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Abstract: The Internet of Things (IoT) is a swiftly developing technology in all sectors, with the num-
ber of devices that connect to the Internet has increased remarkably in recent years. However, most of
these devices use cheap hardware and lack a concrete security defence system. This may encourage
hackers to recruit these devices and use them to launch Distributed Denial of Service (DDoS) attacks,
which is one of the main causes of concern among security engineers. This paper investigates the
possibility of using a matrix profile to detect DDoS attacks in an IoT-based environment. According
to our empirical experiments, the preliminary findings illustrate that the matrix profile algorithm can
efficiently detect IoT-based DDoS attacks.

Keywords: Distributed Denial of Services (DDoS) attacks; Internet of Things (IoT); matrix profile;
smart cities; anomaly detection

1. Introduction

The Internet of Things (IoT) is a system of connected computing devices as well as
mechanical and digital machines [1]. IoT is swiftly spreading and becoming ubiquitous.
User experience can be transformed by IoT as it begins to change the ways of using smart
devices, from coffee machines to computers [1]. Considering this accelerated development,
various challenges need to be addressed in the IoT environment. These challenges include
but are not limited to, the heterogeneity of the network, the volume of generated data,
as well as network scale, privacy, and security [2]. There are many applications for IoT,
for example, healthcare, traffic monitoring, agriculture, industrial automation, hospitality,
smart grid, water supply, wearable devices, smart home appliances, smart cities, etc. [1–3].
However, we consider only smart city and smart home applications in this paper.

Many cities around the world have begun using technologies such as smart devices,
control systems, and communication infrastructure to improve quality of life, save energy,
improve traffic management, etc. [4–6]. These cities are called smart cities [4]. Smart cities
contain a large number of smart appliances and devices such as sensors, CCTVs, traffic
lights, etc. [5]. The authors of one study [7] offered the following definition: “A smart city
uses IoT technologies to gather information from required areas and communicate with the
public, which improves the welfare of a country’s people and government services”. Thus,
the main purpose is to collect data and use it to control smart cities in order to optimise costs
and increase safety and security in these cities [6]. In addition, these smart appliances and
devices are heterogeneous. Therefore, IoT-based networks are prone to many security risks
such as information leakage and malicious cyberattacks due to hardware limitations and
poor cybersecurity defence [8]. According to one study [9], smart cities consist of four main
areas: smart grid, smart buildings, smart transportation systems, and smart healthcare.

Distributed Denial of Service (DDoS) attacks constitute one of the most challenging
types of cyberattacks [10]. They can have serious consequences in smart cities where attack-
ers try to make the network or server unavailable to legitimate users by overwhelming the
servers or network with traffic from different sources [10]. There are many reasons behind
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DDoS attacks, including but not limited to revenge, damaging competitors, entertainment,
personal challenges, etc. [10]. There are many kinds of DDoS attacks, including SYN flood,
slow read attack, Mirai botnet, TTL expiry attack, etc. [11]. There are also many defence
techniques that have been utilised to mitigate the effects of DDoS attacks, including but
not limited to firewalls, routers, switches, upstream filtering, blocking ports, and intrusion-
prevention systems [10,12,13]. However, most of these techniques have not been evaluated
with respect to the simplicity and scalability of the methodology. Additionally, most of
these solutions work on the victim’s side.

In this paper, we investigate the possibility of using the method of data structure and
associated algorithms called “matrix profile” to detect DDoS attacks in smart cities. Using
matrix profile can solve the problem of detecting IoT-based traffic anomalies (DDoS attacks)
in smart cities. This study utilises matrix profile to identify the malicious behaviour of
DDoS attacks via discovering respective symptoms rather than monitoring traffic details.
The main reason behind this is that malicious behaviour can be characterised by a set
of symptoms, such as high CPU utilisation, an increase in voltage usage, growth in the
number of tasks, high memory usage, etc.; it could be challenging to detect DDoS attacks at
the source (attacker side) as it is difficult to distinguish between legitimate and malicious
traffic. Three IoT-based devices are used in this case study to launch a DDoS attack. The
findings show that the accuracy of the matrix profile algorithm ranges from 93.33% to
100% when using time-series data, whereas the accuracy range is 80–100% when using
Z-normalised time-series data. Additionally, the results show that using Z-normalised data
with matrix profile results in a shorter calculation time.

2. Literature Review

This section reviews various methodologies that have been used to detect DDoS
attacks using different mechanisms, such as machine learning, entropy or statistically based
methods, software-defined networking methods, etc.

2.1. Machine Learning-Based Methods

One study [14] illustrates a mitigation system to help protect the IoT against DDoS
attacks. The paper proposes a model that can check network traffic and detect any DDoS
attacks using an algorithm based on deep learning techniques. Another study [14] adopts
convolutional neural networks to extract features of flows. After that, the researchers
applied an auto-encoder to perform unsupervised malicious traffic classification. Their
main object is a model that detects malicious traffic by checking a sample of packets as
opposed to all traffic. They validate their system by comparing it with previous models.
The authors claim that their system achieved 100% accuracy, which is somewhat unrealistic.

Study [15] suggested a strategy to mitigate DDoS attacks in IoT networks. The re-
searchers use learning automata concepts in their model: a Service-Oriented Architecture
(SOA) is used as a model for the IoT. SOA is a platform for developing applications for the
IoT. The findings reveal that the proposed scheme is effective in mitigating DDoS attacks
in the IoT. Nevertheless, the authors make a controversial claim that their model prevents
DDoS attacks, which is inaccurate as no security system can prevent these attacks. Existing
systems can help mitigate DDoS attacks but not prevent them.

The researchers in one study [16] proposed a DDoS attack detection method based
on the support vector machine (SVM) in software-defined networks (SDN). The findings
show that the average accuracy of the proposed technique is around 95.24% with a small
amount of flow. Nevertheless, the disadvantages of the SVM model ire that it requires
excessive training and deep knowledge of machine learning, it is not easy to understand
and interpret the final model, and it is not easy to fine-tune the SVM parameters.

A comparison among different machine learning methods in detecting DDoS attacks
is presented in another study [17]. The techniques studied are Artificial Neural Network
(ANN), SVM, Naive Bayes (NB), Decision Tree (DT), and Unsupervised learning methods
(X-means, K-means, etc.). Their findings show that all these methods can be used to detect
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DDoS attacks. The accuracy of these methods varies from around 91% to around 98%.
Another study [18] also discusses using various machine learning techniques such as SVM,
NB, and random forest algorithms. According to the authors, the suggested hybrid system
shows better results and can be used for intrusion-detection purposes. SVM, NB, and
random forest showed accuracies of 99.7%, 97.6%, and 98.0%, respectively.

There are a few limitations in using machine learning to detect DDoS attacks. First,
machine learning-based methods such as ANN depend on the hardware, which means they
require high-performance computational power [19]. Therefore, this method may not be
suitable for use at the router level as the router does not have high-performance computing
capabilities. Using ANN could result in some network behaviour being unexplained, which
makes it less reliable [20]. Additionally, ANN does not have a determined structure; the
network structure is achieved through trial and error during the experiment [21]. SVM-
based methods have many limitations as well. They require long training times and large
datasets [22]. Additionally, it is not easy to choose the kernel function for the SVM, and it is
difficult to understand and interpret the final SVM model [23]. Methods that use k-nearest
neighbour (KNN) as a detection algorithm also have some limitations, including but not
limited to the following: (i) accuracy depends primarily on the quality of the training
dataset; (ii) k-NN does not perform very well (slow) with large datasets; and (iii) the space
complexity is very high (requires large memory for large datasets) [24,25].

2.2. Statistical-Based Methods

The authors of one study [11] proposed a statistical-based detection mechanism based
on continuously ranked probability scores and exponentially smoothing to detect denial of
service (DoS) and DDoS attacks efficiently. The finding shows that the suggested method
is suitable for large-scale DDoS attacks only. The results show that the accuracy of the
proposed model in medium or low traffic is not sufficient to detect DDoS attacks.

In another study [26], the authors demonstrate a model for a smart home that could be
a target for a DDoS attack. The authors claim that their proposed model provides comfort
and a secure system for the smart home. The paper suggests a VPN to detect an active
attack in IoT devices using Snort tools and Mikrotik Routers. This study aims to analyse
network traffic to detect any possible intruders in the IoT devices.

The authors of one study [27] investigate the possibility of utilizing a lightweight
statistical approach for DDoS detection methods. The algorithm is designed to be used
at the Internet Service Provider (ISP) level. The suggested algorithm involves minimal
computational complexity. The proposed technique monitors traffic and uses the calculated
Z-score and covariance values to detect anomaly traffic (DDoS) attacks. The authors claim
that their method can detect up to 100% of attacks within 30 s.

2.3. Software-Defined Network Methods

SDN constitute a relatively new networking paradigm that redefines the term “network”
by allowing network engineers to program SDN devices (SDN controllers). Security engineers
can monitor the traffic and control it from a central point, called the controller [28].

SDN depends mainly on a controller to route the traffic as SDN switches do not have
a control plan to route traffic, as do traditional switches. Therefore, the SDN controller is
a potential target for DDoS attacks. One study [29] proposes a method that uses an SDN
controller and machine learning to classify traffic as normal or abnormal. In their findings,
the authors claim that this method has a detection rate of 98.8% accuracy. However, this
method is suitable for SDN networks only, which means it cannot be applied to traditional
routers or switches.

One study [30] investigates SDN technology to protect an enterprise network from DDoS
attacks. The proposed defence mechanism uses a graphically based model that effectively
monitors the traffic and flags any suspicious traffic in the SDN network. The SDN controller
monitors the traffic and routes it through SDN switches. The proposed technique is not
applicable in traditional networks and cannot be utilised in routers or switches.



Appl. Sci. 2022, 12, 8294 4 of 16

2.4. Other Methods

The authors of one study [5] propose a DDoS detection method for smart cities. The
proposed technique takes a defensive or self-protective stance by using load balancing to
mitigate the impact of DDoS attacks in smart cities. The proposed methodology is based
on keeping track of trusted IP addresses and diverting new IP addresses in cases where
a DDoS attack is detected. In addition, this method checks the identity of IP addresses
and then decides whether the traffic is an attack or legitimate. For instance, if the IP
address of a CCTV is trying to connect to the Facebook or Twitter server, it might be a
DDoS attack as these companies do not yet provide services to IoT devices such as CCTV.
Although the authors claim that their method is effective, there is not enough evidence or
experimentation discussed in the paper to support their claim; neither have they discussed
the scalability of their proposed method.

One study [12] proposes a constrained application protocol at the application layer to
detect and mitigate DDoS attacks in IoT-based smart homes. The researchers use datagram
transport layer security (DTLS) as a security protocol for securing communication between
clients and servers. The authors propose a novel algorithm for the detection and mitigation
of DoS and DDoS attacks at an early stage, and they use the Contiki Cooja simulator. They
claim that their findings show that their proposed model performs better than the E-Lite
system. Their comparison criteria are the malicious packet delivery ratio and legitimate
packet delivery ratio. However, this is a short paper, and no details are provided.

A correlation-based method is proposed in another study [31] to detect DDoS attacks.
The authors use a hybrid method composed of a machine learning-based method (k-nearest
neighbours) and a statistically based method (correlation analysis) to detect DDoS attack
traffic. The authors claim that their hybrid method improves the detection rate compared
to the statistically based method alone. Nevertheless, this method is very complicated and
shares the limitations of k-NN and statistical methods.

The authors of another study [32] present a lightweight defensive algorithm for DDoS
attacks in the IoT network environment. The paper contains preliminary findings. The authors
use Contiki OS, COOJA, and Rime stack to model their system. The proposed model is utilised
to detect DDoS attacks. The authors claim that the proposed model is effective against DDoS
attacks. However, the mechanism used to detect DDoS attacks is not explained in the paper.
The authors claim that their model is effective, but a justification is missing.

DDoS attacks on cloud auto-scaling mechanisms are investigated in another study [33].
An auto-scaling system is proposed to protect the cloud from DDoS attacks. Yo-Yo is a
relatively new DDoS attack, which is investigated in this study. The authors demonstrate a
DDoS attack on a computing instance (EC2) and analyse the victim’s protective measures
by re-configuring the auto-scaling mechanism.

Attackers can use many types of DDoS attacks to attack any victim’s server, each of
which has its own pattern and features, making it very difficult to cope with such threats.
After reviewing many research papers that use different techniques, such as machine
learning, statistically based algorithms, and SDN techniques, to the best of our knowledge,
we could not find any research investigating the possibility of utilizing time-series methods
and the algorithms used to analyse network traffic in order to detect DDoS attacks in
network traffic in IoT.

The Intrusion-Detection System (IDS) normally depends on a statistical algorithm to
detect a DDoS attack [34]. We focus on identifying DDoS traffic using an anomaly detection
mechanism. Furthermore, an IDS works on the victim side only, while our proposed system
detects DDoS attacks on both the compromised IoT nodes being used to perform a DDoS
attack and the victim side (servers).

3. Methodology: Matrix Profile

Data scientists are usually interested in two things when analysing time-series data.
These two essential aspects are anomalies and trends [35]. For instance, someone who
works in finance may be interested in analysing time-series data and identifying anomalies
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or trends in the stock market. Another example might be a business owner who wants to
analyse sales data to find trends (seasonality demand) to prepare for orders by increasing
their stock to meet projected increases in demand [36]. The similarity join is another way
to highlight anomalies and trends in time-series data. Basically, it compares one part or
snippet of the time-series data by computing the Euclidean distance between two datasets.
This coding is easy when using a naive algorithm (a few for loops). However, with massive
datasets, it could take months or even years to find any helpful information (anomalies or
trends) [35,36].

Example 1. Assume that there are food vessels at a food factory. These vessels have sensors that log
pressure as time-series data, for instance, one reading every minute. Each year in the log file, there
are 525,600 entries.

To perform a similarity self-join calculation on just a week’s worth of this dataset
(10,080 entries) using existing algorithms would require carrying out 132,880,692,960 Eu-
clidean distances. If each calculation requires 0.0001 s using a nested loop algorithm, it will
take 153.8 days to finish the process. [37].

In 2016, a collaboration of two research groups from the University of California,
Riverside, and the University of New Mexico in the US introduced a technique called
matrix profile [38], which can be a helpful tool in analysing time-series data as it remarkably
reduces the time and space complexity of the problem of analysing time-series data. In
their first published work regarding matrix profile, the authors proposed it as a tool to find
motifs, discords, and shapelets [35].

If matrix profile is used with the example mentioned above, the matrix profile algo-
rithm can finish the calculation of this huge dataset in just around 6.3 h using the same
computer [37].

Matrix profile is composed of a data structure and associated algorithms that help
solve the dual problem of anomaly detection and motif discovery [39]. It is robust, scalable,
and largely parameter-free [40]. There are two essential components in matrix profile:
profile index and distance profile. The profile indices hold the index of their first nearest
neighbour (the location of its most similar subset of data), whereas the distance profile
is configurable, which means it can be a one-dimensional array of minimum Euclidean
distances or Z-normalised Euclidean distances [36].

3.1. Problem Definitions and Notation

In this section, we provide some definitions of terms used in this paper regarding
matrix profile, which is a tool or method to detect IoT-based DDoS attacks.

Definition 1. Assume a time series T where T is a sequence of real-value numbers ti : T = t1,
t2, . . . , tn, and n is the length of the time-series data (T).

We do not look at all global properties of the time-series data. We investigate the
similarity between local sub-sequences. As a result, we find the anomaly [37].

Definition 2. Define Ti,m of T as a continuous subset of values where m is the length of the
sub-sequence data vector, i is the index of the first value in the subset in T, and 1 ≤ i ≤ n−m + 1.

It is possible to take part of the sequence (sub-sequence) and use it to calculate its
distance to all sequences. The ordered vector is called the distance profile [37].

Definition 3. A vector of the Euclidean distances Di between a given sub-sequence and every other
sub-sequence in the entire sequence Ti,m is called a distance profile Di = [di,1,, di,2, . . . , di,n−m+1]
between Ti,m and Tj,m [37].
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We can consider a distance profile as a meta time-series that represents the time-series
data T that is used to calculate it. Additionally, we should mention that it is assumed the
distance is calculated by finding the Euclidean distance between either sub-sequences of a
data series or Z-normalised sub-sequences of a data series [37].

The distance profile is zero at the location of the query if the query and all sub-
sequences belong to the same time-series data; this is known in the literature as a trivial
match in the time series. These trivial matches can be removed or excluded, as will be
demonstrated in detail later in this paper. The distance profile is close to zero before and
after the location of the query. Since this paper is about finding anomalies in network traffic
(DDoS attacks), we do not discuss finding patterns in detail; it is mentioned in this paper
only for the sake of completeness.

The Euclidean distance is the difference between any two points in so-called Euclidean
space. It is also sometimes called the Pythagorean distance because it is calculated using the
Pythagorean theorem. The distance between points q and p in Figure 1 can be calculated
using the simple formula d(p, q) = |p− q|, or it can be calculated using the Pythagorean
theorem, as follows: d(p, q) =

√
(p− q)2 [38].

a

bd

p

q

p2

q2

p1 q1

Figure 1. Euclidean distance between two points.

In the figure, a = q1 − p1 and b = q2 − p2.

d(p, q) =

√
n

∑
i=1

(qi − pi)2. (1)

The matrix profile algorithm can use time-series data to calculate the Euclidean dis-
tance by Equation (1), or it can use Z-normalised time-series to calculate the Euclidean
distance using Equation (4). To calculate Euclidean distance for Z-normalised time-series
data, the mean µ and standard deviation σ must be calculated. Equations (2) and (3) are
used to calculate the Z-normalised p and q.

q̂i =
qi − µq

σq
, (2)

p̂i =
pi − µp

σp
, (3)

where µq and µp are the average and σq and σp are the standard deviation of data q and p,
respectively.

d(p, q) =

√
n

∑
i=1

(q̂i − p̂i)2. (4)

Definition 4. Define P as matrix profile of time-series T, which is the Euclidean distance between
each subsequent Ti,m and the closest match in time series T, in other words, its nearest neighbour.
Therefore, we can define P as [min(D1), min(D2), . . . , min(Dn−m+1)] [40].
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3.2. Matrix Profile Procedure

The matrix profile is calculated using a receding horizon or sliding window algorithm
in which a subset of a time series is compared with the rest of the time-series data. The
following steps summarise how the matrix profile is calculated.

1. Calculate the distances for the windowed sub-sequence from the whole dataset.
2. Set an exclusion zone to ignore trivial matches.
3. Update the distance profile with the minimal values.
4. Set the first nearest neighbour index [36].

The essential purpose of using matrix profile is to find motifs and/or discords in time-
series datasets, in other words, to highlight any interesting events, patterns, or anomalies.
The author of one study [36] defines motifs and discords as follows: “Motif is a repeated
pattern in a time series and a discord is an anomaly”. Having calculated a matrix profile
from a time-series dataset, it is straightforward to identify the top K number of anomalies
(discords) and/or pattern motifs in the dataset. Matrix profile reserves the distance in
Euclidean space, which means a distance near zero is most similar to other sub-sequences
in the time-series data. On the other hand, a large figure (≥50) indicates a sub-sequence
unlike any other sub-sequence (anomalies). To sum up, motifs (patterns) can be found by
extracting the lowest distances, whereas discords (anomalies) can be identified by finding
the largest distances in the time-series dataset [35,36].

According to the authors of one study [36], the algorithms used to calculate the matrix
profile can be classified into two main types (algorithmic implementations): exact and
anytime algorithms. Exact algorithms calculate the exact solution, which means that the
algorithms must complete all calculations before providing any solution (matrix profile).
The list below demonstrates the algorithms that can be used to compute the matrix profile:

• MPX: a high-speed algorithm that does not require a Fourier transform to compute
the matrix profile.

• STOMP: the first algorithm that can be used to calculate the matrix profile for any
time-series dataset.

• Brute force PMP: this type of algorithm is considered slow because it tries all possible
data and thus is not recommended for large datasets.

In the following, we demonstrate how matrix profile works through an example.

Example 2. To ensure that the above-mentioned explanation is clear and understood, we demon-
strate it here with simple numerical values. Assume a time-series T with length n = 13. The real
values of T are illustrated in Figures 2 and 3. It is assumed that the sliding window size is 4, m = 4.
For simplicity, we do not use Z-normalised values in this example.

1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 3 2 9 1 14 15 1 2 2 10 7

Time series T, n = 13

ti

Figure 2. Time-series data T.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

Number of time stamp (t)

va
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e

Figure 3. Time-series data, where the x-axis denotes the time stamp and the y-axis denotes the
real values.

Figure 4 illustrates how the sliding window works in the matrix profile. In this exam-
ple, we use a window size of four to calculate the Euclidean distance using Equation (1).
The first value is calculated by comparing two points in the time-series data, which
are (0, 1, 3, 2) and (0, 1, 3, 2). The Euclidean distance d between these two points is
d =

√
(0− 0)2 + (1− 1)2 + (3− 3)2 + (2− 2)2 = 0; thus, this is a trivial match. Next, the

blue window begins shifting to the right by one cell. The same equation is then used to
calculate Euclidean distance, d =

√
(1− 0)2 + (3− 1)2 + (2− 3)2 + (9− 2)2 = 7.4; see

Figure 5. Next, the sliding window continues shifting one cell to the right, and the distance
is calculated until the end (see Figure 6). Subsequently, the minimum value in the distance
array is added to the matrix profile. Note that trivial matches should be disregarded as
they merely compare data with itself, so they are not considered as minimum values in the
distance array. In other words, The second minimum value should be chosen.

0 1 3 2 9 1 14 15 1 2 2 10 7

0 1 3 2 9 1 14 15 1 2 2 10 7

0 − − − − − − − − − − − −

Figure 4. Sliding window: First step in the first iteration to calculate the distance array and
matrix profile.

0 1 3 2 9 1 14 15 1 2 2 10 7

0 1 3 2 9 1 14 15 1 2 2 10 7

0 7.4 − − − − − − − − − − −

Figure 5. Sliding window: Second step in the first iteration to calculate the distance array and
matrix profile.

0 1 3 2 9 1 14 15 1 2 2 10 7

0 1 3 2 9 1 14 15 1 2 2 10 7

0 7.4 6.9 14.7 19.3 17.7 19.9 15 8.2 8.9

Figure 6. Sliding window: Last step in the first iteration to calculate the distance array and
matrix profile.
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Having calculated the matrix profile for the first matrix value, the red sliding window
in Figure 7 is shifted, and the index of the blue sliding window is reset (starts again from
the first index). Next, the same steps described above are repeated until the end of the
array, as shown in Figures 7–9. Then, the minimum value of the second iteration, which is
1.4, is chosen and added to the matrix profile array. The matrix profile algorithm continues
shifting the red sliding window by one cell and repeating the steps until the end of the
vector. The result is a two-dimensional array, as shown in Figure 10. This matrix represents
a distance matrix, and the minimum value of each row in this matrix is added to a vector
array called the matrix profile, as shown on the right of Figure 10. Note, we use “X” in the
distance matrix to illustrate that this cell is a trivial match, which is zero, and because it has
been discarded, we replace zero with “X”.

0 1 3 2 9 1 14 15 1 2 2 10 7

0 1 3 2 9 1 14 15 1 2 2 10 7

7.4 − − − − − − − − − − − −

Figure 7. Sliding window: First step in the second iteration to calculate the distance array and
matrix profile.

0 1 3 2 9 1 14 15 1 2 2 10 7

0 1 3 2 9 1 14 15 1 2 2 10 7

7.4 0 − − − − − − − − − − −

Figure 8. Sliding window: Second step in the second iteration to calculate the distance array and
matrix profile.

0 1 3 2 9 1 14 15 1 2 2 10 7

0 1 3 2 9 1 14 15 1 2 2 10 7

7.4 0 10.9 7.9 15.7 18.1 19.1 15.8 1.4 8.4 − − −

Figure 9. Sliding window: Last step in the second iteration to calculate the distance array and
matrix profile.

X 7.4 6.9 14.7 19.3 17.7 19.9 15 8.2 8.9

7.4 X 10.9 7.9 15.7 18.8 19.1 15.8 1.4 8.4

6.9 10.9 X 16.8 16.1 13.6 18.8 14.1 11.6 6.2

14.7 7.9 16.8 X 16.8 19.8 18 19.4 8.2 13.4

19.3 15.7 16.1 16.8 X 20.7 23.6 18.7 15.3 11.4

17.7 18.8 13.6 19.8 20.7 X 19.2 23.1 19.8 14.4

19.9 19.1 18.8 18 23.6 19.2 X 14.1 20.1 20.5

15.0 15.8 14 19.4 18.7 23.1 14.1 X 16.2 16.1

8.2 1.4 11.6 8.2 15.3 19.8 20.1 16.2 X 8.6

8.9 8.4 6.2 13.4 11.4 14.4 20.5 16.1 8.6 X

6.9

1.4

6.2

7.9

11.4

13.6

14.1

14

1.4

6.2

n−m + 1

n
−

m
+

1

Figure 10. Distance Matrix, and Matrix Profile (highlighted in green). X denotes the trivial matches.
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Figure 11 illustrates the matrix profile. As can be seen, there are only 10 values as this is the
number of points minus the size of the sliding window plus 1 (n−m + 1 = 13− 4 + 1 = 11).
It is clear that the matrix profile is high at t = 7 and t = 8. This is expected because the
Euclidean distance is high at these points (see Figure 3). Finally, it may seem that the matrix
profile in this example does not reveal much. Our response is that this is due to the fact
that we used a small dataset to demonstrate the way the matrix profile algorithm works; a
larger dataset is used in the next section, which will highlight how powerful the matrix
profile is in detecting anomalies in large datasets.
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Figure 11. Matrix profile.

4. Findings and Discussion

All experiments in this paper were conducted on a machine with the following specifi-
cations: Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz 2.21 GHz, Installed RAM 16.0 GB
(15.9 GB usable), 64-bit operating system, x64-based processor, and Windows 10 Pro (ver-
sion 20H2). Python was the main tool used to implement the model. In addition, we used
the STUMPY library, which is the Python library for matrix profile [41].

The main objective of this experiment is to investigate the possibility of using matrix
profile to identify malicious behaviour connected to DDoS attacks via discovering respective
symptoms rather than monitoring traffic directly. The main reason for this experiment
is that malicious behaviour can be characterised by a set of symptoms such as high CPU
utilisation, increase in voltage usage, growth in the number of tasks, high memory usage,
etc. In addition, it can be challenging to detect a DDoS attack at its source as it is difficult to
distinguish between legitimate and malicious traffic.

4.1. Input Setting

We used the IoT-based dataset from three different IoT devices that contain malicious
and legitimate traffic. The dataset used in this experiment was provided by the Security
Management and Quantification Research Group at the State University of Londrina,
Brazil [42]. The dataset was collected from real IoT-based devices (Raspberry Pi). The
IoT-based device was infected by botnet malware in the testing environment. The dataset
contained readings of different perspectives of the operation of the device, including CPU
usage, Memory usage, Voltage usage, number of tasks, and device temperature. This dataset
also contained malicious and legitimate data. By legitimate data, we mean the regular
behaviour of IoT devices such as surveillance cameras (SCs) and media centres (MCs). In
contrast, malicious data are generated by botnets activities such as communication with
the command and control and DDoS attacks.

Three profiles of IoT devices were used because the dataset [42] contained data for
three devices only. These devices are listed below:

1. The MC profile simulates devices that consume streams of video to transform regular
TVs into smart TVs.

2. The SC profile simulates the operation of a camera that constantly transmits video to
a monitoring station.

3. The SC with additional traffic (ST) profile is similar to the SC profile, but it also
includes legitimate traffic related to other services, such as Telnet and HTTP.

Each device has a set of features (readings) composed of CPU utilisation, memory
utilisation, the temperature of the device, voltage usage, and the number of tasks. There-
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fore, there are 15 times more time-series data than in the matrix profile because each IoT
device has 5 features, and there are 3 devices, so the total is 3 × 5 = 15. Each dataset has
10,000 readings. Note that we do not need many IoT devices in this case study because we
are detecting malicious behaviour at the attacker side and not the victim side.

1. MC DDoS attack starts at 11:30:34 AM and ends at 11:43:10 AM.
2. SC DDoS attack starts at 11:12:51 AM and ends at 12:50:36 PM.
3. SC with additional traffic DDoS attack starts at 10:59:57 AM and ends at 1:07:58 PM.

In all figures, we use the record number in the x-axis for simplicity and space-saving,
as we cannot draw all 10,000 dates in the figures.

4.2. Empirical Findings

This section presents the results of the empirical experiment. First, we illustrate the
results with the MC that consumes streams of video to transform regular TVs. Figure 12
shows the CPU utilisation and matrix profile. As can be seen, the matrix profile was able
to detect the start and end of the anomaly in CPU utilisation. The outcome of the matrix
profile specified that the attack started at 11:30:32 AM and ended at 11:43:10 AM.

Figure 12. CPU utilisation of Multimedia Centre.

DDoS attacks cause a fluctuation in voltage usage in some IoT devices such as SC.
Therefore, this voltage usage fluctuation can be a symptom of a DDoS attack. This experi-
ment investigated using this feature to detect DDoS attacks. Figure 13 demonstrates the
voltage reading and calculated matrix profile. As can be seen, matrix profile managed to
determine the anomaly in voltage usage caused by the DDoS attack on the SC.

Figure 13. Voltage usage of Surveillance Camera.

Figure 14 depicts memory utilisation and its matrix profile. Memory utilisation is
another feature that can be used to detect DDoS attacks that use compromised SCs with
additional traffic. The results show that this feature can also be used to detect DDoS attacks.
Note that by looking at the top chart only, it is very difficult to identify the anomaly in the
data, whereas by looking at its matrix profile, the anomaly (DDoS) is very clear.
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Figure 14. Memory Utilisation in Surveillance Camera with additional traffic.

4.3. Evaluation and Discussion

In this section, we evaluate the proposed method (matrix profile) to detect DDoS
attacks in terms of precision, accuracy, and runtime of the algorithm. In addition, this
section discusses the results and explains them. First, we repeat one of the experiments
in the previous section using different values of window sizes as window size can affect
the accuracy of the matrix profile, as shown in the results. In addition, we use time-series
data and Z-normalised time-series data as inputs to the proposed algorithm to calculate
the matrix profile and explain which one is recommended.

Figure 15 demonstrates the matrix profile calculation for time-series data (memory
utilisation of SC) with different values of window size (3, 10, 25, 50, 100, 500, and 1000).
Note that we begin with 3 because 3 is the smallest number that we can use as a window
size in matrix profile. As can be seen, the algorithm successfully identified the anomaly in
the data that occurred because of a DDoS attack. It is worth mentioning that the anomaly
is clearer when using a larger window size. However, it should be kept in mind that the
length of the matrix profile is equal to the data minus the window size. Therefore, if the
window size is large, for example, 1000, then the attack occurred at the time of detection
plus window size.

On the other hand, Figure 15b illustrates the matrix profile for Z-normalised time-
series data (memory utilisation of SC). This figure shows that window size can affect the
accuracy of the matrix profile algorithm. The outcome shows that when the window size
is small, the accuracy is negatively affected in the Z-normalised time-series data. This
is because the Z-normalised data are less sensitive to change. Therefore, when using a
small window size, the algorithm may fail to detect the anomaly in the data. However, the
runtime of the matrix profile algorithm when using Z-normalised data is shorter.

Figure 16 depicts a matrix profile algorithm runtime comparison between using time-
series data and Z-normalised time-series data. The figure shows that there is almost no
difference between using time-series data and Z-normalised data with matrix profile in
terms of calculation time when the size of the data is small (around 10 K). On the other hand,
the figure highlights that runtime using Z-normalised time-series data is much shorter
than the runtime using the matrix profile algorithm with time-series data. Therefore, we
recommended using Z-normalised time-series data when the size of the data is large.

Table 1 shows the number of true positives and false positives from the experiment. It
also shows the precision of the algorithm. Note that Equation (5) is utilised to calculate the
precision of the matrix profile algorithm when using time-series data and Z-normalised
time-series data with different values of window sizes [43]. The table shows that the
precision of the matrix profile algorithm with time-series data is much better than that of
using Z-normalised time-series data because the matrix profile algorithm becomes less
sensitive to anomaly data when using Z-normalised data.

Precision =
True Positive

True Positive + False Positive
(5)
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(a) Time-Series Data

(b) Z-normalised Time-Series Data

Figure 15. Matrix profile for memory utilisation using different window sizes.
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Figure 16. Matrix profile algorithm runtime with time-series data and Z-normalised time-series data.

Table 1. Precision of matrix profile. FP= False Positive; TP= True Positive

Time-Series Data Z-Normalised Time-Series Data

Window Size No. of TP No. of FP Precision in % No. of TP No. of FP Precision in %

3 14 1 93.33 13 2 86.67

5 14 1 93.33 12 3 80.00

10 14 1 93.33 12 3 80.00

25 15 0 100.0 13 2 86.67

50 15 0 100.0 15 0 100.0

100 15 0 100.0 15 0 100.0

500 15 0 100.0 15 0 100.0

1000 15 0 100.0 13 2 86.67

In addition, paper [44] used an unsupervised machine learning algorithm to detect
DDoS attacks in the same dataset. The accuracy of their algorithm is around 87%. However,
the precision of this algorithm is varied from one DDoS attack to another. For example, the
precision of their algorithm is 28% for UDP DDoS attacks, whereas it is 100% for TCP DDoS
attacks. Comparing this result with our finding, our algorithm is data agnostic because it
analyses the symptoms of the DDoS attack and not the traffic itself. Thus, the precision is
the same, disregarding the type of DDoS attack. The precision of our algorithm varies from
80% to 100%.

5. Future Work

The outcome of our experiment shows that using a Z-normalised time-series data
matrix profile can be efficient when dealing with large datasets. It is also helpful with noisy
data. Further, more experiments are required in this area. Investigating the victim side
using matrix profile could be another area of research. Finally, investigating using matrix
profile in a real-time or near-real-time model is a good candidate for enhancing the current
model; we propose using a buffer with a limited time window and analysing data using
matrix profile in near-real-time. More investigation is needed to evaluate the effectiveness
of matrix profile in online settings.

6. Conclusions

This paper illustrated that the matrix profile algorithm could be a very efficient tool for
detecting malicious attacks via discovering respective symptoms rather than monitoring
traffic directly. The findings showed that the precision of the matrix profile algorithm is
93.33–100% when using time-series data, whereas the accuracy of the algorithm is 80–100%
when using Z-normalised time-series data, see Table 1. Regarding computation time,
the matrix profile algorithm managed to detect DDoS in 5 s in a time series with 100K
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reading, and 25 s for the same number of readings for time-series data. Furthermore, this
paper showed that the runtime of the algorithm could be improved using Z-normalised
time-series data, as the runtime can be 20% of the computation time of the matrix profile
algorithm using time-series data, see Figure 16. Finally, the findings demonstrated that the
matrix profile algorithm is scalable, as shown in Figure 16, and is a data-agnostic tool that
does not require specific experience to utilise.
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