correction of exchange data for partial tool models according to
DIN 4000/4003. The peculiarity is related to the models being available in heterogeneous
sources, according to DIN 26100 [9]. The project addresses the challenges of item extrac-
tion, cross-file information validation, and item adaptation based on the extraction. The
implementation of the method demonstrates that it is capable of extracting and adapting
items from a wide variety of sources.

For example, Table 3 shows two exchange models for tools according to DIN 4003-87
[62] and DIN 4003-126 [63]. The tools are designed in Creo according to standards. The
table displays the tools in CATIA after importing both with and without previous item
adaptations. Here, the program can automatically recognize and adapt the cutting part
line for several models, which is identified by a blue-colored sketch according to the
standard. In addition, Table 4 below shows the import result in Z88 for the meshes of the
T-slot cutter, according to DIN 4003-87 [62]. It also displays the described retaining ring
with and without item adaption. We meshed the geometries in Gmsh. Overall, these ex-
amples show that the presented method is suitable for automated adaptation of various
models.

Table 3. Demonstration of the item adaptation using the example of sketch coloring (for clarity, the
sketches have been highlighted).

Classification Model in CATIA without
Previous Item Adaption

Model in CATIA with
Previous Item Adaption

T-slot cutter
according to

DIN 4003-87 [62]
(excerpt)

Step reamer
according to

DIN 4003-126
[63]

Appl. Sci. 2022, 12, 8099 14 of 20

Figure 14. Adapted, compatible element sets for an error-free import into Z88.

5. Validation
The presented method was implemented in software within the ViWAT project

funded by the European Regional Development Fund (EFRE) [15,59–61]. This research
project aims to provide product developers and engineers of small- and medium-sized
enterprises (SMEs) with an efficient and easy-to-use software program for the independ-
ent analysis, control, and correction of exchange data for partial tool models according to
DIN 4000/4003. The peculiarity is related to the models being available in heterogeneous
sources, according to DIN 26100 [9]. The project addresses the challenges of item extrac-
tion, cross-file information validation, and item adaptation based on the extraction. The
implementation of the method demonstrates that it is capable of extracting and adapting
items from a wide variety of sources.

For example, Table 3 shows two exchange models for tools according to DIN 4003-87
[62] and DIN 4003-126 [63]. The tools are designed in Creo according to standards. The
table displays the tools in CATIA after importing both with and without previous item
adaptations. Here, the program can automatically recognize and adapt the cutting part
line for several models, which is identified by a blue-colored sketch according to the
standard. In addition, Table 4 below shows the import result in Z88 for the meshes of the
T-slot cutter, according to DIN 4003-87 [62]. It also displays the described retaining ring
with and without item adaption. We meshed the geometries in Gmsh. Overall, these ex-
amples show that the presented method is suitable for automated adaptation of various
models.

Table 3. Demonstration of the item adaptation using the example of sketch coloring (for clarity, the
sketches have been highlighted).

Classification Model in CATIA without
Previous Item Adaption

Model in CATIA with
Previous Item Adaption

T-slot cutter
according to

DIN 4003-87 [62]
(excerpt)

Step reamer
according to

DIN 4003-126
[63]

Step reamer
according to

DIN 4003-126 [63]

Appl. Sci. 2022, 12, 8099 14 of 20

Figure 14. Adapted, compatible element sets for an error-free import into Z88.

5. Validation
The presented method was implemented in software within the ViWAT project

funded by the European Regional Development Fund (EFRE) [15,59–61]. This research
project aims to provide product developers and engineers of small- and medium-sized
enterprises (SMEs) with an efficient and easy-to-use software program for the independ-
ent analysis, control, and correction of exchange data for partial tool models according to
DIN 4000/4003. The peculiarity is related to the models being available in heterogeneous
sources, according to DIN 26100 [9]. The project addresses the challenges of item extrac-
tion, cross-file information validation, and item adaptation based on the extraction. The
implementation of the method demonstrates that it is capable of extracting and adapting
items from a wide variety of sources.

For example, Table 3 shows two exchange models for tools according to DIN 4003-87
[62] and DIN 4003-126 [63]. The tools are designed in Creo according to standards. The
table displays the tools in CATIA after importing both with and without previous item
adaptations. Here, the program can automatically recognize and adapt the cutting part
line for several models, which is identified by a blue-colored sketch according to the
standard. In addition, Table 4 below shows the import result in Z88 for the meshes of the
T-slot cutter, according to DIN 4003-87 [62]. It also displays the described retaining ring
with and without item adaption. We meshed the geometries in Gmsh. Overall, these ex-
amples show that the presented method is suitable for automated adaptation of various
models.

Table 3. Demonstration of the item adaptation using the example of sketch coloring (for clarity, the
sketches have been highlighted).

Classification Model in CATIA without
Previous Item Adaption

Model in CATIA with
Previous Item Adaption

T-slot cutter
according to

DIN 4003-87 [62]
(excerpt)

Step reamer
according to

DIN 4003-126
[63]

Appl. Sci. 2022, 12, 8099 14 of 20

Figure 14. Adapted, compatible element sets for an error-free import into Z88.

5. Validation
The presented method was implemented in software within the ViWAT project

funded by the European Regional Development Fund (EFRE) [15,59–61]. This research
project aims to provide product developers and engineers of small- and medium-sized
enterprises (SMEs) with an efficient and easy-to-use software program for the independ-
ent analysis, control, and correction of exchange data for partial tool models according to
DIN 4000/4003. The peculiarity is related to the models being available in heterogeneous
sources, according to DIN 26100 [9]. The project addresses the challenges of item extrac-
tion, cross-file information validation, and item adaptation based on the extraction. The
implementation of the method demonstrates that it is capable of extracting and adapting
items from a wide variety of sources.

For example, Table 3 shows two exchange models for tools according to DIN 4003-87
[62] and DIN 4003-126 [63]. The tools are designed in Creo according to standards. The
table displays the tools in CATIA after importing both with and without previous item
adaptations. Here, the program can automatically recognize and adapt the cutting part
line for several models, which is identified by a blue-colored sketch according to the
standard. In addition, Table 4 below shows the import result in Z88 for the meshes of the
T-slot cutter, according to DIN 4003-87 [62]. It also displays the described retaining ring
with and without item adaption. We meshed the geometries in Gmsh. Overall, these ex-
amples show that the presented method is suitable for automated adaptation of various
models.

Table 3. Demonstration of the item adaptation using the example of sketch coloring (for clarity, the
sketches have been highlighted).

Classification Model in CATIA without
Previous Item Adaption

Model in CATIA with
Previous Item Adaption

T-slot cutter
according to

DIN 4003-87 [62]
(excerpt)

Step reamer
according to

DIN 4003-126
[63]

Appl. Sci. 2022, 12, 8099 14 of 19

Table 4. Demonstration of item adaption using the example of meshed parts.

Classification Tool in Z88 without
Previous Item Adaption

Tool in Z88 with
Previous Item Adaption

T-slot cutter
according to

DIN 4003-87 [62]

Appl. Sci. 2022, 12, 8099 15 of 20

Table 4. Demonstration of item adaption using the example of meshed parts.

Classification
Tool in Z88 without

Previous Item Adaption
Tool in Z88 with

Previous Item Adaption

T-slot cutter
according to

DIN 4003-87 [62]

Retaining
Ring according
to DIN 471 [64]

6. Discussion
The item adaptation presented in Section 3 can be classified as a heuristic-based

method for extracting and adapting interrelated objects from exchange files. The defini-
tion of item structures results in clear rules based on which objects of interest can be ob-
tained. Since compatibility issues are highly specific to each use case, it is beneficial to use
distinct heuristics, as they can allow one to define the problem precisely. The stated con-
ditions allow for the description and resolution of even complex compatibility issues. In
other words, this method enables the applicant to improve the data integrity of digital
twins by modifying partial models that are stored and transmitted in different exchange
files. By enhancing the data, it can be kept error-free and complete, ensuring high quality.
Another benefit of heuristics-based methods is that they are usually easy to understand
and uncomplicated to use for a wide range of items. However, the disadvantages are that
expert knowledge is required, and the creation process is time-consuming, especially for
complex features. We also note that corresponding logic needs to be defined only once
per use case and must also be created for other methods, in addition to using heuristics
for new features. Furthermore, approaches from the field of volume decomposition have
the disadvantage that they may not converge [32,33]. In addition, the presented method
has the advantage that it is also suitable for manipulating data whose structure does not
correspond to that of a graph, as is necessary for graph-based methods. If the heuristics
are stored, they provide an exact result, which is not the case with neural networks, which
are reduced to a certain predictive accuracy. However, an accurate result is necessary to
match the unique implementation of the preprocessors. In addition, no conversion takes
place, as is the case, for example, with artificial neural networks, which expect a uniform
input vector [33,43,44].

Whereas conventional extraction methods apply to partial geometric models stored
in files, such as STEP, DXF, and Initial Graphics Exchange Specification (IGES) [29,31–44],
the item adaptation applies to other geometry-independent formats and information as
well. This is advantageous due to the wide range of applications of digital twins. For ex-
ample, an increasing amount of product manufacturing information (PMI), such as mate-
rial specifications, tolerances, notes, and other metadata, is included in models in the
course of a model-based definition (MBD) [65,66]. It is also essential to comprehensively
extract and validate data that exceeds geometric considerations to ensure continuous data
integrity. The explicit definition of item structures allows for the extraction and adaption

Appl. Sci. 2022, 12, 8099 15 of 20

Table 4. Demonstration of item adaption using the example of meshed parts.

Classification
Tool in Z88 without

Previous Item Adaption
Tool in Z88 with

Previous Item Adaption

T-slot cutter
according to

DIN 4003-87 [62]

Retaining
Ring according
to DIN 471 [64]

6. Discussion
The item adaptation presented in Section 3 can be classified as a heuristic-based

method for extracting and adapting interrelated objects from exchange files. The defini-
tion of item structures results in clear rules based on which objects of interest can be ob-
tained. Since compatibility issues are highly specific to each use case, it is beneficial to use
distinct heuristics, as they can allow one to define the problem precisely. The stated con-
ditions allow for the description and resolution of even complex compatibility issues. In
other words, this method enables the applicant to improve the data integrity of digital
twins by modifying partial models that are stored and transmitted in different exchange
files. By enhancing the data, it can be kept error-free and complete, ensuring high quality.
Another benefit of heuristics-based methods is that they are usually easy to understand
and uncomplicated to use for a wide range of items. However, the disadvantages are that
expert knowledge is required, and the creation process is time-consuming, especially for
complex features. We also note that corresponding logic needs to be defined only once
per use case and must also be created for other methods, in addition to using heuristics
for new features. Furthermore, approaches from the field of volume decomposition have
the disadvantage that they may not converge [32,33]. In addition, the presented method
has the advantage that it is also suitable for manipulating data whose structure does not
correspond to that of a graph, as is necessary for graph-based methods. If the heuristics
are stored, they provide an exact result, which is not the case with neural networks, which
are reduced to a certain predictive accuracy. However, an accurate result is necessary to
match the unique implementation of the preprocessors. In addition, no conversion takes
place, as is the case, for example, with artificial neural networks, which expect a uniform
input vector [33,43,44].

Whereas conventional extraction methods apply to partial geometric models stored
in files, such as STEP, DXF, and Initial Graphics Exchange Specification (IGES) [29,31–44],
the item adaptation applies to other geometry-independent formats and information as
well. This is advantageous due to the wide range of applications of digital twins. For ex-
ample, an increasing amount of product manufacturing information (PMI), such as mate-
rial specifications, tolerances, notes, and other metadata, is included in models in the
course of a model-based definition (MBD) [65,66]. It is also essential to comprehensively
extract and validate data that exceeds geometric considerations to ensure continuous data
integrity. The explicit definition of item structures allows for the extraction and adaption

Retaining
Ring according to DIN 471

[64]

Appl. Sci. 2022, 12, 8099 15 of 20

Table 4. Demonstration of item adaption using the example of meshed parts.

Classification
Tool in Z88 without

Previous Item Adaption
Tool in Z88 with

Previous Item Adaption

T-slot cutter
according to

DIN 4003-87 [62]

Retaining
Ring according
to DIN 471 [64]

6. Discussion
The item adaptation presented in Section 3 can be classified as a heuristic-based

method for extracting and adapting interrelated objects from exchange files. The defini-
tion of item structures results in clear rules based on which objects of interest can be ob-
tained. Since compatibility issues are highly specific to each use case, it is beneficial to use
distinct heuristics, as they can allow one to define the problem precisely. The stated con-
ditions allow for the description and resolution of even complex compatibility issues. In
other words, this method enables the applicant to improve the data integrity of digital
twins by modifying partial models that are stored and transmitted in different exchange
files. By enhancing the data, it can be kept error-free and complete, ensuring high quality.
Another benefit of heuristics-based methods is that they are usually easy to understand
and uncomplicated to use for a wide range of items. However, the disadvantages are that
expert knowledge is required, and the creation process is time-consuming, especially for
complex features. We also note that corresponding logic needs to be defined only once
per use case and must also be created for other methods, in addition to using heuristics
for new features. Furthermore, approaches from the field of volume decomposition have
the disadvantage that they may not converge [32,33]. In addition, the presented method
has the advantage that it is also suitable for manipulating data whose structure does not
correspond to that of a graph, as is necessary for graph-based methods. If the heuristics
are stored, they provide an exact result, which is not the case with neural networks, which
are reduced to a certain predictive accuracy. However, an accurate result is necessary to
match the unique implementation of the preprocessors. In addition, no conversion takes
place, as is the case, for example, with artificial neural networks, which expect a uniform
input vector [33,43,44].

Whereas conventional extraction methods apply to partial geometric models stored
in files, such as STEP, DXF, and Initial Graphics Exchange Specification (IGES) [29,31–44],
the item adaptation applies to other geometry-independent formats and information as
well. This is advantageous due to the wide range of applications of digital twins. For ex-
ample, an increasing amount of product manufacturing information (PMI), such as mate-
rial specifications, tolerances, notes, and other metadata, is included in models in the
course of a model-based definition (MBD) [65,66]. It is also essential to comprehensively
extract and validate data that exceeds geometric considerations to ensure continuous data
integrity. The explicit definition of item structures allows for the extraction and adaption

Appl. Sci. 2022, 12, 8099 15 of 20

Table 4. Demonstration of item adaption using the example of meshed parts.

Classification
Tool in Z88 without

Previous Item Adaption
Tool in Z88 with

Previous Item Adaption

T-slot cutter
according to

DIN 4003-87 [62]

Retaining
Ring according
to DIN 471 [64]

6. Discussion
The item adaptation presented in Section 3 can be classified as a heuristic-based

method for extracting and adapting interrelated objects from exchange files. The defini-
tion of item structures results in clear rules based on which objects of interest can be ob-
tained. Since compatibility issues are highly specific to each use case, it is beneficial to use
distinct heuristics, as they can allow one to define the problem precisely. The stated con-
ditions allow for the description and resolution of even complex compatibility issues. In
other words, this method enables the applicant to improve the data integrity of digital
twins by modifying partial models that are stored and transmitted in different exchange
files. By enhancing the data, it can be kept error-free and complete, ensuring high quality.
Another benefit of heuristics-based methods is that they are usually easy to understand
and uncomplicated to use for a wide range of items. However, the disadvantages are that
expert knowledge is required, and the creation process is time-consuming, especially for
complex features. We also note that corresponding logic needs to be defined only once
per use case and must also be created for other methods, in addition to using heuristics
for new features. Furthermore, approaches from the field of volume decomposition have
the disadvantage that they may not converge [32,33]. In addition, the presented method
has the advantage that it is also suitable for manipulating data whose structure does not
correspond to that of a graph, as is necessary for graph-based methods. If the heuristics
are stored, they provide an exact result, which is not the case with neural networks, which
are reduced to a certain predictive accuracy. However, an accurate result is necessary to
match the unique implementation of the preprocessors. In addition, no conversion takes
place, as is the case, for example, with artificial neural networks, which expect a uniform
input vector [33,43,44].

Whereas conventional extraction methods apply to partial geometric models stored
in files, such as STEP, DXF, and Initial Graphics Exchange Specification (IGES) [29,31–44],
the item adaptation applies to other geometry-independent formats and information as
well. This is advantageous due to the wide range of applications of digital twins. For ex-
ample, an increasing amount of product manufacturing information (PMI), such as mate-
rial specifications, tolerances, notes, and other metadata, is included in models in the
course of a model-based definition (MBD) [65,66]. It is also essential to comprehensively
extract and validate data that exceeds geometric considerations to ensure continuous data
integrity. The explicit definition of item structures allows for the extraction and adaption

6. Discussion

The item adaptation presented in Section 3 can be classified as a heuristic-based
method for extracting and adapting interrelated objects from exchange files. The definition
of item structures results in clear rules based on which objects of interest can be obtained.
Since compatibility issues are highly specific to each use case, it is beneficial to use distinct
heuristics, as they can allow one to define the problem precisely. The stated conditions allow
for the description and resolution of even complex compatibility issues. In other words, this
method enables the applicant to improve the data integrity of digital twins by modifying
partial models that are stored and transmitted in different exchange files. By enhancing
the data, it can be kept error-free and complete, ensuring high quality. Another benefit of
heuristics-based methods is that they are usually easy to understand and uncomplicated to
use for a wide range of items. However, the disadvantages are that expert knowledge is
required, and the creation process is time-consuming, especially for complex features. We
also note that corresponding logic needs to be defined only once per use case and must also
be created for other methods, in addition to using heuristics for new features. Furthermore,
approaches from the field of volume decomposition have the disadvantage that they may
not converge [32,33]. In addition, the presented method has the advantage that it is also
suitable for manipulating data whose structure does not correspond to that of a graph, as
is necessary for graph-based methods. If the heuristics are stored, they provide an exact
result, which is not the case with neural networks, which are reduced to a certain predictive
accuracy. However, an accurate result is necessary to match the unique implementation of
the preprocessors. In addition, no conversion takes place, as is the case, for example, with
artificial neural networks, which expect a uniform input vector [33,43,44].

Whereas conventional extraction methods apply to partial geometric models stored
in files, such as STEP, DXF, and Initial Graphics Exchange Specification (IGES) [29,31–44],
the item adaptation applies to other geometry-independent formats and information as
well. This is advantageous due to the wide range of applications of digital twins. For
example, an increasing amount of product manufacturing information (PMI), such as
material specifications, tolerances, notes, and other metadata, is included in models in the
course of a model-based definition (MBD) [65,66]. It is also essential to comprehensively
extract and validate data that exceeds geometric considerations to ensure continuous
data integrity. The explicit definition of item structures allows for the extraction and
adaption of various objects from various contexts. However, missing keys and references in
hierarchical and block formats makes it challenging to unambiguously identify information.
In principle, items can be defined analogously to the presented methodology. To delimit
contiguous blocks, formats usually specify delimiters, such as semicolons and introductory
and terminating strings, to detect a segment. Combining delimiters and characterizing
strings enables unique item identification.

Appl. Sci. 2022, 12, 8099 15 of 19

Furthermore, we highlight that external factors can impact how a postprocessor stores
an item in an exchange file. External factors characterize the type and number of pieces of
information used to represent an item. In other words, the chosen system and its version
influence the structure. Moreover, even if we use the same program, the configurations
affect the storage in the transfer file. For example, the selected AP can influence the
item structure in a STEP file. In addition, studies have shown that design methodology,
such as the choice and order of design elements, affects the deposit [17]. Accordingly,
different instances represent the same item, even though the export is from the same
system. This challenge can be circumvented by providing alternatives to various external
factors. Furthermore, different item structures are necessary to reflect external aspects.
Once all variants are defined, reliability is assured.

7. Conclusions

Digital twins are increasingly being used in the industry. They are usually built
from different partial models, which are then applied depending on the context. Various
exchange formats are used to archive partial models and transfer them between multiple
systems from different contexts, such as CAD, CAM, and CAE. The data integrity of digital
twins is essential. Providing and processing high-quality data still poses a severe problem.
Furthermore, exchanging information between different, partly divergent systems is a frequent
source of data quality issues, even though all the information required for correct processing
is potentially available in the exchange file. This paper presents a method for systematically
improving the compatibility of exchange files by adapting stored objects (“items”).

It is first necessary to determine the item structure in the source and target systems,
as well as to define the structures generally. A comparison of the structures enables the
identification of error-causing differences. For this purpose, we suggest five conditions
(homogeneous, heterogeneous, positive, negative, and neutral) when performing a com-
parison. Based on the determined structures and conditions, this paper highlights the
adaption of items to ensure faultless processing. After explaining the approach in general,
we demonstrate the use of the method based on two diverse use cases from differing
domains. The first example is the exchange of a sketch between the source system Creo and
the target system Catia using a STEP file in the field of CAD. The second example is the
transfer of a meshed retaining ring between the finite element mesh generator Gmsh and
the FEM software Z88 via an INP file. As Figure 15 shows, the initially wrongly colored
sketch can be correctly interpreted in Catia after applying item adaption. The three steps
of the method can also rectify the initially non-functioning data exchange of the retaining
ring. However, we want to highlight the following conclusions:

• Various norms, standards, and approaches uniform the exchange of data. Neutral
file-based exchange is widely used, for example, in the context of tools, according
to DIN 26100. The influences on data exchange and structure are manifold, which
can be a source of compatibility problems. One primary influence is the different
implementations of the routines in the pre- and postprocessors of the source and target
systems involved during data transmission.

• A way to solve these transfer problems is to adapt information internally, directly at
the file level, which minimizes the conversion process, as only necessary information is
modified. Since compatibility problems are mostly context-dependent, heuristic-based
methods are suitable for solving compatibility problems since the distinct issues can
be described precisely.

• Specifying heuristics allows us to extract and adapt relevant objects with absolute
certainty. A precise procedure is necessary because postprocessors usually require a
unique data representation.

• A challenge, however, is that expert knowledge is necessary to specify the required
rules, especially for complex items. Nevertheless, item adaptation is especially suitable
for standard parts, such as tools, which are characterized by a relatively small number
of features but a high number of variants.

Appl. Sci. 2022, 12, 8099 16 of 19

Appl. Sci. 2022, 12, 8099 17 of 20

based methods are suitable for solving compatibility problems since the distinct is-
sues can be described precisely.

• Specifying heuristics allows us to extract and adapt relevant objects with absolute
certainty. A precise procedure is necessary because postprocessors usually require a
unique data representation.

• A challenge, however, is that expert knowledge is necessary to specify the required
rules, especially for complex items. Nevertheless, item adaptation is especially suita-
ble for standard parts, such as tools, which are characterized by a relatively small
number of features but a high number of variants.

Figure 15. Compatibility Improvement of partial models of a sketch and a retaining ring using item
adaptation.

The shown approach is ideally suited for automation. It is possible to dynamically
determine item structures from transfer files and generalize them regarding file-inde-
pendent processing. However, there is still a significant challenge in detecting general
item structures in the first step of item adaptation, especially when the units of interest
become more extensive. Obtaining these manually demands an elaborate, time-consum-
ing discovery process. Since the structures are based primarily on standardized formats,
it might be possible to use automatic methods, such as machine learning algorithms, to
work out relationships. In this course, validation for different use cases is beneficial. For
example, further research can vary parameters, such as the item or file size, and verify
their effects on processing speed. The automation and validation of the presented method
will enable high-quality digital twins in the future. This approach can help move us to-
ward the vision of continuous, all-embracing digitization.

Author Contributions: Conceptualization, J.M.; methodology, J.M. and C.K.; validation, J.M. and
C.K.; formal analysis, J.M.; investigation, J.M.; resources, S.T. and F.R.; data curation, J.M.; writing—
original draft preparation, J.M.; writing—review and editing, J.M., C.K. and S.T.; visualization, J.M.;
supervision, S.T.; project administration, S.T. and F.R.; funding acquisition, F.R. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Regional Development Found (ERDF) within
the ViWAT project. Further development was funded by the European Social Fund (ESF) within the
Fit4HPC project (StMBW-W-IX.4-6-210088).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Figure 15. Compatibility Improvement of partial models of a sketch and a retaining ring using
item adaptation.

The shown approach is ideally suited for automation. It is possible to dynamically de-
termine item structures from transfer files and generalize them regarding file-independent
processing. However, there is still a significant challenge in detecting general item struc-
tures in the first step of item adaptation, especially when the units of interest become more
extensive. Obtaining these manually demands an elaborate, time-consuming discovery
process. Since the structures are based primarily on standardized formats, it might be
possible to use automatic methods, such as machine learning algorithms, to work out
relationships. In this course, validation for different use cases is beneficial. For example,
further research can vary parameters, such as the item or file size, and verify their effects
on processing speed. The automation and validation of the presented method will enable
high-quality digital twins in the future. This approach can help move us toward the vision
of continuous, all-embracing digitization.

Author Contributions: Conceptualization, J.M.; methodology, J.M. and C.K.; validation, J.M. and
C.K.; formal analysis, J.M.; investigation, J.M.; resources, S.T. and F.R.; data curation, J.M.; writing—
original draft preparation, J.M.; writing—review and editing, J.M., C.K. and S.T.; visualization, J.M.;
supervision, S.T.; project administration, S.T. and F.R.; funding acquisition, F.R. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the European Regional Development Found (ERDF) within
the ViWAT project. Further development was funded by the European Social Fund (ESF) within the
Fit4HPC project (StMBW-W-IX.4-6-210088).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon reasonable request
to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study, in the collection, analyses, and interpretation of data, in the writing of the manuscript,
or in the decision to publish the results.

Appl. Sci. 2022, 12, 8099 17 of 19

References
1. Liu, G.; Shah, R.; Schroeder, R.G. The relationships among functional integration, mass customisation, and firm performance. Int.

J. Prod. Res. 2012, 50, 677–690. [CrossRef]
2. Marks, P.; Yu, Q.; Weyrich, M. Survey on Flexibility and Changeability Indicators of automated Manufacturing Systems. In

Proceedings of the 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Turin, Italy, 4–7
September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 516–523, ISBN 9781538671092.

3. Anderl, R.; Haag, S.; Schützer, K.; Zancul, E. Digital twin technology—An approach for Industrie 4.0 vertical and horizontal
lifecycle integration. Inf. Technol. 2018, 60, 125–132. [CrossRef]

4. Gartner. Gartner 2018 Hype Cycle for IT in GCC Identifies Six Technologies That Will Reach Mainstream Adoption in Five to 10
Years. Available online: https://www.gartner.com/en/newsroom/press-releases/2018-12-13-gartner-2018-hype-cycle-for-it-
in-gcc-identifies-six-technologies-that-will-reach-mainstream-adoption-in-five-to-10-years (accessed on 9 May 2022).

5. Wilking, F.; Schleich, B.; Wartzack, S. Digital Twins—Definitions, Classes and Business Scenarios for Different Industry Sectors.
Proc. Des. Soc. 2021, 1, 1293–1302. [CrossRef]

6. VanDerHorn, E.; Mahadevan, S. Digital Twin: Generalization, characterization and implementation. Decis. Support Syst. 2021,
145, 113524. [CrossRef]

7. Schleich, B.; Anwer, N.; Mathieu, L.; Wartzack, S. Shaping the digital twin for design and production engineering. CIRP Ann.
2017, 66, 141–144. [CrossRef]

8. Schroeder, G.N.; Steinmetz, C.; Pereira, C.E.; Espindola, D.B. Digital Twin Data Modeling with AutomationML and a Communi-
cation Methodology for Data Exchange. IFAC-PapersOnLine 2016, 49, 12–17. [CrossRef]

9. DIN German Institute for Standardization. DIN 26100:2021-05: Container File—Summary of Different Product Files for the Data
Exchange; Beuth: Berlin, Germany, 2021.

10. Tao, F.; Sui, F.; Liu, A.; Qi, Q.; Zhang, M.; Song, B.; Guo, Z.; Lu, S.C.-Y.; Nee, A.Y.C. Digital twin-driven product design framework.
Int. J. Prod. Res. 2019, 57, 3935–3953. [CrossRef]

11. Lee, J.; Lapira, E.; Bagheri, B.; Kao, H. Recent advances and trends in predictive manufacturing systems in big data environment.
Manuf. Lett. 2013, 1, 38–41. [CrossRef]

12. Gabor, T.; Belzner, L.; Kiermeier, M.; Beck, M.T.; Neitz, A. A Simulation-Based Architecture for Smart Cyber-Physical Systems. In
Proceedings of the 2016 IEEE International Conference on Autonomic Computing (ICAC), Wuerzburg, Germany, 17–22 July 2016;
IEEE: Piscataway, NJ, USA, 2016; pp. 374–379, ISBN 978-1-5090-1654-9.

13. Courtney, R. Some Informal Comments About Integrity and the Integrity Workshop. In Proceedings of the International Workshop
on Data Integrity, Gakhersburg, MD, USA, 25–27 January 1989; Ruthberg, Z.G., Polk, W.T., Eds.; National Institute of Standards
and Technology: Gaithersburg, MD, USA, 1989; pp. 1–18.

14. Sandhu, R.S. On five definitions of data integrity. In DBSec; Citeseer: University Park, PA, USA, 1994; pp. 257–267.
15. Kleinschrodt, C. Analyse und Optimierung des Datenaustauschs von 3D-Modellen: Übertragung von CAD-Werkzeugmodellen

mittels STEP. Ph.D. Thesis, University of Bayreuth, Bayreuth, Germany, 2019.
16. ISO International Organization for Standardization. ISO 9000:2015: Quality Management Systems—Fundamentals and Vocabulary;

Beuth Verlag GmbH: Berlin, Germany, 2015.
17. Kleinschrodt, C.; Rieg, F. Einfluss der Modellierung auf die Austauschqualität von CAD-Modellen. Konstruktion 2020, 72. [CrossRef]
18. Autodesk. DXF Reference. Available online: http://images.autodesk.com/adsk/files/autocad_2012_pdf_dxf-reference_enu.pdf

(accessed on 9 August 2022).
19. Abaqus. Abaqus Model Definition. Available online: https://abaqus-docs.mit.edu/2017/English/SIMACAEMODRefMap/

simamod-c-model.htm (accessed on 5 May 2022).
20. ISO International Organization for Standardization. Industrial Automation Systems and Integration—Product Data Representation and

Exchange (ISO 10303): Part 1: Overview and Fundamental Principles; ISO: Geneva, Switzerland, 2021.
21. Protégé. A free, Open-Souce Ontology Editor and Framework for Building Intelligent Systems. Available online: https:

//protege.stanford.edu/ (accessed on 21 July 2022).
22. McGuinnes, D.L.; van Harmelen, F. OWL web ontology language overview. W3C 2004, 10, 2004.
23. Barbau, R.; Krima, S.; Rachuri, S.; Narayanan, A.; Fiorentini, X.; Foufou, S.; Sriram, R.D. OntoSTEP: Enriching product model data

using ontologies. Comput. Aided Des. 2012, 44, 575–590. [CrossRef]
24. Chaparala, R.T.; Hartman, N.W.; Springer, J. Examining CAD Interoperability through the Use of Ontologies. Comput. Aided Des.

Appl. 2013, 10, 83–96. [CrossRef]
25. Qin, Y.; Lu, W.; Qi, Q.; Liu, X.; Zhong, Y.; Scott, P.J.; Jiang, X. Status, Comparison, and Issues of Computer-Aided Design Model

Data Exchange Methods Based on Standardized Neutral Files and Web Ontology Language File. J. Comput. Inf. Sci. Eng. 2017, 17,
010801-1–010801-8. [CrossRef]

26. Ramnath, S.; Haghighi, P.; Venkiteswaran, A.; Shah, J.J. Interoperability of CAD geometry and product manufacturing information
for computer integrated manufacturing. Int. J. Comput. Integr. Manuf. 2020, 33, 116–132. [CrossRef]

27. Li, H.; Lu, J.; Zheng, X.; Guoxin, W.; Dimitris, K. Supporting Digital Twin Integration Using Semantic Modeling and High-Level
Architecture. In Advances in Production Management Systems, Artificial Intelligence for Sustainable and Resilient Production Systems;
Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D., Eds.; Springer International Publishing: Cham, Switzerland,
2021; pp. 228–236. ISBN 978-3-030-85909-1.

http://doi.org/10.1080/00207543.2010.537390
http://doi.org/10.1515/itit-2017-0038
https://www.gartner.com/en/newsroom/press-releases/2018-12-13-gartner-2018-hype-cycle-for-it-in-gcc-identifies-six-technologies-that-will-reach-mainstream-adoption-in-five-to-10-years
https://www.gartner.com/en/newsroom/press-releases/2018-12-13-gartner-2018-hype-cycle-for-it-in-gcc-identifies-six-technologies-that-will-reach-mainstream-adoption-in-five-to-10-years
http://doi.org/10.1017/pds.2021.129
http://doi.org/10.1016/j.dss.2021.113524
http://doi.org/10.1016/j.cirp.2017.04.040
http://doi.org/10.1016/j.ifacol.2016.11.115
http://doi.org/10.1080/00207543.2018.1443229
http://doi.org/10.1016/j.mfglet.2013.09.005
http://doi.org/10.37544/0720-5953-2020-07-08-62
http://images.autodesk.com/adsk/files/autocad_2012_pdf_dxf-reference_enu.pdf
https://abaqus-docs.mit.edu/2017/English/SIMACAEMODRefMap/simamod-c-model.htm
https://abaqus-docs.mit.edu/2017/English/SIMACAEMODRefMap/simamod-c-model.htm
https://protege.stanford.edu/
https://protege.stanford.edu/
http://doi.org/10.1016/j.cad.2012.01.008
http://doi.org/10.3722/cadaps.2013.83-96
http://doi.org/10.1115/1.4034325
http://doi.org/10.1080/0951192X.2020.1718760

Appl. Sci. 2022, 12, 8099 18 of 19

28. Klein, M.; Maschler, B.; Zeller, A.; Tallkhestani, A.; Jazdi, N.; Rosen, R.; Weyrich, M. Architektur und Technologiekomponenten
eines digitalen Zwillings. In Proceedings of the VDI-Kongress Automation, Baden-Baden, Germany, 2–3 July 2019; pp. 89–102.

29. Nasr, E.A.; Kamrani, A.K. Computer-Based Design and Manufacturing: An Information-Based Approach; Springer: New York, NY,
USA, 2007; ISBN 0-387-23323-7.

30. Rao, P.N. CAD/CAM—Principles and Applications, 2nd ed.; Tata McGraw-Hill: New Delhi, India, 2004; ISBN 0-07-058373-0.
31. Babic, B.; Nesic, N.; Miljkovic, Z. A review of automated feature recognition with rule-based pattern recognition. Comput. Ind.

2008, 59, 321–337. [CrossRef]
32. Shi, Y.; Zhang, Y.; Xia, K.; Harik, R. A Critical Review of Feature Recognition Techniques. Comput. Aided Des. Appl. 2020, 17, 861–899.

[CrossRef]
33. Yeo, C.; Kim, B.C.; Cheon, S.; Lee, J.; Mun, D. Machining feature recognition based on deep neural networks to support tight

integration with 3D CAD systems. Sci. Rep. 2021, 11, 22147. [CrossRef]
34. Shah, J.J.; Anderson, D.; Kim, Y.S.; Joshi, S. A Discourse on Geometric Feature Recognition from CAD Models. J. Comput. Inf. Sci.

Eng. 2001, 1, 41–51. [CrossRef]
35. Joshi, S.; Chang, T.C. Graph-based heuristics for recognition of machined features from a 3D solid model. Comput. Aided Des.

1988, 20, 58–66. [CrossRef]
36. Marefat, M.; Kashyap, R.L. Geometric reasoning for recognition of three-dimensional object features. IEEE Trans. Pattern Anal.

Mach. Intell. 1990, 12, 949–965. [CrossRef]
37. Holland, P.; Standring, P.; Long, H.; Mynors, D. Feature extraction from STEP (ISO 10303) CAD drawing files for metalforming

process selection in an integrated design system. J. Mater. Process. Technol. 2002, 125-126, 446–455. [CrossRef]
38. Tan, C.F.; Kher, V.K.; Ismail, N. Design of a Feature Recognition System for CAD/CAM Integration. World Appl. Sci. J. 2013, 21,

1162–1166. [CrossRef]
39. Malleswaria, V.N.; Vallib, P.M. Automatic Recognition of Machining Features using STEP Files. Int. J. Eng. Res. Technol. 2013, 2, 1–11.
40. Vandenbrande, J.H.; Requicha, A. Spatial reasoning for the automatic recognition of machinable features in solid models. IEEE

Trans. Pattern Anal. Mach. Intell. 1993, 15, 1269–1285. [CrossRef]
41. Regli, W.C.; Gupta, S.K.; Nau, D.S. Extracting alternative machining features: An algorithmic approach. Res. Eng. Des. 1995, 7,

173–192. [CrossRef]
42. Sivakumar, S.; Dhanalakshmi, V. An approach towards the integration of CAD/CAM/CAI through STEP file using feature

extraction for cylindrical parts. Int. J. Comput. Integr. Manuf. 2013, 26, 561–570. [CrossRef]
43. Babić, B.R.; Nešić, N.; Miljković, Z. Automatic feature recognition using artificial neural networks to integrate design and

manufacturing: Review of automatic feature recognition systems. Artif. Intell. Eng. Des. Anal. Manuf. 2011, 25, 289–304.
[CrossRef]

44. Zhang, D.; He, F.; Tu, Z.; Zou, L.; Chen, Y. Pointwise geometric and semantic learning network on 3D point clouds. ICA 2019, 27,
57–75. [CrossRef]

45. Wildgrube, E. Datenformat. In Lexikon der Informatik und Datenverarbeitung, 3rd ed.; Schneider, H.-J., Ed.; Oldenbourg: München,
Germany, 1991; pp. 187–188. ISBN 3-486-21514-0.

46. Klein, J. Datenintegrität in Heterogenen Informationssystemen: Ereignisorientierte Aktualisierung globaler Datenredundanzen, 1st ed.;
Deutscher Universitätsverlag: Wiesbaden, Germany, 1992; ISBN 978-3824401079.

47. Heidenhain. User’s Manual Conversational Programming. Available online: https://content.heidenhain.de/doku/tnc_guide/
pdf_files/TNC400/286180-xx/bhb/291_016-24.pdf (accessed on 25 January 2022).

48. DIN German Institute for Standardization. DIN 4000-102:2021-05: Tabular Layouts of Properties—Part 102: Data Exchange for Tabular
Layouts of Properties with XML Schema; Beuth: Berlin, Germany, 2021.

49. Anderl, R.; Trippner, D. STEP STandard for the Exchange of Product Model Data: Eine Einführung in die Entwicklung, Implementierung
und industrielle Nutzung der Normenreihe ISO 10303 (STEP), 1st ed.; Teubner: Stuttgart, Germany; Leipzig, Germany, 2000; ISBN
978-3-519-06377-3.

50. ISO International Organization for Standardization. Industrial Automation Systems and Integration—Product Data Representation
and Exchange (ISO 10303): Part 214: Application Protocol: Core Data for Automotive Mechanical Design Processes; ISO: Geneva,
Schwitzerland, 2010.

51. ISO International Organization for Standardization. Industrial Automation Systems and Integration—Product Data Representation and
Exchange (ISO 10303): Part 21: Implementation Methods: Clear Text Encoding of the Exchange Structure; ISO: Geneva, Schwitzerland, 2002.

52. Abaqus. Characterizing Elements. Available online: https://abaqus-docs.mit.edu/2017/English/SIMACAEELMRefMap/
simaelm-c-general.htm (accessed on 5 May 2022).

53. Abaqus. Input Syntax Rules. Available online: https://abaqus-docs.mit.edu/2017/English/SIMACAEMODRefMap/simamod-
c-inputsyntax.htm (accessed on 4 May 2022).

54. Kleinschrodt, C.; Rieg, F. Normalisation of STEP files for improving the data compatibility of transferred tool models. Tech. Gaz.
2017, 5, 201–205. [CrossRef]

55. Nagy, Z. Regex Quick Syntax Reference: Understanding and Using; Apress: Berkeley, CA, USA, 2018; ISBN 978-1-4842-3875-2.
56. DIN German Institute for Standardization. DIN 4000-81:2017-09: Tabular Layouts of Properties—Part 81: Drills and Countersinking

Tools with Non-Indexable Cutting Edges; Beuth: Berlin, Germany, 2017.

http://doi.org/10.1016/j.compind.2007.09.001
http://doi.org/10.14733/cadaps.2020.861-899
http://doi.org/10.1038/s41598-021-01313-3
http://doi.org/10.1115/1.1345522
http://doi.org/10.1016/0010-4485(88)90050-4
http://doi.org/10.1109/34.58868
http://doi.org/10.1016/S0924-0136(02)00364-3
http://doi.org/10.5829/idosi.wasj.2013.21.8.2126
http://doi.org/10.1109/34.250845
http://doi.org/10.1007/BF01638098
http://doi.org/10.1080/0951192X.2012.749527
http://doi.org/10.1017/S0890060410000545
http://doi.org/10.3233/ICA-190608
https://content.heidenhain.de/doku/tnc_guide/pdf_files/TNC400/286180-xx/bhb/291_016-24.pdf
https://content.heidenhain.de/doku/tnc_guide/pdf_files/TNC400/286180-xx/bhb/291_016-24.pdf
https://abaqus-docs.mit.edu/2017/English/SIMACAEELMRefMap/simaelm-c-general.htm
https://abaqus-docs.mit.edu/2017/English/SIMACAEELMRefMap/simaelm-c-general.htm
https://abaqus-docs.mit.edu/2017/English/SIMACAEMODRefMap/simamod-c-inputsyntax.htm
https://abaqus-docs.mit.edu/2017/English/SIMACAEMODRefMap/simamod-c-inputsyntax.htm
http://doi.org/10.17559/TV-20170911135242

Appl. Sci. 2022, 12, 8099 19 of 19

57. Gmsh. A Three-Dimensional Finite Element Mesh Generator with Built-In Pre- and Post-Processing Facilities. Available online:
https://gmsh.info/ (accessed on 4 May 2022).

58. LSCAD. Z88AURORA. Available online: https://en.z88.de/z88aurora/ (accessed on 6 May 2022).
59. Mohr, J.; Kleinschrodt, C.; Diwisch, P.; Rieg, F. Betrachtung von Konfigurationsdateiformaten und GUI-Frameworks für Pro-

gramme zur Aufbereitung von Austauschdateien. In Proceedings of the 18th Gemeinsames Kolloquium Konstruktionstechnik:
Nachhaltige Produktentwicklung, Duisburg, Germany, 1–2 October 2020; Corves, B., Gericke, K., Grote, K.-H., Lohrengel, A.,
Löwer, M., Nagarajah, A., Rieg, F., Scharr, G., Stelzer, R., Eds.; University of Duisburg-Essen: Duisburg, Germany, 1718. [CrossRef]

60. Mohr, J.; Kleinschrodt, C.; Siegel, T.; Rieg, F. Entwicklung einer Beschreibungssprache zur Analyse und Behebung von Datenaus-
tauschproblemen. In Proceedings of the 17th Gemeinsames Kolloquium Konstruktionstechnik: Agile Entwicklung physischer
Produkte, Aachen, Germany, 1–2 October 2019; Corves, B., Gericke, K., Grote, K.-H., Lohrengel, A., Müller, N., Nagarajah, A.,
Rieg, F., Scharr, G., Stelzer, R., Eds.; RWTH Aachen: Aachen, Germany. [CrossRef]

61. Mohr, J.; Kleinschrodt, C.; Zimmermann, M.; Rieg, F. Konzeptionelles Design zur softwaregestützten Analyse und Modifikation
von Produktdaten. In Proceedings of the 16th Gemeinsames Kolloquium Konstruktionstechnik: Digitalisierung und Produkten-
twicklung, Bayreuth, Germany, 11–12 October 2018; Brökel, K., Corves, B., Grote, K.-H., Lohrengel, A., Müller, N., Nagarajah, A.,
Rieg, F., Scharr, G., Stelzer, R., Eds.; University of Bayreuth: Bayreuth, Germany, 2018. ISBN 978-3-00-059609-4.

62. DIN German Institute for Standardization. DIN 4003-87:2021-10: Concept for the Design of 3D Models Based on Properties According
to DIN 4000—Part 87: End Mills for Indexable Inserts; Beuth: Berlin, Germany, 2021.

63. DIN German Institute for Standardization. DIN 4003-126:2012-10: Concept for the Design of 3D Models Based on Properties According
to DIN 4000—Part 126: Reamers with Non-Indexable Cutting Edges; Beuth: Berlin, Germany, 2012.

64. DIN German Institute for Standardization. DIN 471: Retaining Rings for Shafts—Normal Type and Heavy Type; Beuth: Berlin,
Germany, 2011.

65. Martin, D. What Does MBD Mean? Available online: https://www.ptc.com/en/blogs/cad/what-does-mbd-mean (accessed on
18 April 2022).

66. Miller, A.M.; Alvarez, R.; Hartman, N. Towards an extended model-based definition for the digital twin. Comput. Aided Des. Appl.
2018, 15, 880–891. [CrossRef]

https://gmsh.info/
https://en.z88.de/z88aurora/
http://doi.org/10.17185/duepublico/73094
http://doi.org/10.18154/RWTH-2019-08298
https://www.ptc.com/en/blogs/cad/what-does-mbd-mean
http://doi.org/10.1080/16864360.2018.1462569

	Introduction
	Materials
	Fundamentals of Data Exchange and Extraction
	Fundamentals of File Formats
	Fundamentals of the STEP File Format
	Fundamentals of the INP File Format

	Proposed Method
	General Description of the Steps of the Compatibility Improvement Approach
	Description of the Individual Steps of the Compatibility Improvement Approach
	First Step—Definition of Universal Item Structures
	Second Step—Definition of Conditions
	Third Step—Adaptation of Items

	Case Studies
	Sketch Exchange via STEP
	Retaining Ring Exchange via INP

	Validation
	Discussion
	Conclusions
	References

