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Abstract: Soil reclamation from polychlorinated biphenyls (PCBs) requires careful analysis in terms
of their concentrations and spatial distribution. Conventional laboratory analysis, even if providing
the careful evaluation of PCBs, is costly and time-consuming. Therefore, rapid and cost-effective
techniques to replace traditional analytical approaches are required. The utility of visible-near in-
frared (vis-NIR) reflectance spectroscopy in conjunction with partial least square regression (PLSR)
analysis was evaluated in this study. Spectral reflectance was measured in the laboratory on 28 soil
samples collected in a highly contaminated area of southern Italy and chemically analysed to deter-
mine eighteen PCB congeners, their sum (PCBs18), and extractable organic halogen content (EOX).
Spectroscopic data were pre-processed prior to data analysis by combining different methods. Using
PLSR analysis, significant relationships were observed between the predicted and the measured
content of PCBs18, EOX, and the percentage of several isomeric classes of PCBs. Although rigorous
models could not be calibrated, due to the limited number of samples, the preliminary results of this
study demonstrated that vis-NIR reflectance spectroscopy, coupled with PLSR, can be considered a
promising method for a rapid and cost-effective prediction of PCBs.

Keywords: polychlorinated biphenyls; soil contamination; reflectance spectroscopy; PLSR

1. Introduction

Polychlorinated biphenyls (PCBs) are organic compounds that are very dangerous
to both the environment and to human health [1]. Because of their extraordinary chemi-
cal stability and heat resistance, PCBs have been widely used as dielectrics in capacitors
and transformers, as plasticizers in paints and joint sealants, and in many other appli-
cations [2]. Because of their resistance to acids and bases, as well as to oxidation and
hydrolysis reactions, these compounds tend to persist for long periods (months or years)
in the environment, cycling among air, water, and soil [3]. Soil contamination by PCBs
is a severe environmental risk in the so-called Sites of National Interest (SIN) of Taranto
(southern Italy). SINs are several areas exposed to high ecological risks, identified by the
Italian Ministry for Ecological Transition (MiTE), as needed for reclamation. Contiguous to
the SIN area of Taranto lies a site heavily contaminated by PCBs. Contamination was cre-
ated by the spillage directly into the soil, for fourteen consecutive years (from 1984 to 1998),
in a completely acceptable out-of-law manner, of PCB-polluted wastes. The site surrounds
the MATRA, a former engineering industry (hereafter called the “ex-MATRA”), engaged
in the maintenance of electrical transformers. Soil reclamation from PCBs requires careful
analysis in terms of concentrations and spatial distribution into the pedo-environment.

The determination of PCB contents is carried out through chemical laboratory analyses.
This approach, even if providing the careful evaluation of PCBs, is very expensive in terms
of costs and time. Hence, there is a need to evaluate the potential of alternative methods
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of determination, which could be useful, especially when there are many soil samples to
be analysed [4]. In recent years, reflectance spectroscopy, which is the ratio of the spectral
radiant flux reflected from a soil surface to the spectral radiant impinging on it [5] in
the vis-NIR domain, has proved to be a useful technique for the prediction of various
soil pollutants [6–13] as well as other soil properties [4,14–25]. The principle on which
visible-near infrared reflectance spectroscopy is based is that the characteristics of radiation
reflected from a material are a function of its chemical and physical properties; thus,
observations of soil reflectance can provide information on its properties [5]. Compared to
conventional laboratory analyses, vis-NIR spectroscopy has the advantage of being faster,
inexpensive, and non-destructive; in addition, it can be used to evaluate different soil
properties simultaneously [17].

So far, many studies pertaining to the use of reflectance spectroscopy for the prediction
of soil contaminants have been focused on heavy metals [6–8,10–13]. Several studies have
regarded organic contaminants [9]. Only limited research has covered polychlorinated
compounds and, in particular, PCBs. Recently, ref. [26] found significant bivariate statis-
tical relationships between soil colour parameters and PCBs content in the ex-MATRA
contaminated site. However, it should be noted that soil colour is an expression of the
visible portion of the spectra [27]. Therefore, it is not unlikely that further information can
be extracted from the near infrared portion of the spectrum. The potential of the whole
vis-NIR spectrum in the prediction of PCBs needs to be further evaluated.

Due to the overlapping absorption of soil components, soil reflectance spectra in the
visible and near-infrared ranges are mainly non-specific. The lack of specificity is further
intensified by scattering effects caused by the soil structure or specific components [24]. All
these factors produce complex absorption patterns that must be mathematically retrieved
from the spectra and related to soil properties. Thus, chemometrics and pedometrics are
needed to investigate soil reflectance spectra [28].

The most popular calibration methods for soil applications are based on linear re-
gressions, specifically stepwise multiple linear regression (SMLR), principal component
regression (PCR), and partial least squares regression (PLSR) [14,29]. The fundamental
justification for utilising SMLR is the inadequacies of more traditional regression techniques
such as multiple linear regression (MLR) and the lack of consciousness among soil scientists
of the existence of entire spectrum data compression techniques such as PCR and PLSR.
Both PCR and PLSR can analyse data with a large number of predictor variables that are
highly collinear. PCR and PLSR are related techniques, and, in most cases, they show
similar prediction errors [24]. However, PLSR is often preferred by analysts because it
relates the response and predictor variables so that the model explains more of the variance
in the response with fewer components; it is more interpretable, and the algorithm is faster
in computation. Some relevant theoretical aspects of PLSR are discussed in depth in [4].

The calibration of robust predictive models based on the use of PLSR, as well as
other numerical methods, requires the availability of a large number of samples, which
will be partly used to calibrate the models, and partly for its validation. However, when,
as in our case, only a relatively low number of samples are available, even if it is not
possible to produce rigorous calibration models, it is still possible to evaluate the existence
of statistically based, promising trends, useful for directing future research.

The purpose of this study was to perform a preliminary evaluation of reflectance
spectroscopy in the vis-NIR spectral domain, coupled with PLSR for predicting PCB soil
content in the contaminated site of the ex-MATRA. Specifically, considering the lack of
specific studies in the literature, it intends to evaluate whether or not there is a statistically
evident trend in the evaluation of PCBs, based on spectroradiometric measurements.

2. Materials and Methods
2.1. Study Area

The investigated area (Figure 1) falls within the so-called area of the Production
Settlement Plan (PIP) of the municipality of Statte (Taranto province, Apulia Region,
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southern Italy; 40◦32′25′′ N, 17◦12′51′′ E). Specifically, it regards an area outside the ex-
MATRA, within 100 m of the industry.
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Figure 1. Location of the study site.

The climate is typically Mediterranean, with precipitation concentrated in winter and
hot/dry summers, usually followed by warm and humid falls. Mean annual temperatures
are of 16.0 ◦C, and mean annual precipitations are of 520 mm, with reference evapotranspi-
ration of 1035 mm. Limestone, dolostone, and sandstone represent the dominant lithology
of the area surrounding the study site.

The reference soil profile of the soil-landscape unit where the site under investigation
falls is classified, according to the USDA Soil Taxonomy [30], as Calcic Haploxeralf fine
loamy, mixed, thermic [31]. The basic properties of that soil profile are shown in Table 1.

Table 1. Basic properties of the reference soil profile.

Horizon
Depth
(cm)

Texture

pH CaCO3
(%)

OC
(%)Clay

(%)

Fine
Sand
(%)

Coarse
Sand
(%)

Silt
(%)

Ap1 0–20 29 43 24 4 7.84 2.5 0.58
Ap2 20–40 30 43 23 4 7.71 2.25 0.311
Bt 40–100 43 35 19 3 7.3 4.0 0.185
Bk 100–140 26 38 32 4 8.22 26.0 0.101

After [31], mod.

For the purpose of the present study, twenty-eight soil samples were analysed. The
samples had previously been collected (March 2005) by CNR-IRSA at fifteen sites inside
the study area, at one (0–15 cm) or two different depths (0–5 and 5–20 cm). The collected
soil samples were subjected to chemical analyses [32] for the determination of the sum
of the twelve dioxin-like PCBs and six non-dioxin-like “indicator” PCBs (hereafter indi-
cated as PCBs18) and the percentage of different isomeric classes of PCBs (from Tetra-CB
to 376 Hepta-CB) in the PCBs18. In addition, the extractable organic halogen (EOX) contents
were also determined by [32]. EOX represent the total content of halogens (Cl, Br, I) in
organo-halogenated compounds, which can be extracted by organic solvents from soil and
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other sediments. Therefore, it can be considered a useful overall measure of soil pollution
by organochlorine compounds, which is why the EOX parameter was also considered in
this study.

For additional information on the soil sampling strategies and the methodologies of
chemical analysis, see [26].

2.2. Statistical Analysis

Soil chemical variables were statistically described in terms of minimum (Min), maxi-
mum (Max), mean values, coefficient of variation (CV), and skewness (Skew). According
to [33], the CV was classified as small, moderate, or large if it was below 0.2, between
0.2 and 0.5, or above 0.5, respectively.

Six of the investigated variables were right-skewed; therefore, before being used
in further statistical analysis, they were log-transformed to achieve normality. By using
logarithms, positively skewed distributions are effectively transformed.

Principal component analysis (PCA), applied to the correlation matrix, was used to
identify the structure of relationships among both the investigated chemical variables
and soil samples. Before PCA, the variables were standardised to ensure they all had
equal weight in the analysis. PCA scores were submitted to Cluster analysis to group
individual samples. The classification was based on the Euclidean distance, which is the
most commonly used measure of distance in Cluster analysis [34], using a complete linkage
procedure. All the above statistical analyses were carried out using XLStat Software [35],
version 4.1.

2.3. Vis-NIR Spectroscopy

The diffuse vis–NIR reflectance of air-dried and 2 mm sieved soil samples was mea-
sured in the laboratory. Before spectral measurements, the samples were placed in Petri
dishes and exposed to air for two days at a room temperature of about 24 degrees to remove
any potential residual moisture; further grounding was carried out on each sample to lessen
anisotropic scattering.

An ASD FieldSpec Pro spectroradiometer (Analytical Spectral Devices Inc. 2013,
Malvern, UK) was used for spectral measurements, with a sampling interval of ≤1.5 nm for
the 350–1000 nm spectral region and 2 nm for the 1000–2500 nm one. Reflectance spectra
were acquired with the help of a contact probe equipped with a halogen lamp (2901 Å} 10 K)
as an illuminant. A Spectralon® white panel (Diesseinstrument srl, Melzo (MI), Italy)
was used to calibrate the instrument. In order to reduce the instrumental noise, four
measurements recorded for each soil sample were averaged. The noisy portions of the
spectra, between 350 and 399 and between 2451 and 2500 nm, were removed, leaving only
the portion between 400 and 2450 nm.

The reflectance spectra of each group resulting from the application of PCA and Cluster
analysis to the chemical variables previously discussed were averaged and transformed
into their absorbance; second derivatives of absorbance spectra were then calculated. Both
mean and second derivative spectra were visually analysed.

2.4. Multivariate Calibration

Using the ParLeS software (Vers. 3.1) (The University of Sidney, Australia) [36],
multivariate calibrations were carried out to predict the investigated soil properties from
reflectance spectra. The spectral data were calibrated with reference laboratory soil data
through PLSR.

Before data processing, spectroscopic data were pre-treated to reduce undesirable
variance in the data to improve the predictive capacity of the multivariate calibration
models. Before multivariate calibration, all of the common pre-processing methods were
compared, either alone or in combination. The following methods were considered: signal
correction (MSC) [37], standard normal variance (SNV) correction [38,39], wavelet detrend-
ing (WD) [40], first and second derivative transformation, and median and Savitzky–Golay
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filtering [41]. Before multivariate modelling, spectra were also pre-treated by mean cen-
tring the data. The abovementioned procedures were applied to the original reflectance
spectra (R) and their absorbances (A = log 1/R).

The number of components to keep in the calibration models was then determined
using leave-one-out cross-validation [42]. We calculated the root mean squared error
(RMSE) of predictions to find the best cross-validated calibration model:

RMSE =

√√√√ 1
N

N

∑
i=1

(y pred − yob)
2 (1)

where N is the sample size, ypred is the predicted value, and yob is the observed value. Typ-
ically, the model with the lowest RMSE is chosen [4]. However, it would be recommended
to use a more parsimonious PLSR model (i.e., one with fewer components) that accurately
describes data variability without overfitting [4]. To this end, the Akaike Information
Criterion (AIC) [43,44] can be used to determine the best factor selection:

AIC = log (RMSE)N + 2m (2)

where N is the sample size and m is the number of model parameters (i.e., the number of
factors to be estimated).

The adjusted coefficient of determination (R2
adj) [45] and the relative percent deviation

(RPD), i.e., the ratio of the standard deviation of analysed data (that is, soil properties) to
RMSE, were used to assess model accuracy [4].

According to previous studies in the literature [46,47], the quality of RPD predic-
tions was classified as follows: RPD less than or equal to 1 designates a very poor pre-
dictive model, whose use is not recommended; RPD between 1.0 and 1.4 designates
a poor model, where only high and low values can be distinguished; RPD between
1.4 and 1.8 designates a fair model, which can be used for evaluation and correlation; RPD
between 1.8 and 2.0 designates a good predictive model, which can be used for predictions;
RPD higher than 2.0 designates an excellent model, which can be used for quantitative
prediction.

Due to the availability of a limited number of samples, it was not possible to validate
the model with an independent set of samples [6].

The PLSR b regression coefficients [48] and the Variable Importance in the Projection
(VIP) [49–51] were computed to find important wavelengths for the prediction of the
investigated variables. PLS regression coefficients offer a compact representation of the
X-Y (i.e., wavelength—soil contaminants) relationships of the PLS model [45]. VIP scores
summarise the impact of individual X variables (wavelengths) on the PLSR model. They are
calculated as the weighted sum of squares of the PLS weights (w*), which take the amount
of explained y variance in each extracted latent variable (dimension) into account [45]. VIP
scores give a valuable measure for determining which variables mostly contribute to the y
variance explanation. There will always be only one VIP scores-vector for a given model
and dataset, summarising all selected components and y variables [52].

The threshold for the b-coefficients was based on their standard deviation [53]. A
positive b-coefficient shows a positive effect on the response, while a negative b-coefficient
shows a negative effect [9]. Because the average of the squared VIP scores equals 1,
the “greater than one rule” was used as a criterion for variable selection [50]. Accord-
ing to [36], a wavelength was considered important for prediction if both the condition
b-coefficients > + st.dev or <-st.dev, and VIP > 1 were met.

3. Results and Discussion
3.1. Soil Chemical Properties

Summary statistics of the whole dataset are provided in Table 2. The mean (622.23 mg kg−1

and 2350.18 mg kg−1, respectively) and maximum values (5000 mg kg−1 and 16,991.28 mg kg−1,
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respectively) of EOX and PCBs18 are noticeably higher, while the minimum value is low
(0.09 mg kg−1 and 0.03 mg kg−1, respectively). As a result, the CV is extremely high (>2 for
both variables), most likely due to soil surface movements—caused by anthropogenic
activities and/or to the action of natural agents (water, wind)—as well as to differentiated
spillage of PCB-containing waste. The majority of PCBs18 (i.e., the sum of the 12 dioxin-
like and 6 ‘indicators’-PCB, non-dioxin-like) are Hexa-CB (on average 40.34%), followed
by Penta-CB (32.82%) and Hepta-CB (32.82%) (18.55 percent). The proportions of Tri-CB
(2.03%) and Tetra-CB are less important (6.27%). The variability of the PCB Isomeric classes
mentioned above is low.

Table 2. Descriptive statistics of EOX and PCB contents in the soil samples.

Statistics
EOX PCBs18 Tri-CB Tetra-

CB Penta-CB Hexa-
CB

Hepta-
CB

(mg kg−1) (mg kg−1) (%) (%) (%) (%) (%)

Min 0.1 0.1 0.0 0.3 15.5 26.0 0.6
Max 5000.0 16,991.3 8.2 34.9 64.7 48.2 38.0

Mean 622.2 2350.2 2.0 6.3 32.8 40.3 18.6
CV % 213.9 207.2 130.2 125.4 40.5 14.3 70.5

Skewness 2.2 2.2 1.5 2.1 0.4 −0.6 0.2
EOX = extractable organic halogens; PCBs18 = sum of the 12 polychlorinated biphenyls dioxin-like and 6 indicators-
polychlorinated biphenyls, Tri-CB, Tetra-CB, Penta-CB, Hexa-CB, Hepta-CB = percent of tri-, tetra-, penta-, hexa-,
and hepta-chlorobiphenyls in the PCBs18.

3.2. PCA and Soil Spectral Characteristics

Using PCA, two principal components were extracted (Table 3), together explaining
approximatively 86% (PC1: 71.23%; PC2: 14.95%) of the information contained in the initial
variables. The distribution of variables in the plane defined by these two components
(Figure 2) shows that much of the variables contribute strongly to the first PC; only one
variable (Tri-CB) contributes significantly and positively to the second PC.

Table 3. Principal component analysis of EOX and PCB contents.

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Eigenvalue 4.99 1.05 0.58 0.22 0.14 0.03 0.01
Variability (%) 71.23 14.95 8.21 3.11 2.06 0.37 0.06

Cumulative (%) 71.23 86.18 94.39 97.51 99.57 99.94 100

PCBs18, Hepta-CB, Hexa-CB, and EOX are positively correlated among them, and
negatively correlated with Tetra-CB and Penta-CB, as found in a previous work [26]. Using
PCA and CA, soil samples were classified into three groups (Figure 3), separated one from
the other along the first principal axis. Group C1 was characterised by the highest values
of Tetra-CB and Penta-CB, while group C3 was characterized by: (i) the highest content of
PCB congeners with high numbers of chlorine atoms in the biphenyl molecule (Hexa- and
Hepta-CB), (ii) the highest concentration of total PCBs (PCBs18), and (iii) the highest content
of extractable organic halogens (EOX); group C2 had intermediate chemical characteristics
between those of groups 1 and 3.
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Figure 3. Scatterplot of the soil samples on the plane of the first two principal components resulting
from the application of PCA to EOX and PCB contents. C1, C2, and C3 identify the three groups of
soil samples resulting from the application of the Cluster analysis to the scores of the first two main
components.

Mean reflectance spectra of soils from each of the three groups (Figure 4) show some
evident differences in the overall reflectance (albedo), the convexity of the spectra, and the
slopes in different spectral regions.
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Figure 4. Average reflectance (R) spectra of soils from the three clusters (C1, C2, C3) resulting from
the application of PCA and Cluster analysis to the investigated soil properties.

Differences in the overall reflectance are noticeable in the NIR, between 800 and
2450 nm. In particular, as the concentration of total PCBs (PCBs18) and related variables
(Hexa-CB, Hepta-CB, and EOX) increases, the overall reflectance in this region decreases.
The influence of PCBs18 on the spectra slopes in the visible and first part of the NIR regions
also appears evident (Figure 4). Specifically, as the PCBs18 contents increases, the slope
in the green (550–600 nm), red (600–800 nm), and NIR (800–1100 nm) ranges decreases
distinctly. Somehow, these results are comparable with those of other authors [54,55], who
related variations in the slopes within the above spectral regions to those of organic matter
content. All the above visual observations are corroborated by the results of correlation
analysis (Table 4). Finally (Figure 4), the convexity of the spectra in the SWIR region
(1100–2450 nm) tends to decrease, moving from not or low PCB-contaminated to highly
PCB-contaminated soils.

Table 4. Correlation coefficients (r) among PCBs18 contents, slopes, and albedo in the different
spectral regions.

R R

PCBs18 vs.

Slope 400–550 nm −0.023

PCBs18 vs.

Albedo VIS 0.031
Slope 550–600 nm −0.812 Albedo NIR −0.461
Slope 600–800 nm −0.857 Albedo SWIR −0.597
Slope 800–1100 nm −0.888

The visual inspection of mean reflectance spectra (Figure 5) also allows one to assess
some evident differences in the intensity of the absorption features in the NIR region,
beyond 1300 nm. These differences, among other in the vis-NIR range, become more
marked by looking at the second derivative of mean absorbance spectra (Figure 5). In
particular, from these spectra, it appears evident that, as the concentration of PCBs18 (and
related variables) increases, the depth of absorption bands at around 488 nm and 540 nm,
in the visible, and around 1410 nm, 1910 nm, and 2203 nm, decreases. As is known [56,57],
iron-oxides adsorb strongly in the visible region, due to electronic transitions. In particular,
in soils, goethite adsorbs mostly at around 480 nm, while hematite adsorbs typically at
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around 530 nm. Following [58,59], the intensity of the iron-oxide absorbances in the vis
is considerably obscured by the organic matter’s optical interference. Being PCB organic
compounds, it is reasonable to assume that their presence significantly affects the spectral
response of iron-oxides.
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In the NIR, in particular at longer wavelengths, beyond 1300 nm, many depth absorp-
tion features are due to clay minerals [24], due to overtones and combination modes of
the fundamental vibrations of functional groups that occur in the mid-infrared region [60].
Kaolinite, Illite, and Smectite, which are by far the most frequent clay minerals in Mediter-
ranean soils [61], are all spectrally active in the short-wave infrared [60]. Kaolinite shows
characteristic absorption bands near 2200 and 1400 nm, due, respectively, to Al-OH bend
and OH stretch combinations, and to OH stretch vibration [21]. Smectite shows strong
absorption bands near 1400, 1900, and 2200 nm; the first one is partly due to an overtone of
structural OH stretching in the octahedral layer of this mineral; the absorption at 1400 nm,
as that near 1900 nm, is also due to combination vibrations of water bound in the interlayer
lattices as hydrated cations and water adsorbed on particle surfaces [62]. Absorption bands
near 1400, 1900, and 2200 nm, weaker than those of smectite, are also found in the re-



Appl. Sci. 2022, 12, 8283 10 of 16

flectance spectra of illite; this clay mineral also shows additional absorptions near 2340 nm
and 2445 nm [63], which may diagnostically distinguish between illite and smectite.

As for iron-oxides, the depth of all clay features is also strongly reduced by the optical
interference of PCBs. On the other hand, the absorption increases with increasing PCB
content at around 2340. As is known [24], calcium carbonate adsorbs strongly at this
wavelength. Evidently, the concentration of calcium carbonate is so high (on average of
155.88 g kg−1, data not shown) that it strongly limits the optical interference of the PCBs.
As reported in [26,32], the high concentration of calcium carbonate in the investigated
samples is explained with the fact that, before being discharged, the oil used as a dielectric
fluid (e.g., Aroclor), produced by the ex-MATRA and composed of a mixture of PCBs, was
mixed with wood ash and calcium carbonate powder, with the goal of reducing its fluidity
and, thus, its movements in the soil. Evidently, the concentration of calcium carbonate is so
high that it strongly limits the optical interference of the PCBs.

3.3. Multivariate Calibration

The potential of vis-NIR reflectance spectroscopy to forecast the chemical parameters
under investigation is summarised in Table 5.

Table 5. Calibration statistics of PSLR models for PCB and EOX contents in the soil samples.

Parameter Spectra Pre-Processing R2 RMSE RPD F

EOX MSC, SG, I der., mean c. 0.909 0.481 3.40 4
PCBs18 MSC, SG, I der., mean c 0.911 0.594 3.47 3
Tri-CB no models possible

Tetra-CB log 1/R 0.449 0.470 1.40 3
log 1/R, med., I der. 0.798 6.073 2.27 2

Hexa-CB log 1/R, mean c. 0.576 3.739 1.59 2

Hepta-CB MSC, med., I der., mean
c. 0.897 4.190 3.24 2

In bold are the best predictive models. F = number of the PLSR factors used in the model; RPD = Relative Percent
Deviation; RMSE = Root Mean Squared Error.

The best results were obtained by pre-processing the spectra prior to data analysis
using one or more of the following procedures (Table 5): reflectance (R) to absorbance (A)
transformation (A = log 1/R), multiplicative signal correction (MSC) [37], first derivative
transformation, median and Savitzky–Golay filtering [41], mean centring. Multiplicative
signal correction (MSC) corrects for light scattering variations. Both median and Savitzky–
Golay filtering, which were carried out prior to the first derivative transformation, reduce
the effects of spectral random noise, thereby providing smoother spectra.

PLSR applied to the available sample set provided some good correlations between soil
spectra and soil variables (Table 5). The best predictive models were for EOX, PCBs18, Penta-
CB, and Hepta-CB. Figure 6 displays scatterplots of the predicted vs. the measured values
for these variables. Excellent models were calibrated for EOX (R2

adj = 0.909; RPD = 3.40),
PCBs18 (0.911; 3.47), and for Hepta-CB (0.897; 3.24), while a very good model was calibrated
for Penta-CB (0.798; 2.27). For all these four variables (Figure 6a,b,d,f), the measured vs. the
PLRS predicted values approximated closely the 1:1 line, with slight underestimations at
the higher values and slight overestimation at the lower values. The better approximation
to the 1:1 line was for EOX, followed by PCBs18 and Hepta-CB. The deviation from the
1:1 line was slightly higher for the Penta-CB.
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Based on the RMSE and AIC values, four factors were necessary to calibrate the best
model for EOX, three factors for PCBs18, and two factors for both Hepta-CB and Penta-CB.
The optimal combination of pre-processing procedures included (i) MCS, Savitzky–Golay
filtering, first derivative transformation, and mean centring of spectra for EOX and PCBs18;
(ii) MCS, median filtering, first derivative transformation, and mean centring of spectra
for Hepta-CB; and (iii) R to log 1/R transformation, median filtering, and first derivative
transformation for Penta-CB.

Predictive models were poor (R2
adj = 0.449, RPD = 1.40) for Tetra-CB and fair (0.576, 1.59)

for Hexa-CB (Figure 6c,e; Table 5). For these two variables, the PLSR prediction deviated
noticeably from the 1:1 line (Figure 6c,e). It was possible to calibrate any model for Tri-CB.

3.4. Importance of Wavelenghts

Figure 7 shows the bar plots of regression coefficients, b, versus wavelength derived
after PLSR analysis for the best predicted variables (PCBs18, EOX, Penta-CB, and Hepta-
CB), with indication of the wavelengths identified as important for the prediction of these
variables; i.e., the wavelengths that, for each calibrated model, have both the b-coefficients
beyond or below the fixed threshold of ± st.dev. and the VIP > 1.
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Figure 7. PLSR coefficient, b, spectra over the vis-NIR wavelength range associated with the PLSR
cross-validation models for PCBs18 (a), EOX (b), Penta-CB (c), and Hepta-CB (d). Red diamonds
indicate the important wavelengths resulting from the combined use of b and the variable importance
for projection (VIP). The wavelengths corresponding to the highest absolute values of b for important
group wavelengths are indicated. The thresholds used for the PLSR coefficient, b (i.e., b ± st.dev.),
are also shown.

As can be seen from Figure 7a, the PLSR models for the prediction of PCBs18 has
important wavelengths in the visible region of the spectrum, around 470, 540, 620, and
730 nm. The positive coefficients around 470 and 530 nm could be linked to the blue-green
colour reflection, while negative coefficients around 620 and 730 nm could be linked to
yellow-red colour reflection. Ancona et al. [26] recently showed that as the PCBs18 content
increases, the reflection on the blue-green spectral domain (540–565 nm) also increases,
while that in the yellow-red (565–780 nm) decreases. As previously discussed (Figure 5), the
high blue-green reflection associated with PCBs18 is responsible for the reduced absorption
of iron oxides in this spectral region.

In the NIR, important wavelengths positively correlated with PCBs18 concentrated
around 1710, 1920, and 2390 nm. The attribution of these absorptions to PCBs is difficult,
considering the lack of specific studies in the literature concerning the application of
vis-NIR spectroscopy to the characterisation of PCBs, to refer to. On the other hand,
studies have been carried out to identify spectral features occurring in the mid-IR due to
fundamental vibrations in the PCB molecules, whose overtones and combination bands are
expected to produce weaker absorptions in the NIR, as for other soil constituents [64]. For
instance, [65], working on PCBs, attributed the absorptions band around 1590–1600 cm−1 to
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benzene bending vibration mode, that around 1280 cm−1 to C=C bridge bending vibration
mode, the band around 1030 cm−1 to the C-H bending in-plane mode, the band around
1000 cm−1 to the trigonal breathing vibration mode, and those around 1240~1250 cm−1

and 1140~1200 cm−1 to vibrations induced by the Cl substituents.
With reference to Figure 7a, we could hypothesize the attribution of the absorptions

around 1700 and 2390 nm to C-H stretch, and that around 1920 to the C=O stretch. How-
ever, this is only a hypothesis and needs to be confirmed through specific and rigorous
investigations.

It should be observed that clay minerals, in particular, smectite, adsorb near 1910, due
to combination vibrations of water bound in the interlayer lattices as hydrated cations and
water adsorbed on particle surfaces [66]. As for iron-oxides, the absorption by smectite is
also reduced by the optical interference of PCBs (Figure 5).

The negative value of the b-coefficient at the wavelengths around 2350 nm indicated
that these wavelengths have a negative link to PCBs18. Therefore, the absorption of other
components, spectrally active at these wavelengths, in particular, calcium carbonate, is not
reduced. The dominant effect of calcium carbonate over PCBs appears evident in Figure 5.

The bar plot of the regression b-coefficient for EOX (Figure 7b) basically reflects that
for PCBs. In this plot, more significant wavelengths appear around 1410 nm, 2060 nm, and
2280 nm. As previously discussed, kaolinite and illite adsorb strongly around 1410 nm,
and this absorption is reduced by the interference of PCBs (Figure 5) and, eventually, by
that of other contaminants linked with EOX.

The bar plot of the b-coefficient of the PLSR calibration model for Penta-CB (Figure 7c)
shows important wavelengths in the visible range, with the highest, negative value at
530 nm, near the absorption band of hematite. In the NIR, high, positive b-coefficients occur
around 1390, 1890, 2180, 2360, and 2360 nm, while negative b-coefficients occur around
1440, 1940, 2230, and 2260 nm. Most of these wavelengths are close to the absorption
bands of soil properties, having direct spectra response in the NIR, such as clay minerals,
carbonates, and organic matter [64].

The PLSR regression coefficient, b, spectrum for Hepta-CB shows several important
wavelengths in the visible range and in the first part of the NIR, around 970 nm, close to
the position of the absorption bands of iron-oxides, along with a high number of important
wavelengths in the rest of the NIR, close to the absorption bands of clay, carbonates, and
organic carbon. It must be observed that much of the important NIR wavelengths have a
negative b-coefficient. Therefore, the interference of Hepta-CB with other spectrally active
soil properties is negligible.

4. Conclusions

The findings of the present work showed that PLSR, in combination with vis-NIR
reflectance spectroscopy, could be regarded as a promising and helpful method for a quick
and inexpensive prediction of PCBs18, as well as of Hepta-CB and Penta-CB congeners,
and EOX.

Although the number of samples is limited, it must be considered adequate with
respect to the reduced extension of the investigated area. Moreover, in accordance with
the international literature, until now there have been no research studies concerning
the application of vis-NIR spectroscopy to the prediction of PCBs; therefore, the results
achieved in this work should be considered worthy of attention.

Certainly, this preliminary study used soil samples with high concentrations of PCB.
However, further soil sampling, concerning a very large area (called “Area Vasta”) of
particular environmental interest, where, presumably, the contents of PCBs are more
variable, has already been started. The completion of the study will give a better answer to
the applicability of the vis-NIR reflectance spectroscopy to the more generalised monitoring
of these contaminants. The fact remains that the method can be considered useful in
conditions of high concentrations of the same contaminants, not to be excluded in other
sites from the “Area Vasta”.
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In light of these considerations, further investigations are needed to evaluate the
effective potential of vis-NIR spectroscopy in the quantitative evaluation of PCBs and EOX,
enlarging the area of interest. In fact, these investigations have already been launched and
will concern the entire “Area Vasta” of Taranto, where the problem of contamination from
PCBs (and other contaminants) is particularly felt.
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