Vis-NIR Reflectance Spectroscopy and PLSR to Predict PCB Content in Severely Contaminated Soils: A Perspective Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Statistical Analysis
2.3. Vis-NIR Spectroscopy
2.4. Multivariate Calibration
3. Results and Discussion
3.1. Soil Chemical Properties
3.2. PCA and Soil Spectral Characteristics
3.3. Multivariate Calibration
3.4. Importance of Wavelenghts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Safety Evaluation of Certain Food Additives and Contaminants. Supplement 1: Non-Dioxin-Like Polychlorinated Biphenyls; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Škrbić, B.D.; Marinković, V.; Antić, I.; Gegić, A.P. Seasonal variation and health risk assessment of organochlorine compounds in urban soils of Novi Sad, Serbia. Chemosphere 2017, 181, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, K. Properties and Analysis of Dioxin-Like Compounds in Marine Samples from Sweden. Ph.D. Thesis, Umea University, Umea, Sweden, 2003. [Google Scholar]
- Leone, A.P.; Viscarra-Rossel, R.A.; Amenta, P.; Buondonno, A. Prediction of Soil Properties with PLSR and vis-NIR Spectroscopy: Application to Mediterranean Soils from Southern Italy. Curr. Anal. Chem. 2012, 8, 283–299. [Google Scholar] [CrossRef]
- Irons, J.R.; Weismiller, R.A.; Petersen, G. Soil reflectance. In Theory and Applications of Optical Remote Sensing; Asrar, G., Ed.; Wiley: New York, NY, USA, 1989; pp. 66–106. [Google Scholar]
- Kooistra, L.; Wehrens, R.; Buydens, L.M.C.; Leuven, R.S.E.W.; Nienhuis, P.H. Possibilities of soil spectroscopy for the classification of contaminated areas in river floodplains. Int. J. Appl. Earth Obs. Geoinf. 2001, 3, 337–344. [Google Scholar] [CrossRef]
- Kooistra, L.; Wehrens, R.; Leuven, R.S.E.W.; Buydens, L.M.C. Possibilities of visible–near-infrared spectroscopy for the assessment of soil contamination in river floodplains. Anal. Chim. Acta 2001, 446, 97–105. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Wang, H.; Du, Y. Study on the prediction of soil heavy metal elements content based on visible near-infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 199, 43–49. [Google Scholar] [CrossRef]
- Okparanma, R.N.; Mouazen, A.M. Visible and Near-Infrared Spectroscopy Analysis of a Polycyclic Aromatic Hydrocarbon in Soils. Sci. World J. 2013, 2013, 160360. [Google Scholar] [CrossRef] [PubMed]
- Siebielec, G.; McCarty, G.W.; Stuczynski, T.I.; Reeves, J.B. Near- and Mid-Infrared Diffuse Reflectance Spectroscopy for Measuring Soil Metal Content. J. Environ. Qual. 2004, 33, 2056–2069. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhang, X.; Sun, X.; Sun, Y.; Cen, Y. Predicting nickel concentration in soil using reflectance spectroscopy associated with organic matter and clay minerals. Geoderma 2018, 327, 25–35. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J.; Ji, J.; Gong, P.; Liao, Q.; Tian, Q.; Ma, H. A Mechanism Study of Reflectance Spectroscopy for Investigating Heavy Metals in Soils. Soil Sci. Soc. Am. J. 2007, 71, 918–926. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, W.; Cen, Y.; Zhang, L.; Wang, N. Predicting cadmium concentration in soils using laboratory and field reflectance spectroscopy. Sci. Total Environ. 2019, 650, 321–334. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Banin, A. Near-Infrared Analysis as a Rapid Method to Simultaneously Evaluate Several Soil Properties. Soil Sci. Soc. Am. J. 1995, 59, 364–372. [Google Scholar] [CrossRef]
- Ulusoy, Y.; Tekin, Y.; Tümsavaş, Z.; Mouazen, A.M. Prediction of soil cation exchange capacity using visible and near infrared spectroscopy. Biosyst. Eng. 2016, 152, 79–93. [Google Scholar] [CrossRef]
- Vasques, G.M.; Grunwald, S.; Sickman, J.O. Modeling of Soil Organic Carbon Fractions Using Visible-Near-Infrared Spectroscopy. Soil Sci. Soc. Am. J. 2009, 73, 176–184. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Irons, J.R.; Epema, G.F. Soil reflectance. In Remote Sensing for the Earth Sciences: Manual of Remote Sensing; Rencz, A.N., Ed.; Wiley: New York, NY, USA, 1999; Volume 3, pp. 111–188. [Google Scholar]
- Leone, N.; Mercurio, M.; Grilli, E.; Leone, A.P.; Langella, A.; Buondonno, A. Potential of vis-NIR reflectance spectroscopy for the mineralogical characterization of synthetic gleys: A preliminary investigation. Period. Mineral. 2011, 80, 433–453. [Google Scholar]
- Leone, A.P.; Leone, N.; Rampullo, S. An Application of vis-NIR reflectance spectroscopy and Artificial Neural Networks to the Prediction of soil Organic Carbon content in Southern Italy. Fresenium Environ. Bullettin 2013, 22, 1230–1238. [Google Scholar]
- Lucadamo, A.; Leone, A.P. Principal component multinomial regression and spectrometry to predict soil texture. J. Chemom. 2015, 29, 514–520. [Google Scholar] [CrossRef]
- Shepherd, K.D.; Walsh, M. Diffuse reflectance spectroscopy for rapid soil analysis. In Encyclopedia of Soil Science; Rattan, L., Ed.; Marcel Dekker, Inc.: Boca Raton, FL, USA, 2006; pp. 480–484. [Google Scholar]
- Sorenson, P.T.; Quideau, S.A.; Rivard, B. High resolution measurement of soil organic carbon and total nitrogen with laboratory imaging spectroscopy. Geoderma 2018, 315, 170–177. [Google Scholar] [CrossRef]
- Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Visible and Near Infrared Spectroscopy in Soil Science. Adv. Agron. 2010, 107, 163–215. [Google Scholar] [CrossRef]
- Tümsavaş, Z.; Tekin, Y.; Ulusoy, Y.; Mouazen, A.M. Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy. Biosyst. Eng. 2019, 177, 90–100. [Google Scholar] [CrossRef]
- Ancona, V.; Leone, N.; Galeone, C.; Bagnuolo, G.; Felice Uricchio, V.; Leone, A.P. Using Spectrometric Colour Measurement for the Prediction of Soil PCBs in a Contaminated Site of Southern Italy. Water Air Soil Pollut. 2019, 230, 74. [Google Scholar] [CrossRef]
- Escadafal, R. Remote sensing of soil color: Principles and applications. Remote Sens. Rev. 1993, 7, 261–279. [Google Scholar] [CrossRef]
- Martens, H.; Naes, T. Multivariate Calibration, 1st ed.; John Wiley & Sons: Chichester, UK, 1989. [Google Scholar]
- Dalal, R.C.; Henry, R.J. Simultaneous Determination of Moisture, Organic Carbon, and Total Nitrogen by Near Infrared Reflectance Spectrophotometry. Soil Sci. Soc. Am. J. 1986, 50, 120–123. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). Keys to Soil Taxonomy, 8th ed.; Soil Survey Staff, N.R.C.S., Ed.; U.S. Government Printing Office: Washington, DC, USA, 1998.
- Caliandro, A.; Lamaddalena, N.; Stelluti, M.; Stetuto, P. Caratterizzazione Agroecologica della Regione Puglia in Funzione della Potenzialità Produttiva; Ideaprint: Bari, Italy, 2005. [Google Scholar]
- Mascolo, G.; De Tommaso, B.; Bagnuolo, G.; Ciannarella, R.; Rapanà, N.; Lopez, A. Potenziamento ed Implementazione della Banca dati Tossicologica del Suolo e Prodotti Derivati; Rapporto IRSA-CNR: Bari, Italy, 2005. [Google Scholar]
- Ameyan, O. Surface Soil Variability of a Map Unit on Niger River Alluvium. Soil Sci. Soc. Am. J. 1986, 50, 1289–1293. [Google Scholar] [CrossRef]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis, 7th ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1995. [Google Scholar]
- Addinsoft. XLSTAT; Addinsoft: New York, NY, USA, 2020. [Google Scholar]
- Viscarra Rossel, R.A. ParLeS: Software for chemometric analysis of spectroscopic data. Chemom. Intell. Lab. Syst. 2008, 90, 72–83. [Google Scholar] [CrossRef]
- Geladi, P.; MacDougall, D.; Martens, H. Linearization and Scatter-Correction for Near-Infrared Reflectance Spectra of Meat. Appl. Spectrosc. 1985, 39, 491–500. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Dhanoa, M.S.; Lister, S.J.; Sanderson, R.; Barnes, R.J. The Link between Multiplicative Scatter Correction (MSC) and Standard Normal Variate (SNV) Transformations of NIR Spectra. J. Near Infrared Spectrosc. 1994, 2, 43–47. [Google Scholar] [CrossRef]
- Daubechies, I. Ten Lectures on Wavelets; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1992; ISBN 978-0-89871-274-2. [Google Scholar]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Efron, B.; Tibshir, R. An Introduction of the Bootstrap, Monograph on Statistics and Applied Probability; CRC Press: Boca Raton, FL, USA, 1994; Volume 57. [Google Scholar]
- Li, B.; Morris, J.; Martin, E.B. Model selection for partial least squares regression. Chemom. Intell. Lab. Syst. 2002, 64, 79–89. [Google Scholar] [CrossRef]
- Akaike, H. Fitting autoregressive models for prediction. Ann. Inst. Stat. Math. 1969, 21, 243–247. [Google Scholar] [CrossRef]
- Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Trygg, J.; Wilström, C.; Wold, S. Processed Analytical Technology (PAT) and Quality by Design (QbD). In Multi- and Megavariate Data Analysis. Basic Principles and Applications; Umetrics Academy: Umeå, Sweden, 2006; p. 425. [Google Scholar]
- Viscarra Rossel, R.A. Robust Modelling of Soil Diffuse Reflectance Spectra by Bagging-Partial Least Squares Regression. J. Near Infrared Spectrosc. 2007, 15, 39–47. [Google Scholar] [CrossRef]
- Williams, P.C. Variables affecting near-infrared reflectance spectroscopic analysis. In Near-Infrared Technology in the Agricultural and Food Industries; Williams, P., Norris, K., Eds.; American Association of Cereal Chemists Inc.: St. Paul, MN, USA, 1987; pp. 143–167. [Google Scholar]
- Haaland, D.M.; Thomas, E.V. Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal. Chem. 1988, 60, 1193–1202. [Google Scholar] [CrossRef]
- Wold, S.; Martens, H.; Wold, H. The multivariate calibration problem in chemistry solved by the PLS method. In Matrix Pencils; Springer: Berlin/Heidelberg, Germany, 1983; pp. 286–293. [Google Scholar]
- Chong, I.G.; Jun, C.H. Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syst. 2005, 78, 103–112. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Farrés, M.; Platikanov, S.; Tsakovski, S.; Tauler, R. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J. Chemom. 2015, 29, 528–536. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Fouad, Y.; Walter, C. Using a digital camera to measure soil organic carbon and iron contents. Biosyst. Eng. 2008, 100, 149–159. [Google Scholar] [CrossRef]
- Bartholomeus, H.M.; Schaepman, M.E.; Kooistra, L.; Stevens, A.; Hoogmoed, W.B.; Spaargaren, O.S.P. Spectral reflectance based indices for soil organic carbon quantification. Geoderma 2008, 145, 28–36. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Inbar, Y.; Chen, Y. The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition process. Remote Sens. Environ. 1997, 61, 1–15. [Google Scholar] [CrossRef]
- Sherman, D.M.; Waite, T.D. Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. Am. Mineral. 1985, 70, 1262–1269. [Google Scholar]
- Scheinost, A.C.; Chavernas, A.; Barron, V.; Torrent, J. Use and Limitations of Second-Derivative Diffuse Reflectance Spectroscopy in the Visible to Near-Infrared Range to Identify and Quantify Fe Oxide Minerals in Soils. Clays Clay Miner. 1998, 46, 528–536. [Google Scholar] [CrossRef]
- Galvao, L.S.; Vitorello, I. Role of organic matter in obliterating the effects of iron on spectral reflectance and colour of Brazilian tropical soils. Int. J. Remote Sens. 1998, 19, 1969–1979. [Google Scholar] [CrossRef]
- Henderson, T.L.; Baumgardner, M.F.; Franzmeier, D.P.; Stott, D.E.; Coster, D.C. High Dimensional Reflectance Analysis of Soil Organic Matter. Soil Sci. Soc. Am. J. 1992, 56, 865–872. [Google Scholar] [CrossRef]
- Ben-Dor, E. Quantitative remote sensing of soil properties. Adv. Agron. 2002, 75, 173–243. [Google Scholar] [CrossRef]
- Torrent, J. Mediterranean Soils. Encycl. Soils Environ. 2005, 4, 418–427. [Google Scholar] [CrossRef]
- Bishop, J.L.; Pieters, C.M.; Edwards, J.O. Infrared Spectroscopic Analyses on the Nature of Water in Montmorillonite. Clays Clay Miner. 1994, 42, 702–716. [Google Scholar] [CrossRef]
- Post, J.L.; Noble, P.N. The Near-Infrared Combination Band Frequencies of Dioctahedral Smectites, Micas, and Illites. Clays Clay Miner. 1993, 41, 639–644. [Google Scholar] [CrossRef]
- Rossel, R.A.V.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, X.; Huang, Y.; Li, Z.; Zhang, Z. Rapid Detection of Polychlorinated Biphenyls at Trace Levels in Real Environmental Samples by Surface-Enhanced Raman Scattering. Sensors 2011, 11, 10851–10858. [Google Scholar] [CrossRef]
- Bishop, J.L.; Lane, M.D.; Dyar, M.D.; Brown, A.J. Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Miner. 2008, 43, 35–54. [Google Scholar] [CrossRef]
Horizon | Depth (cm) | Texture | pH | CaCO3 (%) | OC (%) | |||
---|---|---|---|---|---|---|---|---|
Clay (%) | Fine Sand (%) | Coarse Sand (%) | Silt (%) | |||||
Ap1 | 0–20 | 29 | 43 | 24 | 4 | 7.84 | 2.5 | 0.58 |
Ap2 | 20–40 | 30 | 43 | 23 | 4 | 7.71 | 2.25 | 0.311 |
Bt | 40–100 | 43 | 35 | 19 | 3 | 7.3 | 4.0 | 0.185 |
Bk | 100–140 | 26 | 38 | 32 | 4 | 8.22 | 26.0 | 0.101 |
Statistics | EOX | PCBs18 | Tri-CB | Tetra-CB | Penta-CB | Hexa-CB | Hepta-CB |
---|---|---|---|---|---|---|---|
(mg kg−1) | (mg kg−1) | (%) | (%) | (%) | (%) | (%) | |
Min | 0.1 | 0.1 | 0.0 | 0.3 | 15.5 | 26.0 | 0.6 |
Max | 5000.0 | 16,991.3 | 8.2 | 34.9 | 64.7 | 48.2 | 38.0 |
Mean | 622.2 | 2350.2 | 2.0 | 6.3 | 32.8 | 40.3 | 18.6 |
CV % | 213.9 | 207.2 | 130.2 | 125.4 | 40.5 | 14.3 | 70.5 |
Skewness | 2.2 | 2.2 | 1.5 | 2.1 | 0.4 | −0.6 | 0.2 |
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | |
---|---|---|---|---|---|---|---|
Eigenvalue | 4.99 | 1.05 | 0.58 | 0.22 | 0.14 | 0.03 | 0.01 |
Variability (%) | 71.23 | 14.95 | 8.21 | 3.11 | 2.06 | 0.37 | 0.06 |
Cumulative (%) | 71.23 | 86.18 | 94.39 | 97.51 | 99.57 | 99.94 | 100 |
R | R | ||||
---|---|---|---|---|---|
PCBs18 vs. | Slope 400–550 nm | −0.023 | PCBs18 vs. | Albedo VIS | 0.031 |
Slope 550–600 nm | −0.812 | Albedo NIR | −0.461 | ||
Slope 600–800 nm | −0.857 | Albedo SWIR | −0.597 | ||
Slope 800–1100 nm | −0.888 |
Parameter | Spectra Pre-Processing | R2 | RMSE | RPD | F |
---|---|---|---|---|---|
EOX | MSC, SG, I der., mean c. | 0.909 | 0.481 | 3.40 | 4 |
PCBs18 | MSC, SG, I der., mean c | 0.911 | 0.594 | 3.47 | 3 |
Tri-CB | no models possible | ||||
Tetra-CB | log 1/R | 0.449 | 0.470 | 1.40 | 3 |
log 1/R, med., I der. | 0.798 | 6.073 | 2.27 | 2 | |
Hexa-CB | log 1/R, mean c. | 0.576 | 3.739 | 1.59 | 2 |
Hepta-CB | MSC, med., I der., mean c. | 0.897 | 4.190 | 3.24 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leone, N.; Ancona, V.; Galeone, C.; Massarelli, C.; Uricchio, V.F.; Leone, A.P. Vis-NIR Reflectance Spectroscopy and PLSR to Predict PCB Content in Severely Contaminated Soils: A Perspective Approach. Appl. Sci. 2022, 12, 8283. https://doi.org/10.3390/app12168283
Leone N, Ancona V, Galeone C, Massarelli C, Uricchio VF, Leone AP. Vis-NIR Reflectance Spectroscopy and PLSR to Predict PCB Content in Severely Contaminated Soils: A Perspective Approach. Applied Sciences. 2022; 12(16):8283. https://doi.org/10.3390/app12168283
Chicago/Turabian StyleLeone, Natalia, Valeria Ancona, Ciro Galeone, Carmine Massarelli, Vito Felice Uricchio, and Antonio Pasquale Leone. 2022. "Vis-NIR Reflectance Spectroscopy and PLSR to Predict PCB Content in Severely Contaminated Soils: A Perspective Approach" Applied Sciences 12, no. 16: 8283. https://doi.org/10.3390/app12168283
APA StyleLeone, N., Ancona, V., Galeone, C., Massarelli, C., Uricchio, V. F., & Leone, A. P. (2022). Vis-NIR Reflectance Spectroscopy and PLSR to Predict PCB Content in Severely Contaminated Soils: A Perspective Approach. Applied Sciences, 12(16), 8283. https://doi.org/10.3390/app12168283