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Abstract: Nonlinear vibration control of the twelve-poles electro-magnetic suspension system was
tackled in this study, using a novel control strategy. The introduced control algorithm was a combina-
tion of three controllers: the proportional-derivative (PD) controller, the integral resonant controller
(IRC), and the positive position feedback (PPF) controller. According to the presented control
algorithm, the mathematical model of the controlled twelve-poles rotor was established as a nonlinear
four-degree-of-freedom dynamical system coupled to two first-order filters. Then, the derived non-
linear dynamical system was analyzed using perturbation analysis to extract the averaging equations
of motion. Based on the extracted averaging equations of motion, the efficiency of different control
strategies (i.e., PD, PD + IRC, PD + PPF, and PD + IRC + PPF) for mitigating the rotor’s unde-
sired vibrations and improving its catastrophic bifurcation was investigated. The acquired analytical
results demonstrated that both the PD and PD + IRC controllers can force the rotor to respond as a
linear system; however, the controlled system may exhibit the maximum oscillation amplitude at
the perfect resonance condition. In addition, the obtained results demonstrated that the PD + PPF
controller can eliminate the rotor nonlinear oscillation at the perfect resonance, but the system may
suffer from high oscillation amplitudes when the resonance condition is lost. Moreover, we report
that the combined control algorithm (PD + IRC + PPF) has all the advantages of the individual
control algorithms (i.e., PD, PD + IRC, PD + PPF), while avoiding their drawbacks. Finally, the
numerical simulations showed that the PD + IRC + PPF controller can eliminate the twelve-poles
system vibrations regardless of both the excitation force magnitude and the resonant conditions at a
short transient time.

Keywords: nonlinear vibration control; rotor electro-magnetic suspension system; PD-control
algorithm; IRC-control algorithm; PPF-control algorithm; forward whirling motion; rub/impact force

1. Introduction

Vibration analysis and control of the electro-magnetic suspension system are among
the most important research topics for scientists and engineers worldwide. The importance
of this suspension system is due to its many industrial applications, including its use in
rotor dynamics and in the automobile industries. The rotor electro-magnetic suspension
system is a special type of active bearing that is used to support the rotating shafts without
any physical contact with the stator parts of the system. The working principle of rotor
electro-magnetic suspension is the application of controllable electro-magnetic attractive
forces to support the rotating shafts in their hovering positions via compensating for
the external loads that are exerted on these shafts. The operation of the rotating shafts
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without physical contact with the stators gives this suspension system many preferable
features when compared with conventional bearings systems, such as less maintenance,
no need for lubrication between the rotors and stators, a clean working environment, high
operational speed, high reliability, and high durability. Accordingly, many research articles
have investigated the dynamical characteristics of different configurations of the rotor
electro-magnetic suspension system.

Different control algorithms have been proposed to enhance the vibratory characteris-
tics and eliminate the undesired nonlinear bifurcation behaviors of this suspension system.
Ji et al. [1] studied the nonlinear dynamics and motion bifurcations of a rotor electro-
magnetic suspension system consisting of a four-poles configuration. They established the
mathematical model that governs the rotor lateral vibrations as a two-degree-of-freedom
nonlinear dynamical system. Then, they investigated the derived equations of motion
using the multiple-time scales perturbation method. Based on their analysis, they reported
that the rotor system may lose its stability either via saddle-node or Hopf bifurcations.

Saeed et al [2] investigated the vibratory characteristics of a rotor supported by a
six-poles electro-magnetic suspension system. They introduced two control strategies
utilizing the PD-control algorithm. The first control technique was established based on the
Cartesian displacements and velocities of the rotor in the horizontal and vertical directions,
while the second control technique was designed according to the radial oscillations of the
rotor in the direction of the six poles. Based on their analysis, they reported that the rotor
system may lose its stability and exhibit unbounded oscillation in the case of the radial
control technique at a specific value of the proportional gain. In addition, they showed
that the system may perform either a quasi-periodic or chaotic response in the case of the
Cartesian control strategy at a strong excitation force.

Ji and Hansen [3,4] studied the nonlinear dynamics of a rotor supported by an eight-
poles electro-magnetic suspension system. They applied the Cartesian PD-control strategy
to improve the vibratory characteristics of that system at both primary [3] and super-
harmonic resonance conditions [4]. They reported that the eight-poles system has bi-stable
and tri-stable solutions. In addition, they showed that the system may be exposed to a
multi-jump when the rotor angular speed crosses its first critical speed.

El-Shourbagy et al. [5] introduced a nonlinear PD-control algorithm to enhance the
nonlinear lateral vibrations of a rotor supported by an eight-poles electro-magnetic sus-
pension system. Saeed et al. [6] explored numerically the motion bifurcations of a rotor
system supported by the eight poles when the rub-impact force between the rotor and
stator occurs. They illustrated that the rotor may execute either full annular rub mode
or rub-impact motion, depending on both the impact stiffness and the dynamic friction
coefficients. In addition, Zhang et al. [7–12] introduced detailed investigations of the eight-
poles electro-magnetic suspension system with variable stiffness coefficients. The nonlinear
dynamical behaviors of the twelve-poles electro-magnetic suspension system were inves-
tigated utilizing the PD-control algorithm for the first time by El-Shourbagy et al. [13].
They reported that proportional control gain can play an important role in reshaping the
system dynamics. In addition, they demonstrated that the twelve-poles system may lose its
stability at a strong excitation force. Saeed et al. [14] explored the dynamical characteristics
of the sixteen-poles system with constant stiffness coefficients utilizing the conventional
PD-control algorithm. Zhang et al. [15–18] introduced extensive investigations for the
sixteen-poles rotor system with time-varying stiffness coefficients. Due to the controllability
and flexibility of the rotor electro-magnetic suspension system, it was used as an active
actuator to control the dynamical behaviors of some rotating machines [19–23].

The positive position feedback (PPF) control algorithm has been applied extensively
to eliminate the resonant vibrations of many dynamical systems [24–28]. Saeed et al. [28]
utilized the PPF-control strategy with a PD controller to mitigate the undesired vibrations
of the eight-poles rotor system for the first time. They concluded that the PPF controller
can eliminate the system’s lateral vibration at the perfect resonance condition. However,
the main drawback of this control strategy was that the controller may add excessive
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vibratory motion to the rotor system if the tuning condition was lost. In addition, the
integral resonance controller (IRC) was one of the feasible control methods that was
applied to mitigate the undesired vibrations and eliminate the nonlinear bifurcations of
different dynamical systems [29–36]. Recently, Saeed et al. [36] introduced the IRC-control
algorithm for the first time to mitigate the unwanted vibrations of the eight-poles rotor
system. They reported that the IRC controller can reduce the system’s vibrations and
suppress the corresponding catastrophic bifurcations. However, the main drawback of this
control method was that the IRC-controller could not eliminate the rotor vibrations at a
resonance condition close to zero.

In the present work, a new control strategy is introduced to eliminate the nonlinear
lateral vibrations of the twelve-poles rotor system. The proposed controller is a combina-
tion of the three control algorithms: PD, IRC, and PPF. Accordingly, the whole-system
mathematical model is derived as a four-degree-of-freedom dynamical system that is
coupled to two first-order differential equations. Then, the system dynamical model is
analyzed, and the corresponding slow-flow modulation equations are extracted. Based on
the obtained slow-flow modulation equation, the performance of the suggested control
technique is explored. The obtained analytical results showed that the PD, IRC, and
PD + IRC controllers can mitigate the nonlinear oscillation of the system and force the
rotor to respond as a linear system. but the main drawback of these types of controllers
(i.e., PD, IRC, and PD + IRC) is that the controlled system may perform the maximum
oscillation amplitude at the resonant condition. In addition, we found that the coupling
of the PD + PPF controller to the system can eliminate the rotor’s undesired oscillation at
the perfect resonance, but the system may suffer from high oscillation amplitudes if the
resonance condition is lost. Moreover, the acquired analytical and numerical investigations
demonstrated that the PD + IRC + PPF controller has all the advantages of the individual
control algorithms (i.e., PD, PD + IRC, and IRC + PPF), while avoiding their drawbacks.

2. Equations of Motion

The studied rotor system is assumed to be a rigid body with a two-degree-of-freedom
system that has mass m and eccentricity e and rotates with angular velocity ψ, as shown in
Figure 1. In addition, this rotor system is supported in its nominal position via the restoring
forces fx and fy that are generated by twelve electro-magnetic poles. Therefore, the system
equations of motion can be expressed as follows [37,38]:

m
..
x− fx = meψ2 cos(ψt) (1)

m
..
y− fy = meψ2 sin(ψt) (2)

where fx and fy represent the resultant restoring forces of the twelve poles in both the X
and Y directions, respectively. In this study, the attractive forces f j (j = 1, 2, . . . , 6) are
designed so that each adjacent pair of the poles generates a push-pull attractive force.
Therefore, f j (j = 1, 2, . . . , 6) can be expressed according to the electro-magnetic theory, as
follows [38]:

f j = Θ

[
(I0 − Ij)

2

(c0 − δj)
2 −

(I0 + Ij)
2

(c0 + δj)
2

]
, j = 1, 2, · · · , 6 (3)

where Θ = 1
4 µ0N2Acos(ϕ) is constant, I0 is constant current defined as a bias current, Ij

(j = 1, 2, . . . , 6) is the control currents that will be defined later according to the purposed
control algorithm, c0 is the nominal air-gap size between the rotor and the twelve poles,
and δj is the radial deviation of the rotor away from the geometric center O in the direction
of the jth pole.
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Figure 1. (a) twelve-poles rotor system at its nominal position, (b) twelve-poles rotor system with
small displacements x(t) and y(t) in the horizontal and vertical directions, respectively.

Based on the system’s geometry as shown in Figure 1, for the small temporal Cartesian
displacements x(t) and y(t) of the rotor in both the X and Y directions, one can express the
radial displacements δj, (j = 1, 2, . . . , 6) of the rotor system as follows:

δ1(x, y) = x(t) cos(α)− y(t) sin(α), δ2(x, y) = x(t),
δ3(x, y) = x(t) cos(α) + y(t) sin(α), δ4(x, y) = x(t) sin(α) + y(t) cos(α),
δ5(x, y) = y(t), δ6(x, y) = −x(t) sin(α) + y(t) cos(α)

 (4)

where α is the angle between every two consecutive poles (i.e., α = 360◦/12 = 30◦). In
this work, the control currents were designed so that the control forces f1, f2, and f3
depend on the horizontal displacement x(t), while the forces f4, f5, and f6 depend on the
vertical displacement y(t). Accordingly, the control currents Ij (j = 1, 2, . . . , 6) are selected
as follows:

IX = I1 = I2 = I3, IY = I4 = I5 = I6 (5)

where IX is the control current that is responsible for eliminating the nonlinear oscillations
of the rotor system in the X direction, while IY is the control current that is responsible for
eliminating the nonlinear oscillations of the rotor system in the Y direction. Accordingly,
to eliminate the undesired vibrations of the system, an advanced control strategy was
introduced. The suggested control method is a combination of three control algorithms:
the PD controller, the IRC controller, and the PPF controller. Therefore, the control laws
(i.e., control currents IX and IY) are designed as follows:

IX = k1x + k2
.
x− k3u1 + k4u2, IY = k1y + k2

.
y− k5v1 + k6v2 (6)

where k1 and k2 are the control gains of the PD controller, k3 and k5 denote the control
gains of the PPF controller, and k4 and k6 represent the control gains of the IRC controller.
Accordingly, k1x + k2

.
x and k1y + k2

.
y are the components of the control currents (IX and

IY) due to the PD controller in the X and Y directions, respectively, −k3u1 and −k5v1 are
the components of the control currents due to the PPF controller in the X and Y directions,
respectively, while +k4u2 and +k6v2 denote the control current components due to the IRC
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controller in the X and Y directions, respectively. The equations of motion that describe the
oscillatory behaviors of the PPF controllers are provided as follows [24–28]:

..
u1 + c1

.
u1 + λ1u1 = L1x (7)

..
v1 + c2

.
v1 + λ2v1 = L2y (8)

where c1 and c2 denote the damping coefficients of the PPF controllers, λ1 and λ2 represent
the controller’s natural frequencies, and L1 and L2 are the feedback signals gains. In
addition, the dynamical behaviors of the IRC controllers are governed by first-order
differential equations that are provided as follows [29–36]:

.
u2 + λ3u2 = L3x (9)

.
v2 + λ4v2 = L4y (10)

where λ3 and λ4 denote the internal feedback gain of the IRC controller, and L3 and L4
represent the feedback signals gains. The interconnection between the twelve-poles system
and the proposed control algorithm (i.e., the PD + IRC + PPF controllers) is illustrated
schematically in Figure 2, where the temporal Cartesian oscillations (i.e., x(t) and y(t)) of
the rotor in both the X and Y directions can be measured using two position sensors that
may be fixed on the poles-housing in the +X and +Y directions, as shown in Figure 1a.
Then, the measured signals, x(t) and y(t), are fed into a digital computer on which the
control algorithm (i.e., the PD+IRC+PPF controller) is implemented. According to the
programmed algorithm, the controller computes the control currents IX = k1x + k2

.
x −

k3u1 + k4u2 and IY = k1y + k2
.
y− k5v1 + k6v2, as shown in Figure 2. Finally, the computed

control currents are applied to a power amplifiers network to energize the twelve-poles
electrical coils in order to generate the electro-magnetic forces ( f1, f2, . . . , f6), which in
turn try to mitigate the lateral oscillations, x(t) and y(t), of the rotor system.

Now, to investigate the performance of the proposed closed-loop system, the whole-
system model should be obtained and then analyzed to report the optimum working
conditions of this system. Therefore, by substituting Equations (4) to (6) into Equation (3),
we have the following:

f1 = Θ(
(I0 − k1x− k2

.
x + k3u1 − k4u2)

2

(c0 − x cos (α) + y sin (α))2 − (I0 + k1x + k2
.
x− k3u1 + k4u2)

2

(c0 + x cos (α)− y sin (α))2 ) (11)

f2 = Θ(
(I0 − k1x− k2

.
x + k3u1 − k4u2)

2

(c0 − x)2 − (I0 + k1x + k2
.
x− k3u1 + k4u2)

2

(c0 + x)2 ) (12)

f3 = Θ(
(I0 − k1x− k2

.
x + k3u1 − k4u2)

2

(c0 − x cos (α)− y sin (α))2 − (I0 + k1x + k2
.
x− k3u1 + k4u2)

2

(c0 + x cos (α) + y sin (α))2 ) (13)

f4 = Θ(
(I0 − k1y− k2

.
y + k5v1 − k6v2)

2

(c0 − x sin (α)− y cos (α))2 − (I0 + k1y + k2
.
y− k5v1 + k6v2)

2

(c0 + x sin (α) + y cos (α))2 ) (14)

f5 = Θ(
(I0 − k1y− k2

.
y + k5v1 − k6v2)

2

(c0 − y)2 − (I0 + k1y + k2
.
y− k5v1 + k6v2)

2

(c0 + y)2 ) (15)

f6 = Θ(
(I0 − k1y− k2

.
y + k5v1 − k6v2)

2

(c0 + x sin (α)− y cos (α))2 − (I0 + k1y + k2
.
y− k5v1 + k6v2)

2

(c0 − x sin (α) + y cos (α))2 ) (16)
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Figure 2. The engineering implementation of the combined control algorithm (i.e., PD + IRC + PPF
controller).

Based on the system geometry, as shown in Figure 1, the resultant attractive forces fx
and fy in the X and Y directions due to the forces f1, f2, . . . , f6 can be expressed as follows:

fx = f2 + ( f1 + f3) cos(α) + ( f4 − f6) sin(α) (17)

fy = f5 + ( f4 + f6) cos(α) + ( f3 − f1) sin(α) (18)

To simplify the rational form of the attractive forces f1, f2, . . . , f6, Equations (11) to
(16) were expanded, using the Maclaurin series, up to the third order approximation, as
provided in Appendix A. Now, substituting the expanded Equations (A1) to (A6) that are
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provided in Appendix A into Equations (17) and (18), then inserting the resulting equations
into Equations (1) and (2) and introducing the dimensionless parameters: t∗ = ϑt, z1 = x

c0
,

.
z1 =

.
x

ϑc0
,

..
z1 =

..
x

ϑ2c0
, z2 = y

c0
,

.
z2 =

.
y

ϑc0
,

..
z2 =

..
y

ϑ2c0
, z3 = u1

c0
,

.
z3 =

.
u1
ϑc0

,
..
z3 =

..
u1

ϑ2c0
, z4 = v1

c0
,

.
z4 =

.
v1
ϑc0

,
..
z4 =

..
v1

ϑ2c0
, z5 = u2

c0
,

.
z5 =

.
u2
ϑc0

, z6 = v2
c0

,
.

z6 =
.

v2
ϑc0

, ω1 =
√

λ1
ϑ2 , ω2 =

√
λ2
ϑ2 , ω3 = λ3

ϑ ,

ω4 = λ4
ϑ , Ω = ψ

ϑ , f = e
c0

, p = c0
I0

k1, d = c0ϑ
I0

k2, µ1 = c1
2ϑ , µ2 = c2

2ϑ , η1 = (1+2 cos (α))c0
I0

k3,

η2 = (1+2 cos (α))c0
I0

k4, η3 = (1+2 cos (α))c0
I0

k5, η4 = (1+2 cos (α))c0
I0

k6, η5 = L1
ϑ2 , η6 = L2

ϑ2 , η7 = L3
ϑ ,

η8 = L4
ϑ , ϑ =

√
Θ/mc3

0, one can obtain the following dimensionless equations of motion
that govern the nonlinear dynamics of the proposed closed-loop system:

..
z1 + 2µ

.
z1 + ω2z1 − (α1z3

1 + α2z1z2
2 + α3z2

1
.
z1 + α4

.
z1z2

2 + α5z1
.
z2

2 + α6z1
.
z2

1 + α7z1z2
.
z2

+β1z2
1z3 + β2z1

.
z1z3 + β3z1z2

3 + β4z1z2z4 + β5z1z2
4 + β6z1

.
z2z4 + β7z3z2

2 + β8z1z3z5
+β9z1

.
z1z5 + β10z1z4z6 + β11z2

1z5 + β12z1z2
6 + β13z1z2z6 + β14z1

.
z2z6 + β15z1z2

5 + β16z2
2z5)

= Ω2 f cos(Ωt) + η1z3 + η2z5

(19)

..
z2 + 2µ

.
z2 + ω2z2 − (α1z3

2 + α2z2z2
1 + α3z2

2
.
z2 + α4

.
z2z2

1 + α5z2
.
z2

1 + α6z2
.
z2

2 + α7z2z1
.
z1

+γ1z2
2z4 + γ2z2

.
z2z4 + γ3z2z2

4 + γ4z2z1z3 + γ5z2z2
3 + γ6z2

.
z1z3 + γ7z4z2

1 + γ8z2z4z6
+γ9z2

.
z2z6 + γ10z2z3z5 + γ11z2

2z6 + γ12z2z2
5 + γ13z2z1z5 + γ14z2

.
z1z5 + γ15z2z2

6 + γ16z2
1z6)

= Ω2 f sin(Ωt) + η3z4 + η4z6

(20)

..
z3 + 2µ1

.
z3 + ω2

1z3 = η5z1 (21)
..
z4 + 2µ2

.
z4 + ω2

2z4 = η6z2 (22)
.
z5 + ω3z5 = η7z1 (23)
.
z6 + ω4z6 = η8z2 (24)

Equations (19) and (20) represent the dimensionless equations of motion of the con-
trolled twelve-poles system, while Equations (21) and (22) are the dimensionless equations
of motion of the PPF controller. In addition, Equations (23) and (24) are the dimensionless
equations of motion of the IRC controller. Accordingly, the suggested closed-loop system
is governed by six-coupled nonlinear ordinary differential equations, four of which are of
the second order and the other two of which are of the first order, where the coefficients of
the above six equations are provided in Appendix B.

3. Analytical Investigations

Many analytical methods have been introduced in the literature to investigate both
the linear and nonlinear vibration problems [39–41]. Accordingly, to explore the efficiency
of the introduced closed-loop system, we sought an approximate solution for the system
equations of motions (i.e., Equations (19) to (24)) within this section, in the form of a
first-order perturbation series as follows [39,40]:

z1(t, ε) = z10(T0, T1) + εz11(T0, T1) (25)

z2(t, ε) = z20(T0, T1) + εz21(T0, T1) (26)

z3(t, ε) = z30(T0, T1) + εz31(T0, T1) (27)

z4(t, ε) = z40(T0, T1) + εz41(T0, T1) (28)

z5(t, ε) = εz50(T0, T1) + ε2z51(T0, T1) (29)

z6(t, ε) = εz60(T0, T1) + ε2z61(T0, T1) (30)
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where T0 = t, T1 = εt, and ε is the perturbation parameter that was used as a bookkeeping
coefficient during this analysis [40]. According to the introduced two-time scales (i.e.,
T0, T1), the ordinary derivatives d

dt and d2

dt2 should be re-written as follows:

d
dt

= D0 + εD1,
d2

dt2 = D2
0 + 2εD0D1, and Dj =

∂

∂Tj
, j = 0, 1 (31)

In addition, to perform the perturbation analysis using ε as a bookkeeping coefficient,
the parameters of Equations (19) to (24) should be re-scaled as follows:

f = ε f̃ , µ = εµ̃, µ1 = εµ̃1, µ2 = εµ̃2, αj = εα̃j, β j = εβ̃ j, γj = εγ̃j, ηk = εη̃k;
j = 1, · · · , 7, k = 1, 3, 5, 6, 7, 8

(32)

Then, by substituting Equations (25) to (32) into Equations (19) to (24), we have O(ε0):

(D2
0 + ω2)z10 = 0 (33)

(D2
0 + ω2)z20 = 0 (34)

(D2
0 + ω2

1)z30 = 0 (35)

(D2
0 + ω2

2)z40 = 0 (36)

O(ε1):

(D2
0 + ω2)z11 = −2D0D1z10 − 2µ̃D0z10 + α̃1z3

10 + α̃2z10z2
20 + α̃3z2

10D0z10 + α̃4z2
20D0z10

+α̃5z10(D0z20)
2 + α̃6z10(D0z10)

2 + α̃7z10z20D0z20 + β̃1z2
10z30 + β̃2z10D0z10z30

+β̃3z10z2
30 + β̃4z10z20z40 + β̃5z10z2

40 + β̃6z10D0z20z40 + β̃7z2
20z30 + β8z10z30z50

+β9z10D0z10z50 + β10z10z40z60 + β11z2
10z50 + β12z10z2

60 + β13z10z20z60

+β14z10D0z20z60 + β15z10z2
50 + β16z2

20z50 + Ω2 f̃ cos(Ωt) + η̃1z30 + η2z50

(37)

(D2
0 + ω2)z21 = −2D0D1z20 − 2µ̃D0z20 + α̃1z3

20 + α̃2z20z2
10 + α̃3z2

20D0z20 + α̃4z2
10D0z20

+α̃5z20(D0z10)
2 + α̃6z20(D0z20)

2 + α̃7z20z10D0z10 + γ̃1z2
20z40 + γ̃2z20D0z20z40

+γ̃3z20z2
40 + γ̃4z20z10z30 + γ̃5z20z2

30 + γ̃6z20D0z10z30 + γ̃7z2
10z40 + γ8z20z40z60

+γ9z20D0z20z60 + γ10z20z30z60 + γ11z2
20z60 + γ12z20z2

50 + γ13z20z10z50

+γ14z20D0z10z50 + γ15z20z2
60 + γ16z2

10z60 + Ω2 f̃ sin(Ωt) + η̃3z40 + η4z60

(38)

(D2
0 + ω2

1)z31 = −2D0D1z30 − 2εµ̃1D0z30 + η̃5z10 (39)

(D2
0 + ω2

2)z41 = −2D0D1z40 − 2µ̃2D0z40 + η̃6z20 (40)

(D0 + ω3)z50 = η̃7z10 (41)

(D0 + ω4)z60 = η̃8z20 (42)

The steady-state periodic solutions of Equations (33) to (36), (41), and (42) can be
written as follows:

z10(T0, T1) = A1(T1)eiωT0 + A1(T1)e−iωT0 (43)

z20(T0, T1) = A2(T1)eiωT0 + A2(T1)e−iωT0 (44)

z30(T0, T1) = B1(T1)eiω1T0 + B1(T1)e−iω1T0 (45)

z40(T0, T1) = B2(T1)eiω2T0 + B2(T1)e−iω2T0 (46)

z50(T0, T1) = ρ1 A1(T1)eiωT0 + ρ1 A1(T1)e−iωT0 (47)

z60(T0, T1) = ρ2 A2(T1)eiωT0 + ρ2 A2(T1)e−iωT0 (48)

where i =
√
−1, ρ1 = ω3−iω

ω2
3+ω2 η̃7, ρ1 = ω3+iω

ω2
3+ω2 η̃7, ρ2 = ω4−iω

ω2
4+ω2 η̃8, ρ2 = ω4+iω

ω2
4+ω2 η̃8. A1(T1),

A2(T1), B1(T1) and B2(T1) are unknown that will be defined later. A1(T1), A2(T1), B1(T1),
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and B2(T1) are the complex conjugate forms of A1(T1), A2(T1), B1(T1), and B2(T1), respec-
tively. Inserting Equations (43) to (48) into Equations (37) to (40), we have the following:

(D2
0 + ω2)z11 = (−2iωD1 A1 − 2iµ̃ωA1 + 3α̃1 A2

1 A1 + 2α̃2 A1 A2 A2 + α̃2 A1 A2
2 + iα̃3ωA2

1 A1
+2iα̃4ωA1 A2 A2 − iα̃4ωA1 A2

2 + 2α̃5ω2 A1 A2 A2 − α̃5ω2 A1 A2
2 + α̃6ω2 A2

1 A1
+iα̃7ωA1 A2

2 + 2β̃3 A1B1B1 + 2β̃5 A1B2B2 + 2β11ρ1 A2
1 A1 + β12ρ2

2 A1 A2
2

+β13ρ2 A1 A2 A2 + β13ρ2 A1 A2
2 − iβ14ωρ2 A1 A2 A2 + iβ14ωρ2 A1 A2

2
+β15ρ2

1 A2
1 A1 + 2β16ρ1 A1 A2 A2+η̃2ρ1 A1)eiωT0 + η̃1B1eiω1T0 + (α̃1 A3

1
+α̃2 A1 A2

2 + iα̃3ωA3
1 + iα̃4ωA1 A2

2 − α̃5ω2 A1 A2
2 − α̃6ω2 A3

1 + iα̃7ωA1 A2
2

+iβ9ωρ1 A3
1 + β11ρ1 A3

1 + β12ρ2
2 A1 A2

2 + β13ρ2 A1 A2
2 + iβ14ωρ2 A1 A2

2
+β15ρ2

1 A3
1+β16ρ1 A1 A2

2)e
3iωT0 + (β̃1 A2

1B1 + iβ̃2ωA2
1B1 + β̃7 A2

2B1
+β8ρ1 A2

1B1)ei(2ω+ω1)T0 + (β̃1 A2
1B1+iβ̃2ωA2

1B1 + β̃7 A2
2B1+β8ρ1 A2

1B1)ei(2ω−ω1)T0

+(2β̃1 A1 A1B1 + 2β̃7 A2 A2B1+β8ρ1 A1 A1B1)eiω1T0 + β̃3 A1B2
1ei(ω+2ω1)T0

+β̃3 A1B2
1ei(2ω1−ω)T0 + (β̃4 A1 A2B2 + iβ̃6ωA1 A2B2+β10ρ2 A1 A2B2)ei(2ω+ω2)T0

+(β̃4 A1 A2B2 + iβ̃6ωA1 A2B2+β10ρ2 A1 A2B2)ei(2ω−ω2)T0 + (β̃4 A1 A2B2

+β̃4 A1 A2B2 − iβ̃6ωA1 A2B2 + iβ̃6ωA1 A2B2+β10ρ2 A1 A2B2)eiω2T0

+β̃5 A1B2
2ei(ω+2ω2)T0 + β̃5 A1B2

2ei(2ω2−ω)T0 + 1
2 Ω2 f̃ eiΩT0 + cc

(49)

(D2
0 + ω2)z21 = (−2iωD1 A2 − 2iµ̃ωA2 + 3α̃1 A2

2 A2 + 2α̃2 A2 A1 A1 + α̃2 A2 A2
1 + iα̃3ωA2

2 A2
+2iα̃4ωA2 A1 A1 − iα̃4ωA2 A2

1 + 2α̃5ω2 A2 A1 A1 − α̃5ω2 A2 A2
1 + α̃6ω2 A2

2 A2
+iα̃7ωA2 A2

1 + 2γ̃3 A2B2B2 + 2γ̃5 A2B1B1 + 2γ11ρ2 A2
2 A2 + γ12ρ2

1 A2 A2
1

+γ13ρ1 A2 A1 A1 + γ13ρ1 A2 A2
1 − iγ14ωρ1 A2 A1 A1 + iγ14ωρ1 A2 A2

1 + γ15ρ2
2 A2

2 A2
+2γ16ρ2 A2 A1 A1 + η̃4ρ2 A2)eiωT0 + η̃3B2eiω2T0 + (α̃1 A3

2 + α̃2 A2 A2
1 + iα̃3ωA3

2
+iα̃4ωA2 A2

1 − α̃5ω2 A2 A2
1 − α̃6ω2 A3

2 + iα̃7ωA2 A2
1 + iγ9ωρ2 A3

2 + γ11ρ2 A3
2

+γ12ρ2
1 A2 A2

1 + γ13ρ1 A2 A2
1 + iγ14ωρ1 A2 A2

1 + γ15ρ2
2 A3

2 + γ16ρ2 A2 A2
1)e

3iωT0

+(γ̃1 A2
2B2 + iγ̃2ωA2

2B2 + γ̃7 A2
1B2 + γ8ρ2 A2

2B2)ei(2ω+ω2)T0 + (γ̃1 A2
2B2

+iγ̃2ωA2
2B2 + γ̃7 A2

1B2 + γ8ρ2 A2
2B2)ei(2ω−ω2)T0 + (2γ̃1 A2 A2B2 + 2γ̃7 A1 A1B2

+γ8ρ2 A2 A2B2)eiω2T0 + γ̃3 A2B2
2ei(ω+2ω2)T0 + γ̃3 A2B2

2ei(2ω2−ω)T0 + (γ̃4 A2 A1B1
+iγ̃6ωA2 A1B1 + γ10ρ1 A2 A1B1)ei(2ω+ω1)T0 + (γ̃4 A2 A1B1 + iγ̃6ωA2 A1B1
+γ10ρ1 A2 A1B1)ei(2ω−ω1)T0 + (γ̃4 A2 A1B1 + γ̃4 A2 A1B1 − iγ̃6ωA2 A1B1
+iγ̃6ωA2 A1B1 + γ10ρ1 A2 A1B1)eiω1T0 + γ̃5 A2B2

1ei(ω+2ω1)T0 + γ̃5 A2B2
1ei(2ω1−ω)T0

− 1
2 iΩ2 f̃ eiΩT0 + cc

(50)

(D2
0 + ω2

1)z31 = −2iω1D1B1eiω1T0 − 2iµ̃1ω1B1eiω1T0 + η̃5 A1eiωT0 + cc (51)

(D2
0 + ω2

2)z41 = −2iω2D1B2eiω2T0 − 2iµ̃2ω2B2eiω2T0 + η̃6 A2eiωT0 + cc (52)

where cc in Equations (49) to (52) denote the complex conjugate term. To obtain the periodic
solutions of Equations (49) to (52), the resonance conditions should be eliminated. Therefore,
let σ, σ1, and σ2 represent the closeness of the rotor angular speed (Ω) and the controller
natural frequencies (ω1 and ω2) to the rotor system natural frequency (ω), as follows:

Ω = ω + σ, ω1 = ω + σ1, ω2 = ω + σ2 (53)

Inserting Equation (53) into Equations (49) to (52), one can extract the following
solvability conditions:

−2iωD1 A1 − 2iµ̃ωA1 + 3α̃1 A2
1 A1 + 2α̃2 A1 A2 A2 + α̃2 A1 A2

2 + iα̃3ωA2
1 A1 + 2iα̃4ωA1 A2 A2

−iα̃4ωA1 A2
2 + 2α̃5ω2 A1 A2 A2 − α̃5ω2 A1 A2

2 + α̃6ω2 A2
1 A1 + iα̃7ωA1 A2

2 + 2β̃3 A1B1B1
+2β̃5 A1B2B2 + 2β11ρ1 A2

1 A1 + β12ρ2
2 A1 A2

2 + β13ρ2 A1 A2 A2 + β13ρ2 A1 A2
2 − iβ14ωρ2 A1 A2 A2

+iβ14ωρ2 A1 A2
2 + β15ρ2

1 A2
1 A1 + 2β16ρ1 A1 A2 A2 + η̃1B1eiεσ̃1T0 + η̃2ρ1 A1 + (β̃1 A2

1B1
+iβ̃2ωA2

1B1 + β̃7 A2
2B1 + β8ρ1 A2

1B1)e−iεσ̃1T0 + (2β̃1 A1 A1B1 + 2β̃7 A2 A2B1 + β8ρ1 A1 A1B1)eiεσ̃1T0

+(β̃4 A1 A2B2 + iβ̃6ωA1 A2B2 + β10ρ2 A1 A2B2)e−iεσ̃2T0 + β̃3 A1B2
1e2iεσ̃1T0 + (β̃4 A1 A2B2

+β̃4 A1 A2B2 − iβ̃6ωA1 A2B2 + iβ̃6ωA1 A2B2 + β10ρ2 A1 A2B2)eiεσ̃2T0 + β̃5 A1B2
2e2iεσ̃2T0

+ 1
2 (ω + εσ̃)2 f̃ eiεσ̃T0 = 0

(54)
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−2iωD1 A2 − 2iµ̃ωA2 + 3α̃1 A2
2 A2 + 2α̃2 A2 A1 A1 + α̃2 A2 A2

1 + iα̃3ωA2
2 A2 + 2iα̃4ωA2 A1 A1

−iα̃4ωA2 A2
1 + 2α̃5ω2 A2 A1 A1 − α̃5ω2 A2 A2

1 + α̃6ω2 A2
2 A2 + iα̃7ωA2 A2

1 + 2γ̃3 A2B2B2
+2γ̃5 A2B1B1 + 2γ11ρ2 A2

2 A2 + γ12ρ2
1 A2 A2

1 + γ13ρ1 A2 A1 A1 + γ13ρ1 A2 A2
1 − iγ14ωρ1 A2 A1 A1

+iγ14ωρ1 A2 A2
1 + γ15ρ2

2 A2
2 A2 + 2γ16ρ2 A2 A1 A1 + η̃3B2eiεσ̃2T0 + η̃4ρ2 A2 + (γ̃1 A2

2B2
+iγ̃2ωA2

2B2 + γ̃7 A2
1B2 + γ8ρ2 A2

2B2)e−iεσ̃2T0 + (2γ̃1 A2 A2B2 + 2γ̃7 A1 A1B2 + γ8ρ2 A2 A2B2)eiεσ̃2T0

+(γ̃4 A2 A1B1 + iγ̃6ωA2 A1B1 + γ10ρ1 A2 A1B1)e−iεσ̃1T0 + γ̃3 A2B2
2e2iεσ̃2T0 + (γ̃4 A2 A1B1

+γ̃4 A2 A1B1 − iγ̃6ωA2 A1B1 + iγ̃6ωA2 A1B1 + γ10ρ1 A2 A1B1)eiεσ̃1T0 + γ̃5 A2B2
1e2iεσ̃1T0

− 1
2 i(ω + εσ̃)2 f̃ eiεσ̃T0 = 0

(55)

− 2i(ω + εσ̃1)D1B1eiεσ̃1T0 − 2iµ̃1(ω + εσ̃1)B1eiεσ̃1T0 + η̃5 A1 = 0 (56)

− 2i(ω + εσ̃2)D1B2eiεσ̃2T0 − 2iµ̃2(ω + εσ̃2)B2eiεσ̃1T0 + η̃6 A2 = 0 (57)

To obtain the autonomous dynamical system that describes the oscillatory behaviors
of the considered closed-loop system, let us express the unknown functions A1, A2, B1, and
B2 in the polar form as follows:

A1(T1) =
1
2 a1(T1)eiθ1(T1), A2(T1) =

1
2 a2(T1)eiθ2(T1)

B1(T1) =
1
2 b1(T1)eiθ3(T1), B2(T1) =

1
2 b2(T1)eiθ4(T1)

}
(58)

According to Equation (58), we have the following:

D1 A1 = d
εdt A1 = 1

2ε (
.
a1eiθ1 + ia1

.
θ1eiθ1), D1 A2 = d

εdt A2 = 1
2ε (

.
a2eiθ2 + ia2

.
θ2eiθ2)

D1B1 = d
εdt B1 = 1

2ε (
.
b1eiθ3 + ib1

.
θ3eiθ3), D1B2 = d

εdt B2 = 1
2ε (

.
b2eiθ4 + ib2

.
θ4eiθ4)

}
(59)

Substituting Equations (58) and (59) into Equations (54) to (57) and separating the real
and imaginary part yields the following:

.
a1 = F1(a1, a2, b1, b2, φ1, φ2, φ3, φ4) = − 1

2 (2µ + η2η7
ω2

3+ω2 )a1 +
1
8 (α3 − 2β11η7

ω2
3+ω2 −

2ω3β15η2
7

(ω2
3+ω2)

2 )a3
1

+ 1
8 (2α4 − β13η8

ω2
4+ω2 −

ω4β14η8
ω2

4+ω2 −
2β16η7
ω2

3+ω2 )a1a2
2 +

1
8 (−α4 + α7 +

2ω4β12η2
8

(ω2
4+ω2)

2 −
β13η8

ω2
4+ω2

+ω4β14η8
ω2

4+ω2 )a1a2
2 cos(2φ1 − 2φ2) +

1
8 (

α2
ω − α5ω +

(ω2
4−ω2)β12η2

8

ω(ω2
4+ω2)

2 + ω4β13η8
ω(ω2

4+ω2)

− ωβ14η8
ω2

4+ω2 )a1a2
2 sin(2φ1 − 2φ2) + (− 1

2ω η1b1 − 1
8ω β1a2

1b1 − 1
4ω β7a2

2b1) sin(φ3)

− 1
8ω β3a1b2

1 sin(2φ3) +
1
8 (β2 − 2β8η7

ω2
3+ω2 )a2

1b1 cos(φ3)− 1
8 (

β10η8
ω2

4+ω2 )a1a2b2 cos(φ4)

+ 1
8ω (ω4β10η8

ω2
4+ω2 )a1a2b2 sin(φ4) +

1
8ω β7a2

2b1 sin(2φ1 − 2φ2 + φ3) +
1

8ω (β6ω

− ωβ10η8
ω2

4+ω2 )a1a2b2 cos(2φ1 − 2φ2 − φ4) +
1

8ω (β4 +
ω4β10η8
ω2

4+ω2 )a1a2b2 sin(2φ1 − 2φ2 − φ4)

+ 1
8ω β5a1b2

2 sin(2φ1 − 2φ2 − 2φ4) +
1

2ω (ω + σ)2 f sin(φ1)

(60)

.
a2 = F2(a1, a2, b1, b2, φ1, φ2, φ3, φ4) = − 1

2 (2µ + η4η8
ω2

4+ω2 )a2 +
1
8 (α3 − 2γ11η8

ω2
4+ω2 −

2ω4γ15η2
8

(ω2
4+ω2)

2 )a3
2

+ 1
8 (2α4 − γ13η7

ω2
3+ω2 −

ω3γ14η7
ω2

3+ω2 −
2γ16η8
ω2

4+ω2 )a2a2
1 +

1
8 (−α4 + α7 −

2ω3γ12η2
7

(ω2
3+ω2)

2 −
γ13η7

ω2
3+ω2

+ω3γ14η7
ω2

3+ω2 )a2a2
1 cos(2φ2 − 2φ1) +

1
8 (

α2
ω − α5ω +

(ω2
3−ω2)γ12η2

7

ω(ω2
3+ω2)

2 + ω3γ13η7
ω(ω2

3+ω2)

+ωγ14η7
ω2

3+ω2 )a2a2
1 sin(2φ2 − 2φ1) + (− 1

2ω η3b2 − 1
8ω γ1a2

2b2 − 1
4ω γ7a2

1b2) sin(φ4)

− 1
8ω γ3a2b2

2 sin(2φ4) +
1

8ω (γ2ω− 2ωγ8η8
ω2

4+ω2 )a2
2b2 cos(φ4)− 1

8ω (ωγ10η7
ω2

3+ω2 )a2a1b1 cos(φ3)

+ 1
8ω (ω3γ10η7

ω2
3+ω2 )a2a1b1 sin(φ3) +

1
8ω γ7a2

1b2 sin(2φ2 − 2φ1 + φ4) +
1

8ω (γ6ω

−ωγ10η7
ω2

3+ω2 )a2a1b1 cos(2φ2 − 2φ1 − φ3) +
1

8ω (γ4 +
ω3γ10η7
ω2

3+ω2 )a2a1b1 sin(2φ2 − 2φ1 − φ3)

+ 1
8ω γ5a2b2

1 sin(2φ2 − 2φ1 − 2φ3)− 1
2ω (ω + σ)2 f cos(φ2)

(61)

.
b1 = F3(a1, a2, b1, b2, φ1, φ2, φ3, φ4) = −µ1b1 +

1
2(ω + σ1)

η5a1 sin(φ3) (62)
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.
b2 = F4(a1, a2, b1, b2, φ1, φ2, φ3, φ4) = −µ2b2 +

1
2(ω + σ2)

η6a2 sin(φ4) (63)

.
φ1 = F5(a1, a2, b1, b2, φ1, φ2, φ3, φ4) = σ + 1

2ω ( ω3η2η7
ω2

3+ω2 ) +
1

8ω (3α1 + α6ω2 + 2ω3β11η7
ω2

3+ω2

+
(ω2

3−ω2)β15η2
7

(ω2
3+ω2)

2 )a2
1 +

1
8ω (2α2 + 2α5ω2 + ω4β13η8

ω2
4+ω2 −

ω2β14η8
ω2

4+ω2 + 2ω3β16η7
ω2

3+ω2 )a2
2 +

1
4ω β3b2

1

+ 1
4ω β5b2

2 +
1

8ω (α2 − α5ω2 +
(ω2

4−ω2)β12η2
8

(ω2
4+ω2)

2 + ω4β13η8
ω2

4+ω2 + ω2β14η8
ω2

4+ω2 )a2
2 cos(2φ1 − 2φ2)

+ 1
8ω (α4ω− α7ω +

2ω4ωβ12η2
8

(ω2
4+ω2)

2 + ωβ13η8
ω2

4+ω2 −
ω4ωβ14η8

ω2
4+ω2 )a2

2 sin(2φ1 − 2φ2) + ( 1
2 η1b1

+ 3
8 β1a2

1b1 +
1
4 β7a2

2b1 +
1
4

ω3β8η7
ω2

3+ω2 a2
1b1)

cos(φ3)
ωa1

+ 1
8ω β3b2

1 cos(2φ3)

− 1
8

β8η7
ω2

3+ω2 a1b1 sin(φ3)− 1
8 β2a1b1 sin(φ3) +

1
8ω (2β4 +

ω4β10η8
ω2

4+ω2 )a2b2 cos(φ4) +
1
8 (−2β6

+ β10η8
ω2

4+ω2 )a2b2 sin(φ4) +
1

8ωa1
β7a2

2b1 cos(2φ1 − 2φ2 + φ3) +
1

8ω (β4

+ω4β10η8
ω2

4+ω2 )a2b2 cos(2φ1 − 2φ2 − φ4) +
1

8ω (−β6ω + ωβ10η8
ω2

4+ω2 )a2b2 sin(2φ1 − 2φ2 − φ4)

+ 1
8ω β5b2

2 cos(2φ1 − 2φ2 − 2φ4) +
1

2ωa1
(ω + σ)2 f cos(φ1)

(64)

.
φ2 = F6(a1, a2, b1, b2, φ1, φ2, φ3, φ4) = σ + 1

2ω ( ω4η4η8
ω2

4+ω2 ) +
1

8ω (3α1 + α6ω2 + 2ω4γ11η8
ω2

4+ω2

+
(ω2

4−ω2)γ15η2
8

(ω2
4+ω2)

2 )a2
2 +

1
8ω (2α2 + 2α5ω2 + ω3γ13η7

ω2
3+ω2 −

ω2γ14η7
ω2

3+ω2 + 2ω4γ16η8
ω2

4+ω2 )a2
1 +

1
4ω γ3b2

2

+ 1
4ω γ5b2

1 +
1

8ω (α2 − α5ω2 +
(ω2

3−ω2)γ12η2
7

(ω2
3+ω2)

2 + ω3γ13η7
ω2

3+ω2 + ω2γ14η7
ω2

3+ω2 )a2
1 cos(2φ2 − 2φ1)

+ 1
8ω (α4ω− α7ω +

2ω3ωγ12η2
7

(ω2
3+ω2)

2 −
ωγ13η7
ω2

3+ω2 +
ω3ωγ14η7

ω2
3+ω2 )a2

1 sin(2φ2 − 2φ1) + ( 1
2 η3b2

+ 3
8 γ1a2

2b2 +
1
4 γ7a2

1b2 +
1
4

ω4γ8η8
ω2

4+ω2 a2
2b2)

cos(φ4)
ωa2

+ 1
8ω γ3b2

2 cos(2φ4)

− 1
8

γ8η8
ω2

4+ω2 a2b2 sin(φ4)− 1
8 γ2a2b2 sin(φ4) +

1
8ω (2γ4 +

ω3γ10η7
ω2

3+ω2 )a1b1 cos(φ3) +
1
8 (−2γ6

+ γ10η7
ω2

3+ω2 )a1b1 sin(φ3) +
1

8ωa2
γ7a2

1b2 cos(2φ2 − 2φ1 + φ4) +
1

8ω (γ4

+ω3γ10η7
ω2

3+ω2 )a1b1 cos(2φ2 − 2φ1 − φ3) +
1
8 (−γ6 +

γ10η7
ω2

3+ω2 )a1b1 sin(2φ2 − 2φ1 − φ3)

+ 1
8ω γ5b2

1 cos(2φ2 − 2φ1 − 2φ3) +
1

2ωa2
(ω + σ)2 f sin(φ2)

(65)

.
φ3 = F7(a1, a2, b1, b2, φ1, φ2, φ3, φ4) = −σ1 +

1
2(ω+σ1)b1

η5a1 cos(φ3)− 1
2ω ( ω3η2η7

ω2
3+ω2 )

− 1
8ω (3α1 + α6ω2 + 2ω3β11η7

ω2
3+ω2 +

(ω2
3−ω2)β15η2

7

(ω2
3+ω2)

2 )a2
1 −

1
8ω (2α2 + 2α5ω2 + ω4β13η8

ω2
4+ω2

−ω2β14η8
ω2

4+ω2 + 2ω3β16η7
ω2

3+ω2 )a2
2 −

1
4ω β3b2

1 −
1

4ω β5b2
2 −

1
8ω (α2 − α5ω2 +

(ω2
4−ω2)β12η2

8

(ω2
4+ω2)

2

+ω4β13η8
ω2

4+ω2 + ω2β14η8
ω2

4+ω2 )a2
2 cos(2φ1 − 2φ2)− 1

8ω (α4ω− α7ω +
2ω4ωβ12η2

8

(ω2
4+ω2)

2 + ωβ13η8
ω2

4+ω2

−ω4ωβ14η8
ω2

4+ω2 )a2
2 sin(2φ1 − 2φ2)− ( 1

2 η1b1 +
3
8 β1a2

1b1 +
1
4 β7a2

2b1 +
1
4

ω3β8η7
ω2

3+ω2 a2
1b1)

cos(φ3)
ωa1

− 1
8ω β3b2

1 cos(2φ3) +
1
8

β8η7
ω2

3+ω2 a1b1 sin(φ3)− 1
8 β2a1b1 sin(φ3)− 1

8ω (2β4

+ω4β10η8
ω2

4+ω2 )a2b2 cos(φ4)− 1
8 (−2β6 +

β10η8
ω2

4+ω2 )a2b2 sin(φ4)− 1
8ωa1

β7a2
2b1 cos(2φ1 − 2φ2 + φ3)

− 1
8ω (β4 +

ω4β10η8
ω2

4+ω2 )a2b2 cos(2φ1 − 2φ2 − φ4)− 1
8ω (−β6ω + ωβ10η8

ω2
4+ω2 )a2b2 sin(2φ1 − 2φ2 − φ4)

− 1
8ω β5b2

2 cos(2φ1 − 2φ2 − 2φ4)− 1
2ωa1

(ω + σ)2 f cos(φ1)

(66)
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.
φ4 = F8(a1, a2, b1, b2, φ1, φ2, φ3, φ4) = −σ2 +

1
2(ω+σ2)b2

η6a2 cos(φ4)− 1
2ω ( ω4η4η8

ω2
4+ω2 )

− 1
8ω (3α1 + α6ω2 + 2ω4γ11η8

ω2
4+ω2 +

(ω2
4−ω2)γ15η2

8

(ω2
4+ω2)

2 )a2
2 −

1
8ω (2α2 + 2α5ω2 + ω3γ13η7

ω2
3+ω2

−ω2γ14η7
ω2

3+ω2 + 2ω4γ16η8
ω2

4+ω2 )a2
1 −

1
4ω γ3b2

2 −
1

4ω γ5b2
1 −

1
8ω (α2 − α5ω2 +

(ω2
3−ω2)γ12η2

7

(ω2
3+ω2)

2

+ω3γ13η7
ω2

3+ω2 + ω2γ14η7
ω2

3+ω2 )a2
1 cos(2φ2 − 2φ1)− 1

8ω (α4ω− α7ω +
2ω3ωγ12η2

7

(ω2
3+ω2)

2 −
ωγ13η7
ω2

3+ω2

+ω3ωγ14η7
ω2

3+ω2 )a2
1 sin(2φ2 − 2φ1)− ( 1

2 η3b2 +
3
8 γ1a2

2b2 +
1
4 γ7a2

1b2 +
1
4

ω4γ8η8
ω2

4+ω2 a2
2b2)

cos(φ4)
ωa2

− 1
8ω γ3b2

2 cos(2φ4) +
1
8

γ8η8
ω2

4+ω2 a2b2 sin(φ4) +
1
8 γ2a2b2 sin(φ4)− 1

8ω (2γ4

+ω3γ10η7
ω2

3+ω2 )a1b1 cos(φ3)− 1
8 (−2γ6 +

γ10η7
ω2

3+ω2 )a1b1 sin(φ3)− 1
8ωa2

γ7a2
1b2 cos(2φ2 − 2φ1 + φ4)

− 1
8ω (γ4 +

ω3γ10η7
ω2

3+ω2 )a1b1 cos(2φ2 − 2φ1 − φ3)− 1
8 (−γ6 +

γ10η7
ω2

3+ω2 )a1b1 sin(2φ2 − 2φ1 − φ3)

− 1
8ω γ5b2

1 cos(2φ2 − 2φ1 − 2φ3)− 1
2ωa2

(ω + σ)2 f sin(φ2)

(67)

where φ1 = σt− θ1, φ2 = σt− θ2, φ3 = θ1 − θ3 − σ1t, and φ4 = θ2 − θ4 − σ2t. By inserting
Equations (43) to (48) and (58) into Equations (25) to (30), one can extract an approximate
solution for the closed-loop system given by Equations (19) to (24), as follows:

z1(t) = a1(t) cos (Ωt− φ1(t)) (68)

z2(t) = a2(t) cos (Ωt− φ2(t)) (69)

z3(t) = b1(t) cos (Ωt− (φ1(t) + φ3(t))) (70)

z4(t) = b2(t) cos (Ωt− (φ2(t) + φ4(t))) (71)

z5(t) =
η7a1

ω2
3 + ω2

(ω3 cos(Ωt− φ1(t)) + ω sin(Ωt− φ1(t))) (72)

z6(t) =
η8a2

ω2
4 + ω2

(ω4 cos(Ωt− φ2(t)) + ω sin(Ωt− φ2(t))) (73)

It is clear from Equations (68) to (71) that a1(t) and a2(t) are the steady-state os-
cillation amplitudes of the twelve-poles rotor system, while φ1(t) and φ2(t) represent
the phase angles of the controlled rotor. In addition, b1(t) and b2(t) represent the os-
cillation amplitudes of the PPF controllers and φ1(t) + φ3(t), φ2(t) + φ4(t) are the cor-
responding phase angles. In addition, Equations (72) and (73) show that the dynam-
ical characteristics of the IRC controller depend on the dynamics of the rotor system
(i.e., z5(t) depends on a1(t), φ1(t) and z6(t) depends on a2(t), φ2(t)). Moreover, the
derived nonlinear autonomous system that is provided by Equations (60) to (67) gov-
erns the evolution of the oscillation amplitudes (a1, a2, b1, b2) and the corresponding
phase angles (φ1, φ2, φ3, φ4) of the closed-loop system as a function of the different
system parameters (i.e., f , σ, σ1, σ2, p, d, η1, η2, η3, η4, η5, η6, η7, η8, . . . , etc.). Ac-
cordingly, the dynamical characteristics of the closed-loop system can be explored by
investigating the nonlinear dynamical system provided by Equations (60) to (67). There-
fore, one can explore the steady-state dynamics of the closed-loop system by inserting
.
a1 =

.
a2 =

.
b1 =

.
b4 =

.
φ1 =

.
φ2 =

.
φ3 =

.
φ4 = 0 into Equations (60) to (67), which results in

the following nonlinear algebraic system:

Fj(a1, a2, b1, b2, φ1, φ2, φ3, φ4) = 0; j = 1, 2, . . . , 8 (74)

Solving Equation (74), utilizing σ as a bifurcation parameter at the different values of
the system and control parameters ( f , σ1, σ2, p, d, η1, η2, η3, η4, η5, η6, η7, η8, . . . , etc.),
we can explore the efficiency of the introduced control technique (i.e., PD + IRC + PPF
controller). In addition, to investigate the stability of the solution of Equation (74), one
can check the eigenvalues of the Jacobian matrix of the dynamical system given by
Equations (60) to (67), which can be obtained via letting (a10, a20, b10, b20, φ10, φ20, φ30, φ40)
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be the solution of Equation (74) and (a11, a21, b10, b20, φ11, φ21, φ31, φ41) be a small devia-
tion about this solution. Therefore, one can write

aj = aj0 + aj1, bj = bj0 + bj1, φk = φk0 + φk1,
.
aj =

.
aj1,

.
bj =

.
bj1,

.
φk =

.
φk1; j = 1, 2; k = 1, 2, . . . , 4.

(75)

Inserting Equation (75) into Equations (60) to (67) and expanding for the small devia-
tions (a11, a21, b10, b20, φ11, φ21, φ31, φ41), retaining the linear terms only, one can derive
the following linearized dynamical system:

.
a11.
a21.
b11.
b21.
φ11.
φ21.
φ31.
φ41


=



J11 J12 J13 J14 J15 J16 J17 J18
J21 J22 J23 J24 J25 J26 J27 J28
J31 J32 J33 J34 J35 J36 J37 J38
J41 J42 J43 J44 J45 J46 J47 J48
J51 J52 J53 J54 J55 J56 J57 J58
J61 J62 J63 J64 J65 J66 J67 J68
J71 J72 J73 J74 J75 J76 J77 J78
J81 J82 J83 J84 J85 J86 J87 J88





a11
a21
b11
b21
φ11
φ21
φ31
φ41


(76)

where Jmn (m = 1, 2, . . . , 8, n = 1, 2, . . . , 8) are provided in Appendix C. Accordingly, the
stability of the dynamical system provided by Equations (60) to (67) has been studied by
examining the eigenvalues of the linearized system provided by Equation (76) (see [42]),
where the stable solution was illustrated as a solid-line, while the unstable solution was
plotted as a dotted-line, as shown in the different bifurcation diagrams in Section 4.

4. Steady-State Oscillation and Bifurcation Analysis

Based on both the derived mathematical model of the closed-loop system provided by
Equations (19) to (24) and the nonlinear algebraic Equation (74), one can investigate the
efficiency of the proposed control technique (i.e., PD + IRC + PPF controller) in improving
the oscillatory characteristics and eliminating the catastrophic bifurcation behaviors of the
studied twelve-pole system. As Equation (74) governs the steady-state vibration amplitudes
(a1, a2, b1, b2) and the corresponding phase angles (i.e., φ1, φ2, φ3, φ4), we can investigate
the steady-state oscillatory behaviors of both the rotor system and the connected controller
via solving Equation (74) numerically using the Newton–Raphson predictor–corrector
algorithm (see [43]), utilizing σ as the bifurcation parameter, where the stable solution is
plotted as a solid-line and the unstable solution is shown as a dotted-line. In addition, to
validate the accuracy of the derived analytical solution (i.e., Equation (74)), as well as to
investigate the full system response (i.e., steady-state and transient response) of the closed-
loop system, one can simulate the system’s temporal equations of motion (i.e., Equations (19)
to (24)) numerically using the Rung–Kutta method of fourth order. Accordingly, the
following values of the parameters have been used to simulate the system dynamics [29,36]:
f = 0.013, p = 1.5, d = 0.005, η1 = η2 = η3 = η4 = η5 = η6 = 0.2, η7 = η8 = 1,
µ1 = µ2 = 0.01, σ = σ1 = σ2 = 0, Ω = ω + σ, ω1 = ω + σ1, ω2 = ω + σ2, ω3 = ω4 = 1,
α = 30◦, where the other system parameters µ, ω, αj, βk, γk, (j = 1, 2, . . . , 7; k = 1, 2, . . . , 16)
are defined below Equation (24). Before proceeding further, let us go back first to the
normalized equations of motion (Equations (19) to (24)), where the rotor normalized
temporal displacements in the X and Y directions are defined such that z1(t) = x(t)

c0

and z2(t) = y(t)
c0

, where c0 is the nominal air-gap size between the rotor and the poles-
housing and x(t), y(t) are the actual temporal displacement of the rotor in the X and Y
directions, respectively. Accordingly, for safe working conditions for the rotor system
without the occurrence of rub and/or impact forces between the rotor and the pole housing,
x(t) and y(t) should be smaller than the air-gap size c0 (i.e.,

∣∣∣ x(t)
c0

∣∣∣ = |z1(t)| < 1 and∣∣∣ y(t)
c0

∣∣∣ = |z2(t)| < 1). Therefore, for the safe operation of the rotor system without rub
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and/or impact between the rotor and the stator, |z1(t)| = |a1(t) cos (Ωt− φ1(t))| and
|z2(t)| = |a2(t) cos (Ωt− φ2(t))| should be smaller than unity, which implies that |a1| and
|a2| must be lower than unity (i.e., |a1| < 1& |a2| < 1). In addition, the parameter σ is
defined in Equation (53) such that Ω = ω + σ. Accordingly, σ is used in the whole article
as a bifurcation control parameter to describe the rotor dynamics when the system angular
speed (Ω) is close to or equal to the rotor’s natural frequency (ω).

4.1. System Dynamics in the Case of PD-Control Algorithm

The parameters P = c0
I0

k1 and d = c0ϑ
I0

k2 denote the normalized proportional gain
and derivative gain of the PD-control algorithm, respectively. In addition, the parameters
η1 = (1+2 cos (α))c0

I0
k3 and η3 = (1+2 cos (α))c0

I0
k5 are the normalized control gains the PPF-

control algorithm that is connected to the rotor system, while η2 = (1+2 cos (α))c0
I0

k4 and

η4 = (1+2 cos (α))c0
I0

k6 represent the normalized control gains of the IRC-control algorithm

(see Equations (6), (19) and (20)). Moreover, the parameters η5 = L1
ϑ2 and

η6 = L2
ϑ2 are the normalized feedback gains of the PPF-control algorithm, while η7 = L3

ϑ ,

η8 = L4
ϑ denote the feedback gains of the IRC-control algorithm (see Equations (7)–(10) and

(21)–(24)). Accordingly, one can investigate the influence of the PD controller only on the
rotor dynamics via setting ηk = 0 (k = 1, 2, . . . , 4).

This section is dedicated to investigating the rotor dynamics in the case of the PD-
control algorithm only, at different levels of the excitation force f , as shown in Figure 3.
The figure was obtained by solving the nonlinear system provided by Equation (74) when
ηk = 0, (k = 1, 2, . . . , 8) at f = 0.004, 0.007, 0.01, and 0.013. Figure 3a,b shows the rotor
steady-state vibration amplitudes in both the X and Y directions at four different values
of the excitation force f , while Figure 3c shows the evolution of the phase angles φ1 and
φ2 versus σ when f = 0.004. In addition, Figure 3d illustrates the phase angles φ1 and
φ2 at f = 0.013. It is clear from Figure 3a,b that the vibration amplitudes (a1 and a2) of
the twelve-poles system is a monotonic increasing function of the excitation force, where
the rotor system may be subjected to rub and/or impact force between the rotating disk
and the pole-housing if f ≥ 0.013 (i.e., the rotor may exhibit vibration amplitudes a1 > 1
and/or a2 > 1 if f ≥ 0.013). Accordingly, one can conclude that the considered system can
work properly without a catastrophic rub and/or impact between the rotor and stator, as
long as the excitation force f is smaller than 0.013 when only the PD-control algorithm is
applied. In addition, Figure 3c,d depicts that the phase angle φ2 is always greater than φ1,
which means that the rotor system performs a forward whirling motion only (according to
Equations (68) and (69)) along the σ axis, regardless of the excitation force magnitude. By
examining Figure 3, one can note that the rotor system has symmetric oscillation amplitudes
in both the X and Y directions (i.e., a1 = a2) and the phase difference φ2 − φ1 is always π

2 ,
which demonstrates that the rotor system performs a circular forward whirling motion
along the σ axis, regardless of the excitation force magnitude.

4.2. System Dynamics in the Case of the PD + PPF-Control Algorithm

The rotor dynamics at four different magnitudes of the excitation force were inves-
tigated when both the PD- and PPF-control algorithms were applied simultaneously.
Figure 4a–c shows the steady-state vibration amplitudes of both the rotor system (a1 and
a2) and the PPF-control algorithm (b1 and b2) when p = 1.5, d = 0.005, η1 = η3 = 0.2,
and η2 = η4 = 0.0 at the four excitation force amplitudes f = 0.0025, 0.0075, 0.0125, and
0.0175. In addition, Figure 4e,f illustrates the evolution of the rotor phase angles φ1 and φ2
at f = 0.0025 and f = 0.0175, respectively. By comparing Figure 3a,b with Figure 4a,b, one
can deduce that the integration of the PPF-control algorithm to the twelve-poles rotor has
suppressed the system’s vibrations at the perfect resonance condition (i.e., it has suppressed
the system’s vibrations at σ = 0.0). However, two undesired resonant peaks appeared on
both sides of σ = 0.0. In addition, Figure 4a,b demonstrates that the rotor system may
work safely without rub and/or impact between the rotor and the poles-housing, as long
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as the excitation force f < 0.0175 (i.e., a1 < 1 and a2 < 1 as long as f < 0.0175). Moreover,
Figure 4e,f shows that the phase difference (φ2 − φ1) of the rotor lateral oscillations in the X
and Y directions is always constant, so that φ2 − φ1 = π

2 , which implies that the system
exhibits only a forward circular whirling motion, regardless of both the angular speed
and the excitation force magnitude. Generally, Figure 4 shows that the integration of the
PPF-control algorithm to the system with the P-controller suppressed the rotor’s undesired
vibrations at the perfect resonance condition (i.e., when Ω = ω + σ, σ = 0.0), regardless
of the excitation force amplitude; however, the system may suffer from high oscillation,
especially if Ω > ω. Accordingly, the PPF-control algorithm acts as a notch filter that
eliminates the system’s vibrations at a specific frequency band.
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Figure 3. Vibration amplitudes and phase angles of the twelve-poles rotor in the case of the PD-
control algorithm only: (a,b) vibration amplitudes (a1, a2) when f = 0.004, 0.007, 0.01, and 0.013,
(c) phase angles (φ1, φ2) when f = 0.004, (d) phase angles (φ1, φ2) when f = 0.013.
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Figure 4. Vibration amplitudes of the twelve-poles rotor and the PPF controller in the case of the
PD + PPF-control algorithm when f = 0.0025, 0.0075, 0.0125, and 0.0175: (a,b) vibration amplitudes
(a1, a2) of the rotor, (c,d) vibration amplitudes (b1, b2) of the PPF controller, (e) phase angles (φ1, φ2)
when f = 0.0025, and (f) phase angles (φ1, φ2) when f = 0.0175.
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4.3. System Dynamics in the Case of the PD + IRC-Control Algorithm

The oscillatory behaviors of the system were explored when the IRC-control algorithm
was coupled to the rotor system with the PD controller, while the PPF controller was turned
off. Accordingly, Figure 5 shows the motion bifurcation of the rotor system when p = 1.5,
d = 0.005, η1 = η3 = 0, and η2 = η4 = 0.2 at four different magnitudes of the excitation
force (i.e., f = 0.02, 0.04, 0.06 and 0.08). It is clear from Figure 5a,b that the IRC-control
algorithm forced the twelve-poles system to respond like the linear system, even at the
strong excitation forces. Moreover, Figure 5c,d demonstrates that the system can perform
only a circular forward whirling motion along the σ axis, regardless of the excitation force
magnitude, where φ2 − φ1 = π

2 and a1, a2 are symmetric on the interval −0.3 < σ < 0.3.
By examining Figure 5, we can deduce that the system can rotate safely without rub and/or
impact force between the rotor and the stator, even at the strong excitation forces (i.e.,
f = 0.08), compared with the case of the PD-control algorithm only, as shown in Figure 3.
Therefore, coupling the IRC-control algorithm to the system increased the rotor linear
damping coefficients, which ultimately decreased the lateral vibrations even at the large
excitation forces. However, the IRC controller could not eliminate the system vibrations
close to zero at the resonance condition (i.e., at σ = 0), as in the case of the PPF-control
technique, but the maximum vibration occurred at σ = 0. Therefore, utilizing the PPF- and
IRC-control techniques as a one-control algorithm, along with the PD controller, may have
the advantages of both the PPF and IRC controllers, as illustrated in the next subsection.
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(φ1, φ2) when f = 0.02, and (d) phase angles when f = 0.08.
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4.4. System Dynamics in the Case of PD + IRC + PPF-Control Algorithm

The dynamical behaviors of the considered twelve-poles rotor system were explored
when the three control algorithms (i.e., PD + IRC + PPF-control algorithms) were ac-
tivated simultaneously. Figure 6 shows the nonlinear dynamics of the controlled rotor
system when P = 1.5, d = 0.005, η1 = η2 = η3 = η4 = 0.2 when the extinction force
f = 0.025, 0.045, 0.065, and 0.085. Figure 6a,b illustrates the evolution of the system’s
lateral vibrations (a1, a2) against σ, while Figure 6c,d shows the vibration amplitudes of
the PPF controller against the detuning parameter σ. In addition, Figure 6e,f illustrates
the phase difference of the rotor’s lateral vibrations in both the X and Y directions when
f = 0.025 and f = 0.085, respectively. It is clear from Figure 6a,b that the vibration ampli-
tudes (a1, a2) of the twelve-poles system was close to zero, regardless of the excitation force
magnitude, as long as σ ∼= 0, due to the effect of the PPF-control algorithm. In addition,
the resonant peaks that appeared on both sides of σ = 0 (as in Figure 4a,b) were mitigated,
due to the effect of the IRC-control algorithm. Moreover, Figure 6a,b shows that the rotor
system worked properly without impact occurrence between the rotor and stator, as long
as f ≤ 0.085. It was also clear from Figure 6e,f that the controlled rotor system performed a
circular forward whirling motion, as long as −0.3 ≤ σ ≤ 0.3, where the phase difference
was φ2 − φ1 = π/2. Based on Figure 3 to Figure 6, one can conclude that the integration of
the PD−, IRC−, and PPF-control algorithms to act as a single controller can provide for
the safe operation of the considered rotor system with small oscillation amplitudes at the
resonant conditions (i.e., when σ = 0.0), even if the excitation force is strong.
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algorithm when f = 0.025, 0.045, 0.065, and 0.085: (a,b) vibration amplitudes (a1, a2) of the rotor,
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and (f) phase angles (φ1, φ2) when f = 0.085.

4.5. Sensitivity Analysis of the PD + IRC + PPF-Control Algorithm

As the combined control algorithm (i.e., PD + IRC + PPF) has many advantages
over the individual three control techniques, this subsection explores the sensitivity of
this control method to the variation of different control gains. The effect of increasing the
proportional gain (P) on the vibration suppression efficiency of the control algorithm is
illustrated in Figure 7. The figure shows that the increase in P increases the oscillation
amplitudes (a1, a2) of the twelve-poles system and degrades the control algorithm’s effi-
ciency. Therefore, the P gain should be kept at the small possible value to guarantee the
high performance of the proposed control technique. Based on the system parameters
provided below Equation (24), the natural frequency of the rotor system ω is defined as
=
√

2P cos (α) + P− 3. Therefore, the minimum value of P should be selected in a way
that guarantees that ω > 0. On the other hand, the effect of the PPF-control gains (i.e.,
η1 and η3) on the whole-system dynamics is depicted in Figure 8. The figure demonstrates
that the increase of η1 and η3 (i.e., η1 = η3 = 0.5) enhanced the controller performance in
eliminating the rotor oscillations at the perfect resonance condition (i.e., when σ = 0.0),
as well as widening the frequency band at which the system could work properly with
small vibration amplitudes. In addition, Figure 9 demonstrates that the increase in the
IRC-control gains (i.e., η2 = η4 = 0.5) decreased the resonant peaks that appeared on
both sides of σ = 0.0, and improved the controller efficiency in suppressing the twelve-
poles rotor vibrations along the σ axis (i.e., the controller was able to eliminate the rotor
oscillations at any angular speed Ω = ω + σ, −0.3 ≤ σ ≤ 0.3). Finally, the best tuning
conditions between natural frequencies of both the rotor system (ω) and the suggested
control technique (ω1 and ω2) are shown in Figure 10, where the rotor vibration amplitudes
(a1 and a2) are plotted in 3D space against the variables σ and σ1 = σ2. By examining
Figure 10a,b, we deduced that the smallest oscillation amplitudes of the rotor system (i.e.,
a1 = a2 ∼= 0) occurred along the dashed line that had the equation σ = σ1 = σ2. Therefore,
the best working condition of the introduced control algorithm occurred if σ = σ1 = σ2.
Accordingly, one can conclude from Equation (53) that the optimum tuning conditions
(i.e., σ = σ1 = σ2) occurred when adjusting the controller’s natural frequencies (ω1 and
ω2) had the same value of rotor angular speed (Ω). Accordingly, the combined control
algorithm eliminated the rotor vibrations close to zero, regardless of the excitation force
amplitude and its angular speed, if the control gains and the tuning condition were applied,
as discussed above.
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Figure 9. Vibration amplitudes of the twelve-poles rotor in the case of the PD + IRC + PPF-control
algorithm at f = 0.013, η1 = η3 = 0.2, when η2 = η4 = 0.1, 0.3, and 0.5: (a,b) vibration amplitudes
(a1, a2) of the rotor, and (c,d) vibration amplitudes (b1, b2) of the PPF controller.
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and (c,d) vibration amplitudes (b1, b2) of the PPF controller.

5. Numerical Simulations and Comparative Study

Numerical validations for all of the obtained results in Section 4 were validated nu-
merically via solving the temporal equations of the closed-loop system (i.e., Equations (19)
to (24)), using the Rung–Kutta method. In addition, the performances of the different
control algorithms in eliminating the twelve-poles system vibrations were compared. It is
worth mentioning that the small circles illustrated in Figure 11 represents the steady-state
numerical solution of Equations (19) to (24). This numerical solution was obtained via
solving Equations (19) to (24) numerically, using the ODE MATLAB solver for a long
time-period until reaching the steady-state response at the different values of σ (notice
that Ω = ω + σ). Then, the maximum temporal vibration amplitudes at steady-state were
captured as the steady-state vibration amplitudes (i.e., a1 = max (z1(t)), a2 = max(z2(t)),
a3 = max(z3(t)), a4 = max(z4(t))).
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undesired vibrations at the perfect resonance case (i.e., when 𝜎 = 0  or, in other words, 
when the angular speed Ω was equal to the system’s natural frequency 𝜔, Ω = 𝜔 + 𝜎). 
However, if the resonant condition was lost (i.e., Ω ≠ 𝜔), the controller may pump exces-
sive vibratory energy to the rotor system, rather than suppress it (see, for example, Figure 
11a,b at 𝜎 = 0.1). 

Figure 11. Vibration amplitudes and phase angles of the twelve-poles rotor in the case of both the PD-
control only and the PD+ PPF-control algorithms, when f = 0.013: (a,b) vibration amplitudes (a1, a2)
of the rotor, and (c,d) vibration amplitudes (b1, b2) of the PPF-controller, (e) phase angles (φ1, φ2)
when η1 = η2 = η3 = η4 = 0.0, and (f) phase angles (φ1, φ2) when η1 = η3 = 0.2, η2 = η4 = 0.0.
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Figure 11 compares the rotor dynamics in the case of both the PD- and the PD + PPF-
control algorithms, when the excitation force f = 0.013. The excellent correspondence
between the numerical solutions (i.e., small circles) obtained by solving Equations (19)–(22)
and the analytical solutions (i.e., solid and dotted lines) obtained by solving the algebraic
system provided by Equation (74) is clear. In addition, the figure demonstrates that
the coupling of the PPF-control algorithm with the PD controller eliminated the strong
vibration amplitudes of the rotor at the resonance condition (i.e., when σ→ 0); however,
two resonant peaks appeared on both sides of σ = 0. Accordingly, we concluded that
the PD + PPF-control algorithm had high efficiency in eliminating the rotor’s undesired
vibrations at the perfect resonance case (i.e., when σ = 0 or, in other words, when the
angular speed Ω was equal to the system’s natural frequency ω, Ω = ω + σ). However, if
the resonant condition was lost (i.e., Ω 6= ω), the controller may pump excessive vibratory
energy to the rotor system, rather than suppress it (see, for example, Figure 11a,b at σ = 0.1).

The instantaneous oscillations of the controlled twelve-poles system in the case of both
the PD- and the PD + PPF-control algorithms are simulated in Figure 12, according to
Figure 11, at σ = 0.0, f = 0.013, and Ω = ω. The figure was obtained by solving Equations
(19) to (22) numerically on the time interval 0 ≤ t < 500 and turning off the PPF-control
algorithm (i.e., with setting η1 = η3 = η5 = η6 = 0); then, at the instant t = 500, the
PPF-control algorithm was turned on via setting η1 = η3 = η5 = η6 = 0.2 along the period
500 ≤ t ≤ 1000. Figure 12a,b illustrates the instantaneous oscillations of the twelve-poles
system in the case of both the PD-control algorithm on the time interval 0 ≤ t < 500 and
the PD + PPF-control algorithm on the time interval 500 ≤ t ≤ 1000, while Figure 12c
shows the rotor whirling orbit before and after turning on the PPF-control algorithm.
Figure 12d compares the vibration amplitude of the rotor system in the case of both the
PD and PD + PPF-control algorithms. In addition, Figure 12e,f illustrates the temporal
oscillations of the PPF controller. It is clear from the figure that the high instantaneous
oscillations of the rotor system (i.e., z1(t) and z2(t)) in the case of the PD controller only
were suppressed close to zero when the PPF-control algorithm was activated at the time
instant t = 500, where the rotor vibration energy was channeled to PPF controller.

Figure 13 illustrates the instantaneous oscillatory behaviors of the twelve-poles system
in the case of both the PD-control algorithm only and the PD + PPF-control algorithm,
according to Figure 11, when σ = 0.1 (i.e., when the perfect resonance condition is lost,
Ω = ω + 0.1). Therefore, Figure 13 is a repetition of Figure 12, but σ = 0.1. It is clear from
Figure 13a,b that the twelve-poles system exhibited small vibration amplitudes on the time
interval 0 ≤ t < 500, as long as the PD controller only was activated. However, the figures
demonstrate that the activation of the PPF controller along with PD controller on the time
interval 500 ≤ t ≤ 1000 increased the rotor lateral vibration rather than suppressing it,
which agrees with Figure 11 at σ = 0.1.

The steady-state oscillatory motion of the rotor system in the case of both the PD-
control algorithm only and the PD + IRC-control algorithm is compared in Figure 14, when
f = 0.013. It is clear from the figure that the high oscillation amplitudes that occurred at
the resonance case (i.e., when σ→ 0) in the case of the PD-control algorithm only was
mitigated to small lateral oscillations when the combined PD + IRC-control algorithm
was activated. However, while the PD + IRC-control algorithm can mitigate the rotor
vibrations along the σ axis, it cannot eliminate the rotor vibration close to zero at the
resonant condition, as in the case of the PD + PPF-control algorithm.



Appl. Sci. 2022, 12, 8300 26 of 46

Appl. Sci. 2022, 12, x FOR PEER REVIEW 28 of 54 
 

 

The instantaneous oscillations of the controlled twelve-poles system in the case of 
both the 𝑃𝐷- and the 𝑃𝐷 + 𝑃𝑃𝐹-control algorithms are simulated in Figure 12, according 
to Figure 11, at 𝜎 = 0.0, 𝑓 = 0.013, and Ω = 𝜔. The figure was obtained by solving Equa-
tions (19) to (22) numerically on the time interval 0 ≤ 𝑡 < 500 and turning off the 𝑃𝑃𝐹-
control algorithm (i.e.,  with setting 𝜂ଵ = 𝜂ଷ = 𝜂ହ = 𝜂଺ = 0); then, at the instant 𝑡 = 500, 
the 𝑃𝑃𝐹-control algorithm was turned on via setting 𝜂ଵ = 𝜂ଷ = 𝜂ହ = 𝜂଺ = 0.2 along the 
period 500 ≤ 𝑡 ≤ 1000 . Figure 12a,b illustrates the instantaneous oscillations of the 
twelve-poles system in the case of both the 𝑃𝐷-control algorithm on the time interval  0 ≤ 𝑡 < 500 and the 𝑃𝐷 + 𝑃𝑃𝐹-control algorithm on the time interval 500 ≤ 𝑡 ≤ 1000, 
while Figure 12c shows the rotor whirling orbit before and after turning on the PPF-con-
trol algorithm. Figure 12d compares the vibration amplitude of the rotor system in the 
case of both the 𝑃𝐷 and 𝑃𝐷 + 𝑃𝑃𝐹-control algorithms. In addition, Figure 12e,f illus-
trates the temporal oscillations of the 𝑃𝑃𝐹 controller. It is clear from the figure that the 
high instantaneous oscillations of the rotor system (i.e., 𝑧ଵ(𝑡) and 𝑧ଶ(𝑡)) in the case of the 𝑃𝐷 controller only were suppressed close to zero when the 𝑃𝑃𝐹-control algorithm was 
activated at the time instant 𝑡 = 500, where the rotor vibration energy was channeled to 𝑃𝑃𝐹 controller. 

 

 
(a) (c) 

 
 

(b) (d) 

Appl. Sci. 2022, 12, x FOR PEER REVIEW 29 of 54 
 

 

Figure 12. Time response of the rotor system according to Figure 11 when 𝜎 = 0 (i.e., when Ω =𝜔) in the case of the 𝑃𝐷-control algorithm and the 𝑃𝐷 + 𝑃𝑃𝐹-control algorithm: (a,b) the temporal 
oscillations 𝑧ଵ(𝑡) and 𝑧ଶ(𝑡) of the rotor system, (c) the rotor whirling orbits, (d) the rotor frequency 
spectrum, and (e,f) the temporal oscillations 𝑧ଷ(𝑡) and 𝑧ସ(𝑡) of the PPF controller. 

Figure 13 illustrates the instantaneous oscillatory behaviors of the twelve-poles sys-
tem in the case of both the PD-control algorithm only and the 𝑃𝐷 + 𝑃𝑃𝐹-control algo-
rithm, according to Figure 11, when 𝜎 = 0.1 (i.e., when the perfect resonance condition 
is lost, Ω = 𝜔 + 0.1). Therefore, Figure 13 is a repetition of Figure 12, but 𝜎 = 0.1. It is 
clear from Figure 13a,b that the twelve-poles system exhibited small vibration amplitudes 
on the time interval 0 ≤ 𝑡 < 500, as long as the 𝑃𝐷 controller only was activated. How-
ever, the figures demonstrate that the activation of the 𝑃𝑃𝐹 controller along with 𝑃𝐷 
controller on the time interval  500 ≤ 𝑡 ≤ 1000 increased the rotor lateral vibration ra-
ther than suppressing it, which agrees with Figure 11 at 𝜎 = 0.1.  

  

(a) (c) 

  

(b) (d) 

  

(e) (f) 

Figure 12. Time response of the rotor system according to Figure 11 when σ = 0 (i.e., when Ω = ω)
in the case of the PD-control algorithm and the PD + PPF-control algorithm: (a,b) the temporal
oscillations z1(t) and z2(t) of the rotor system, (c) the rotor whirling orbits, (d) the rotor frequency
spectrum, and (e,f) the temporal oscillations z3(t) and z4(t) of the PPF controller.



Appl. Sci. 2022, 12, 8300 27 of 46

Appl. Sci. 2022, 12, x FOR PEER REVIEW 29 of 54 
 

 

Figure 12. Time response of the rotor system according to Figure 11 when 𝜎 = 0 (i.e., when Ω =𝜔) in the case of the 𝑃𝐷-control algorithm and the 𝑃𝐷 + 𝑃𝑃𝐹-control algorithm: (a,b) the temporal 
oscillations 𝑧ଵ(𝑡) and 𝑧ଶ(𝑡) of the rotor system, (c) the rotor whirling orbits, (d) the rotor frequency 
spectrum, and (e,f) the temporal oscillations 𝑧ଷ(𝑡) and 𝑧ସ(𝑡) of the PPF controller. 

Figure 13 illustrates the instantaneous oscillatory behaviors of the twelve-poles sys-
tem in the case of both the PD-control algorithm only and the 𝑃𝐷 + 𝑃𝑃𝐹-control algo-
rithm, according to Figure 11, when 𝜎 = 0.1 (i.e., when the perfect resonance condition 
is lost, Ω = 𝜔 + 0.1). Therefore, Figure 13 is a repetition of Figure 12, but 𝜎 = 0.1. It is 
clear from Figure 13a,b that the twelve-poles system exhibited small vibration amplitudes 
on the time interval 0 ≤ 𝑡 < 500, as long as the 𝑃𝐷 controller only was activated. How-
ever, the figures demonstrate that the activation of the 𝑃𝑃𝐹 controller along with 𝑃𝐷 
controller on the time interval  500 ≤ 𝑡 ≤ 1000 increased the rotor lateral vibration ra-
ther than suppressing it, which agrees with Figure 11 at 𝜎 = 0.1.  

  

(a) (c) 

  

(b) (d) 

  

(e) (f) 

Appl. Sci. 2022, 12, x FOR PEER REVIEW 30 of 54 
 

 

  

(e) (f) 

Figure 13. Time response of the rotor system according to Figure 11 when 𝜎 = 0.1 (i.e., when Ω =𝜔 + 0.1) in the case of the 𝑃𝐷-control algorithm and the 𝑃𝐷 + 𝑃𝑃𝐹-control algorithm: (a,b) the tem-
poral oscillations 𝑧ଵ(𝑡) and 𝑧ଶ(𝑡) of the rotor system, (c) the rotor whirling orbits, (d) the rotor 
frequency spectrum, and (e,f) the temporal oscillations 𝑧ଷ(𝑡) and 𝑧ସ(𝑡) of the PPF controller. 

The steady-state oscillatory motion of the rotor system in the case of both the 𝑃𝐷-
control algorithm only and the 𝑃𝐷 + 𝐼𝑅𝐶-control algorithm is compared in Figure 14, 
when 𝑓 = 0.013. It is clear from the figure that the high oscillation amplitudes that oc-
curred at the resonance case (i.e., when 𝜎 → 0) in the case of the PD-control algorithm 
only was mitigated to small lateral oscillations when the combined 𝑃𝐷 + 𝐼𝑅𝐶-control al-
gorithm was activated. However, while the 𝑃𝐷 + 𝐼𝑅𝐶-control algorithm can mitigate the 
rotor vibrations along the 𝜎 axis, it cannot eliminate the rotor vibration close to zero at 
the resonant condition, as in the case of the 𝑃𝐷 + 𝑃𝑃𝐹-control algorithm.  

  

(a) (b) 

Figure 13. Time response of the rotor system according to Figure 11 when σ = 0.1 (i.e., when
Ω = ω + 0.1) in the case of the PD-control algorithm and the PD + PPF-control algorithm: (a,b) the
temporal oscillations z1(t) and z2(t) of the rotor system, (c) the rotor whirling orbits, (d) the rotor
frequency spectrum, and (e,f) the temporal oscillations z3(t) and z4(t) of the PPF controller.

Numerical simulations for the instantaneous lateral vibrations of the rotor system
(i.e., z1(t) and z2(t)) and the IRC-control algorithm (i.e., z5(t) and z6(t)) are illustrated in
Figures 15 and 16, according to Figure 14 when σ = 0.0 and σ = 0.1, respectively. The two
figures were obtained via solving Equations (19), (20), (23), and (24) using ODE45 MATLAB
solver on the time interval 0 ≤ t < 700 and deactivating the IRC-control algorithm (i.e.,
when η2 = η4 = η7 = η8 = 0), while at t = 700 the IRC controller was turned on by setting
η2 = η4 = 0.2, η7 = η8 = 1 on the interval 700 ≤ t ≤ 1000. One can note from Figure 15
that the strong instantaneous vibrations of the system (i.e., z1(t) and z2(t)) in the case of
the PD-control technique at σ = 0 was reduced to small values (but not close to zero) when
the IRC-control algorithm was turned on at t = 700 and the rotor vibration energy was
partially transferred to the IRC controller. On the other hand, Figure 16 shows that the IRC-
control algorithm also reduced the rotor vibrations to a small value when σ = 0.1 rather



Appl. Sci. 2022, 12, 8300 28 of 46

than pumping more excess energy to the system, as in the case of the PD + PPF-control
technique (see Figure 13).
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Figure 14. Vibration amplitudes and phase-angles of the twelve-poles rotor in the case of both the
PD-control only and the PD + IRC-control algorithm when f = 0.013: (a,b) vibration amplitudes
(a1, a2) of the rotor, (c) phase angles (a1, a2) when η1 = η2 = η3 = η4 = 0.0, and (d) phase angles
(φ1, φ2) when η1 = η3 = 0.0, η2 = η4 = 0.2.
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Figure 15. Time response of the rotor system according to Figure 14 when σ = 0.0 (i.e., when Ω = ω)
in the case of the PD-control algorithm and the PD + IRC-control algorithm: (a,b) the temporal
oscillations z1(t) and z2(t) of the rotor system, (c) the rotor whirling orbits, (d) the rotor frequency
spectrum, and (e,f) the temporal oscillations z5(t) and z6(t) of the IRC controller.
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Figure 16. Time response of the rotor system according to Figure 14 when σ = 0.1 (i.e., when
Ω = ω + 0.1) in the case of the PD-control algorithm and the PD + IRC-control algorithm: (a,b) the
temporal oscillations z1(t) and z2(t) of the rotor system, (c) the rotor whirling orbits, (d) the rotor
frequency spectrum, (e,f) the temporal oscillations z5(t), and z6(t) of the IRC controller.

Finally, the rotor dynamics in the case of both the PD- and the PD+ IRC+ PPF-control
algorithms are compared in Figure 17, when f = 0.013. It is clear from the figure that the
high oscillation amplitudes of the rotor system in the vicinity of σ = 0 in the case of the
PD-control algorithm only have been eliminated close to zero, when the PD + IRC + PPF-
control algorithm is considered. In addition, the resonant peaks that appeared in Figure 11
(i.e., in the case of PD + PPF-control) were also suppressed, as shown in Figure 17. In other
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words, the PD + IRC + PPF-control algorithm had all the advantages of the individual
control algorithms PD, IRC, and PPF, while avoiding their drawbacks.
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Figure 17. Vibration amplitudes and phase angles of the twelve-poles rotor in the case of both the
PD-control algorithm only and the PD + IRC + PPF-control algorithm when f = 0.013: (a,b) vibra-
tion amplitudes (a1, a2) of the rotor, and (c,d) vibration amplitudes (b1, b2) of the PPF controller,
(e) phase angles (φ1, φ2) when η1 = η2 = η3 = η4 = 0.0, and (f) phase angles (φ1, φ2) when
η1 = η3 = η2 = η4 = 0.2.
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Figures 18 and 19 compare the instantaneous oscillations of the rotor system in the
care of both the PD- and the PD + IRC + PPF-control algorithms, according to Figure 17,
when f = 0.013 at σ = 0 and σ = 0.1, respectively. Figure 18 was obtained by solving
Equations (19) to (24) numerically, using the ODE45 solver along the time interval
0 ≤ t < 700 and activating the PD controller only (i.e., P = 1.5, d = 0.005, and
ηk = 0, k = 1, 2, . . . , 4); then, at the time instant t = 700, the IRC + PPF-control algo-
rithm was turned on, along with the PD controller, via setting η1 = η2 = η3 = η4 = 0.2
on the time interval 700 ≤ t ≤ 1000. Figure 19 is a repetition of Figure 18, but when
σ = 0.1 rather than σ = 0.0. By examining Figure 18a–c, one can notice that the high
oscillation amplitudes of the twelve-poles system were eliminated close to zero at a very
small transient time as soon as the PD + IRC + PPF controller was turned on. In addition,
Figure 19 demonstrates that the PD + IRC + PPF-control algorithm did not add excessive
energy to the rotor system when the resonant condition was lost (i.e., when = 0.1).
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Figure 18. Time response of the rotor system according to Figure 17 when σ = 0.0 (i.e., when
Ω = ω) in the case of the PD-control algorithm and the PD + IRC + PPF-control algorithm: (a,b) the
temporal oscillations z1(t) and z2(t) of the rotor system, (c) the rotor whirling orbits, (d) the rotor
frequency spectrum, (e,f) the temporal oscillations z3(t) and z4(t) of the PPF controller, and (g,h) the
temporal oscillations z5(t) and z6(t) of the IRC controller.
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the rotor frequency spectrum, (e,f) the temporal oscillations 𝑧ଷ(𝑡) and 𝑧ସ(𝑡) of the 𝑃𝑃𝐹 control-
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Figure 19. Time response of the rotor system according to Figure 17 when σ = 0.1 (i.e., when
Ω = ω + 0.1) when the PD-control algorithm and the PD + IRC + PPF-control algorithm are
applied: (a,b) the temporal oscillations z1(t) and z2(t) of the rotor system, (c) the rotor whirling
orbits, (d) the rotor frequency spectrum, (e,f) the temporal oscillations z3(t) and z4(t) of the PPF
controller, and (g,h) the temporal oscillations z5(t) and z6(t) of the IRC controller.

6. Conclusions

In this article, three different control techniques were introduced to eliminate the un-
desired vibrations of the twelve-poles electro-magnetic suspension system. The introduced
control algorithms were the PD, IRC, and PPF controllers and their different combinations
(i.e., PD + IRC, PD + PPF, PD + IRC + PPF). Relying on the classical mechanics’ princi-
ple, the dynamical model that governs the controlled twelve-poles rotor was established
as a nonlinear four-degree-of-freedom system that is coupled to two first-order filters.
Then, an approximate analytical solution for the controlled system mathematical model
was obtained using the asymptotic analysis. Based on the derived analytical solution,
the efficiency of the different control algorithms in suppressing the undesired vibrations
and improving the bifurcation characteristics of the considered twelve-poles system was
explored. In addition, numerical simulations were performed to confirm the accuracy of the
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obtained analytical investigations, as well as to explore the transient oscillatory behaviors
of the rotor system with the different control strategies. Based on our analysis and the
discussions above, we reached the following conclusions:

1. The rotor system responds as a linear dynamical system with small vibration ampli-
tudes in the case of the PD-control algorithm, as long as the excitation force f < 0.004.

2. When only the PD-control algorithm is activated, the twelve-poles rotor behaves like
a hardening duffing oscillator, and the nonlinearities dominate its response when the
rotor is exposed to a considerable excitation force amplitude (i.e., f > 0.004) at the
resonance condition. In addition, the electro-magnetic suspension system may suffer
from rub and/or impact force between the rotor and the stator if f > 0.013 in the case
of PD-control algorithm.

3. Integrating the PPF-control algorithm with P-controller can eliminate the rotor’s
undesired vibrations at the resonance condition (i.e., when Ω→ ω, σ→ 0) to neg-
ligible oscillation amplitudes, regardless of the excitation force magnitude, but two
undesired resonant peaks appear on both sides of σ = 0.0 that may result in high
vibrations for the rotor system if the resonant condition is lost (i.e., if Ω 6= ω).

4. The IRC + PD-control algorithm can mitigate the undesired vibrations and eliminate
the nonlinear bifurcation behaviors of the twelve-poles system. However, the main
drawback of this controller is that the rotor may perform high oscillation amplitude
at the perfect resonance (i.e., when Ω→ ω, σ→ 0).

5. Utilizing the three control algorithms (i.e., PD + IRC + PPF) as one control strategy
eliminated the high oscillation amplitudes of the rotor system close to zero at the
perfect resonance conditions. In addition, the resonant peaks that appeared in the
case of PD + PPF controller were also suppressed close to zero.

6. The PD + IRC + PPF-control algorithm has all the advantages of the individual
control algorithms, PD, PD + IRC and PD + PPF, while avoiding their drawbacks.

7. Although both the PD + PPF and PD + IRC + PPF-control algorithms can eliminate
the nonlinear vibrations of the twelve-poles system at the perfect resonance condi-
tion, the PD + IRC + PPF has the advantage of having the short transient time in
suppressing this undesired motion.

8. Tuning the natural frequencies (ω1 and ω2) of the PD + IRC + PPF-control algorithm
to be close to or equal to the rotor angular speed (Ω) guarantees the elimination of the
system’s lateral vibrations, regardless of the excitation force magnitude.
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Abbreviations

z1,
.
z1,

..
z1 Normalized displacement, velocity, and acceleration of the twelve-poles system in the X direction.

z2,
.
z2,

..
z2 Normalized displacement, velocity, and acceleration of the twelve-poles system in the Y direction.

z3,
.
z3,

..
z3

Normalized displacement, velocity, and acceleration of the PPF-control algorithm that connected to the
twelve-poles system in the X direction.

z4,
.
z4,

..
z4

Normalized displacement, velocity, and acceleration of the PPF-control algorithm that connected to the
twelve-poles system in the Y direction.

z5,
.
z5

Normalized displacement, and velocity of the IRC-control algorithm that connected to the twelve-poles
system in the X direction.

z6,
.
z6

Normalized displacement, and velocity of the IRC-control algorithm that connected to the twelve-poles
system in the Y direction.

µ Normalized damping parameter of the twelve-poles rotor system.
µ1, µ2 Normalized damping parameters of the PPF-control algorithms.
ω The normalized natural frequency of the twelve-poles rotor system.
ω1, ω2 Normalized natural frequencies of the PPF-control algorithms.
ω3, ω4 Normalized Internal-loop feedback gains of the IRC-control algorithms.
Ω The normalized angular speed of the twelve-poles rotor system.
f Normalized excitation force of the twelve-poles rotor system.
P, d Normalized proportional and derivative control gains of the PD-control algorithm, respectively.
η1, η3 Normalized control gains of the PPF-control algorithms.
η2, η4 Normalized control gains of the IRC-control algorithms.
η5, η6 Normalized feedback gains of the PPF-control algorithms.
η7, η8 Normalized feedback gains of the IRC-control algorithms.
αj, j = 1, . . . , 7 Normalized nonlinear coupling coefficients due to the PD-control algorithm.
β j, j = 1, . . . , 16 Normalized nonlinear coupling coefficients due to both the IRC and PPF control algorithms in the X direction.
γj, j = 1, . . . , 16 Normalized nonlinear coupling coefficients due to both the IRC and PPF control algorithms in the Y direction.
a1, a2 Normalized vibration amplitudes of the twelve-poles rotor system in the X and Y directions, respectively.
φ1, φ2 Phase angles of the twelve-poles rotor system in the X and Y directions, respectively.
a3, a4 Normalized vibration amplitudes of the PPF-control algorithms in the X and Y directions, respectively.
φ3, φ4 Phase angles of the PPF-control algorithms in the X and Y directions, respectively.
σ Difference between the angular speed (Ω) and the normalized natural frequency (ω): σ = Ω−ω.

Appendix A

Expanding Equations (11) to (16), using the Maclaurin series up to the third-order
approximation, yields the following:
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0 cos(α)− 6I2

0 cos3(α))xy2

+(6I2
0 cos2(α) sin(α)− 6k1 I0c0 cos(α) sin(α) + k2

1c2
0 sin(α))x2y + (−3k2 I0c0 + 3k2 I0c0 cos2(α))y2 .

x
+(k2

2c2
0 sin(α))y

.
x2

+ (k2
2c2

0 cos(α))x
.
x2

+ (−k2 I0c3
0)

.
x + (−3k2 I0c0 cos2(α) + 2k1k3c2

0 cos(α))x2 .
x

+(−6k2 I0c0 cos(α) sin(α) + 2k1k2c2
0 sin(α))x

.
xy + (−2k2k3c2

0 cos(α) + 3k3 I0c0 cos2(α))x2u1
+(−2k2k4c2

0 cos(α) + 3k4 I0c0 cos2(α))x2u2 + (3k3 I0c0 − 3k3 I0c0 cos2(α))y2u1 + (3k4 I0c0 − 3k4 I0c0 cos2(α))y2u2
+(2k2k3c2

0 sin2(α) + 6k3 I0c0 sin(α) cos(α))xyu1 + (2k2k4c2
0 sin2(α) + 6k4 I0c0 sin(α) cos(α))xyu2

+(k2
3c2

0 cos(α))xu2
1 + (k2

4c2
0 cos(α))xu2

2 + (k2
3c2

0 sin(α))yu2
1 + (k2

4c2
0 sin(α))yu2

2 + (2k3k4c2
0 cos(α))xu1u2

+(2k3k4c2
0 sin(α))yu1u2 + (−2k1k3c2

0 cos(α)− 2k1k4c2
0 cos(α))x

.
xu1 + (−2k1k3c2

0 sin(α)− 2k1k4c2
0 sin(α))y

.
xu1

+(k3 I0c3
0)u1 +(k4 I0c3

0)u2
]

(A3)

f4 = 4
c5

0
µ0N2 A cos(ϕ)

[
(−I2

0 c2
0 sin(α)) x + (k1 I0c3

0 − I2
0 c2

0 cos(α))y + (−2I2
0 cos3(α)− k2

1c2
0 cos(α) + 3k1 I0c0 cos2(α))y3

+(−2I2
0 sin(α) + 2I2

0 sin(α) cos2(α))x3 + (3k1 I0c0 − 3k1 I0c0 cos2(α)− 6I2
0 cos(α) + 6I2

0 cos3(α))yx2

+(−6I2
0 cos2(α) sin(α) + 6k1 I0c0 cos(α) sin(α)− k2

1c2
0 sin(α))y2x + (3k2 I0c0 − 3k2 I0c0 cos2(α))x2 .

y
+(−k2

2c2
0 sin(α))x

.
y2

+ (−k2
2c2

0 cos(α))y
.
y2

+ (k2 I0c3
0)

.
y + (3k2 I0c0 cos2(α)− 2k1k3c2

0 cos(α))y2 .
y

+(6k2 I0c0 cos(α) sin(α)− 2k1k2c2
0 sin(α))y

.
yx + (−2k2k5c2

0 cos(α) + 3k5 I0c0 cos2(α))y2v1
+(−2k2k6c2

0 cos(α) + 3k6 I0c0 cos2(α))y2v2 + (3k5 I0c0 − 3k5 I0c0 cos2(α))x2v1 + (3k6 I0c0 − 3k6 I0c0 cos2(α))x2v2
+(−2k2k5c2

0 sin2(α) + 6k5 I0c0 sin(α) cos(α))xyv1 + (−2k2k6c2
0 sin2(α) + 6k6 I0c0 sin(α) cos(α))xyv2

+(k2
5c2

0 cos(α))yv2
1 + (k2

6c2
0 cos(α))yv2

2 + (k2
5c2

0 sin(α))xv2
1 + (k2

6c2
0 sin(α))xv2

2 + (2k5k6c2
0 cos(α))yv1v2

+(−2k5k6c2
0 sin(α))xv1v2 + (−2k1k6c2

0 cos(α)− 2k1k5c2
0 cos(α))y

.
yv1 + (2k1k6c2

0 sin(α) + 2k1k5c2
0 sin(α))x

.
yv1

+(k5 I0c3
0)v1 +(k6 I0c3

0)v2
]

(A4)

f5 = 4
c5

0
µ0N2 A cos(ϕ)

[
(−k1 I0c3

0 − I2
0 c2

0)y + (2I2
0 + k2

1c2
0 − 3k1 I0c0)y3 + (k2

2c2
0)y

.
y2

+ (−k2 I0c3
0)

.
y

+(−3k2 I0c0 + 2k1k3c2
0)y

2 .
y + (−2k2k5c2

0 + 3k5 I0c0)y2v1 + (−2k2k6c2
0 + 3k6 I0c0)y2v2 + (k2

5c2
0)yv2

1 + (k2
6c2

0)yv2
2

+(−2k1k5c2
0)y

.
yv1 + (−2k1k6c2

0)y
.
yv2 + (2k5k6c2

0)yv1v2 + (k5 I0c3
0)v1 + (k6 I0c3

0)v2 +(O)3
] (A5)

f6 = 4
c5

0
µ0N2 A cos(ϕ)

[
(−I2

0 c2
0 sin(α)) x + (−k1 I0c3

0 + I2
0 c2

0 cos(α))y + (2I2
0 cos3(α) + k2

1c2
0 cos(α)− 3k1 I0c0 cos2(α))y3

+(−2I2
0 sin(α) + 2I2

0 sin(α) cos2(α))x3 + (−3k1 I0c0 + 3k1 I0c0 cos2(α) + 6I2
0 cos(α)− 6I2

0 cos3(α))yx2

+(−6I2
0 cos2(α) sin(α) + 6k1 I0c0 cos(α) sin(α)− k2

1c2
0 sin(α))y2x + (−3k2 I0c0 + 3k2 I0c0 cos2(α))x2 .

y
+(−k2

2c2
0 sin(α))x

.
y2

+ (k2
2c2

0 cos(α))y
.
y2

+ (−k2 I0c3
0)

.
y + (−3k2 I0c0 cos2(α) + 2k1k3c2

0 cos(α))y2 .
y

+(6k2 I0c0 cos(α) sin(α)− 2k1k2c2
0 sin(α))y

.
yx + (−2k2k5c2

0 cos(α) + 3k5 I0c0 cos2(α))y2v1
+(−2k2k6c2

0 cos(α) + 3k6 I0c0 cos2(α))y2v2 + (3k5 I0c0 − 3k5 I0c0 cos2(α))x2v1 + (3k6 I0c0 − 3k6 I0c0 cos2(α))x2v2
+(2k2k5c2

0 sin2(α)− 6k5 I0c0 sin(α) cos(α))xyv1 + (2k2k6c2
0 sin2(α)− 6k6 I0c0 sin(α) cos(α))xyv2

+(k2
5c2

0 cos(α))yv2
1 + (k2

6c2
0 cos(α))yv2

2 + (−k2
5c2

0 sin(α))xv2
1 + (−k2

6c2
0 sin(α))xv2

2 + (2k5k6c2
0 cos(α))yv1v2

+(−2k5k6c2
0 sin(α))xv1v2 + (−2k1k6c2

0 cos(α)− 2k1k5c2
0 cos(α))y

.
yv1 + (2k1k6c2

0 sin(α) + 2k1k5c2
0 sin(α))x

.
yv1

+(k5 I0c3
0)v1 +(k6 I0c3

0)v2
]

(A6)
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Appendix B

µ = 1
2 (2d cos(α) + d), ω =

√
2p cos(α) + p− 3,

α1 = −6p cos3(α)− 3p + 2p2 cos2(α) + 6 + p2 + 8 cos4(α)− 8 cos2(α),
α2 = 2p2 − 2p2 cos2(α) + 24 cos2(α)− 24 cos4(α)− 18p cos(α) + 18p cos3(α),
α3 = −3d + 2pd + 4pd cos2(α)− 6d cos3(α), α4 = 6d cos3(α)− 6d cos(α),
α5 = 2d2 sin2(α), α6 = d2(1 + 2 cos2(α)),
α7 = 4d(3 cos3(α)− 3 cos(α) + p sin2(α)), β1 =

η1
1+2 cos(α) (3− 2p + 6 cos3(α)− 4p cos2(α)),

γ1 =
η3

1+2 cos(α) (3− 2p + 6 cos3(α)− 4p cos2(α)), β2 =
η1

1+2 cos(α) (−2d− 4d cos2(α)),

γ2 =
η3

1+2 cos(α) (−2d− 4d cos2(α)), β3 =
η2

1

(1+2 cos(α))2 (1 + 2 cos2(α)),

γ3 =
η2

3

(1+2 cos(α))2 (1 + 2 cos2(α)), β4 =
4η3

1+2 cos(α) (−p sin2(α) + 3 cos(α) sin2(α)),

γ4 =
4η1

1+2 cos(α) (− sin2(α) + 3 cos(α) sin2(α)), β5 =
2η2

3 sin2(α)

(1+2 cos(α))2 ,

γ5 =
2η2

1 sin2(α)

(1+2 cos(α))2 , β6 =
−4dη3 sin2(α)

1+2 cos(α) ,

γ6 =
−4dη1 sin2(α)

1+2 cos(α) , β7 =
6η1 cos(α) sin2(α)

1+2 cos(α) ,

γ7 =
6η3 cos(α) sin2(α)

1+2 cos(α) , β8 =
η1η2

(1+2 cos(α))2 (−2− 4 cos2(α)),

γ8 =
η3η4

(1+2 cos(α))2 (−2− 4 cos2(α)), β9 =
η2

1+2 cos(α) (2d + 4d cos2(α)),

γ9 =
η3

1+2 cos(α) (2d + 4d cos2(α)), β10 =
−4η3η4 sin2(α)

(1+2 cos(α))2 ,

γ10 =
−4η1η2 sin2(α)

(1+2 cos(α))2 , β11 =
η2

1+2 cos(α) (−3 + 2p + 4p cos2(α)− 6 cos3(α)),

γ11 =
η4

1+2 cos(α) (−3 + 2p + 4p cos2(α)− 6 cos3(α)), β12 =
−2η2

4 sin2(α)

(1+2 cos(α))2 ,

γ12 =
−2η2

2 sin2(α)

(1+2 cos(α))2 , β13 =
η4

1+2 cos(α) (4p sin2(α)− 12 cos(α) sin2(α)),

γ13 =
η2

1+2 cos(α) (4p sin2(α)− 12 cos(α) sin2(α)), β14 =
4dη4 sin2(α)
1+2 cos(α) ,

γ14 =
4dη2 sin2(α)
1+2 cos(α) , β15 =

−η2
2

(1+2 cos(α))2 (1 + 2 cos2(α)),

γ15 =
−η2

4

(1+2 cos(α))2 (1 + 2 cos2(α)), β16 =
−6η2 cos(α)sin2(α)

1+2 cos(α) ,

γ16 =
−6η4 cos(α)sin2(α)

1+2 cos(α) .

Appendix C

J11 = ∂F1
∂a11

= − 1
2 (2µ + η2η7

ω2
3+ω2 ) +

3
8 (α3 − 2β11η7

ω2
3+ω2 −

2ω3β15η2
7

(ω2
3+ω2)

2 )a2
10 +

1
8 (2α4 − β13η8

ω2
4+ω2 −

ω4β14η8
ω2

4+ω2

− 2β16η7
ω2

3+ω2 )a2
20 +

1
8 (−α4 + α7 +

2ω4β12η2
8

(ω2
4+ω2)

2 −
β13η8

ω2
4+ω2 +

ω4β14η8
ω2

4+ω2 )a2
20 cos(2φ10 − 2φ20) +

1
8 (

α2
ω

−α5ω +
(ω2

4−ω2)β12η2
8

ω(ω2
4+ω2)

2 + ω4β13η8
ω(ω2

4+ω2)
− ωβ14η8

ω2
4+ω2 )a2

20 sin(2φ10 − 2φ20)− 1
4ω β1a10b10 sin(φ30)

− 1
8ω β3b2

10 sin(2φ30) +
1
4 (β2 − 2β8η7

ω2
3+ω2 )a10b10 cos(φ30)− 1

8 (
β10η8

ω2
4+ω2 )a20b20 cos(φ40)

+ 1
8ω (ω4β10η8

ω2
4+ω2 )a20b20 sin(φ40) +

1
8ω (β6ω− ωβ10η8

ω2
4+ω2 )a20b20 cos(2φ10 − 2φ20 − φ40)

+ 1
8ω (β4 +

ω4β10η8
ω2

4+ω2 )a20b20 sin(2φ10 − 2φ20 − φ40) +
1

8ω β5b2
20 sin(2φ10 − 2φ20 − 2φ40),

J12 = ∂F1
∂a21

= 1
4 (2α4 − β13η8

ω2
4+ω2 −

ω4β14η8
ω2

4+ω2 −
2β16η7
ω2

3+ω2 )a10a20 +
1
4 (−α4 + α7 +

2ω4β12η2
8

(ω2
4+ω2)

2 −
β13η8

ω2
4+ω2

+ω4β14η8
ω2

4+ω2 )a10a20 cos(2φ10 − 2φ20) +
1
4 (

α2
ω − α5ω +

(ω2
4−ω2)β12η2

8

ω(ω2
4+ω2)

2 + ω4β13η8
ω(ω2

4+ω2)

− ωβ14η8
ω2

4+ω2 )a10a20 sin(2φ10 − 2φ20)− 1
2ω β7a20b10 sin(φ30)− 1

8 (
β10η8

ω2
4+ω2 )a10b20 cos(φ40)

+ 1
8ω (ω4β10η8

ω2
4+ω2 )a10b20 sin(φ40) +

1
4ω β7a20b10 sin(2φ10 − 2φ20 + φ30) +

1
8ω (β6ω

− ωβ10η8
ω2

4+ω2 )a10b20 cos(2φ10 − 2φ20 − φ40) +
1

8ω (β4 +
ω4β10η8
ω2

4+ω2 )a10b20 sin(2φ10 − 2φ20 − φ40),

J13 = ∂F1
∂b11

= (− 1
2ω η1 − 1

8ω β1a2
10 −

1
4ω β7a2

20) sin(φ30)− 1
4ω β3a10b10 sin(2φ30)

+ 1
8 (β2 − 2β8η7

ω2
3+ω2 )a2

10 cos(φ30) +
1

8ω β7a2
20 sin(2φ10 − 2φ20 + φ30),
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J14 = ∂F1
∂b21

= − 1
8 (

β10η8
ω2

4+ω2 )a10a20 cos(φ40) +
1

8ω (ω4β10η8
ω2

4+ω2 )a10a20 sin(φ40) +
1

8ω (β6ω

− ωβ10η8
ω2

4+ω2 )a10a20 cos(2φ10 − 2φ20 − φ40) +
1

8ω (β4 +
ω4β10η8
ω2

4+ω2 )a10a20 sin(2φ10 − 2φ20 − φ40)

+ 1
4ω β5a10b20 sin(2φ10 − 2φ20 − 2φ40),

J15 = ∂F1
∂φ11

= − 1
4 (−α4 + α7 +

2ω4β12η2
8

(ω2
4+ω2)

2 −
β13η8

ω2
4+ω2 +

ω4β14η8
ω2

4+ω2 )a10a2
20 sin(2φ10 − 2φ20) +

1
4 (

α2
ω − α5ω

+
(ω2

4−ω2)β12η2
8

ω(ω2
4+ω2)

2 + ω4β13η8
ω(ω2

4+ω2)
− ωβ14η8

ω2
4+ω2 )a10a2

20 cos(2φ10 − 2φ20)− 1
4ω β7a2

20b10 sin(2φ10 − 2φ20 + φ30)

+ 1
8ω (β6ω− ωβ10η8

ω2
4+ω2 )a10a20b20 sin(2φ10 − 2φ20 − φ40) +

1
4ω (β4 +

ω4β10η8
ω2

4+ω2 )a10a20b20 cos(2φ10 − 2φ20 − φ40)

+ 1
4ω β5a10b2

20 cos(2φ10 − 2φ20 − 2φ40) +
1

2ω (ω + σ)2 f cos(φ10),

J16 = ∂F1
∂φ21

= 1
4 (−α4 + α7 +

2ω4β12η2
8

(ω2
4+ω2)

2 −
β13η8

ω2
4+ω2 +

ω4β14η8
ω2

4+ω2 )a10a2
20 sin(2φ10 − 2φ20)− 1

4 (
α2
ω − α5ω

+
(ω2

4−ω2)β12η2
8

ω(ω2
4+ω2)

2 + ω4β13η8
ω(ω2

4+ω2)
− ωβ14η8

ω2
4+ω2 )a10a2

20 cos(2φ10 − 2φ20) +
1

4ω β7a2
20b10 sin(2φ10 − 2φ20 + φ30)

+ 1
8ω (β6ω− ωβ10η8

ω2
4+ω2 )a10a20b20 sin(2φ10 − 2φ20 − φ40)− 1

4ω (β4 +
ω4β10η8
ω2

4+ω2 )a10a20b20 cos(2φ10 − 2φ20 − φ40)

− 1
4ω β5a10b2

20 cos(2φ10 − 2φ20 − 2φ40),

J17 = ∂F1
∂φ31

= (− 1
2ω η1b10 − 1

8ω β1a2
10b10 − 1

4ω β7a2
20b10) cos(φ30)− 1

4ω β3a10b2
10 cos(2φ30)− 1

8 (β2

− 2β8η7
ω2

3+ω2 )a2
10b10 sin(φ30) +

1
8ω β7a2

20b10 cos(2φ10 − 2φ20 + φ30),

J18 = ∂F1
∂φ41

= 1
8 (

β10η8
ω2

4+ω2 )a10a20b20 sin(φ40) +
1

8ω (ω4β10η8
ω2

4+ω2 )a10a20b20 cos(φ40) +
1

8ω (β6ω

− ωβ10η8
ω2

4+ω2 )a10a20b20 sin(2φ10 − 2φ20 − φ40)− 1
8ω (β4 +

ω4β10η8
ω2

4+ω2 )a10a20b20 cos(2φ10 − 2φ20 − φ40)

− 1
4ω β5a10b2

20 cos(2φ10 − 2φ20 − 2φ40),

J21 = ∂F2
∂a11

= 1
4 (2α4 − γ13η7

ω2
3+ω2 −

ω3γ14η7
ω2

3+ω2 −
2γ16η8
ω2

4+ω2 )a20a10 +
1
4 (−α4 + α7 −

2ω3γ12η2
7

(ω2
3+ω2)

2 −
γ13η7

ω2
3+ω2

+ω3γ14η7
ω2

3+ω2 )a20a10 cos(2φ20 − 2φ10) +
1
4 (

α2
ω − α5ω +

(ω2
3−ω2)γ12η2

7

ω(ω2
3+ω2)

2 + ω3γ13η7
ω(ω2

3+ω2)

+ωγ14η7
ω2

3+ω2 )a20a10 sin(2φ20 − 2φ10)− 1
2ω γ7a10b20 sin(φ40)− 1

8ω (ωγ10η7
ω2

3+ω2 )a20b10 cos(φ30)

+ 1
8ω (ω3γ10η7

ω2
3+ω2 )a20b10 sin(φ30) +

1
4ω γ7a10b20 sin(2φ20 − 2φ10 + φ40) +

1
8ω (γ6ω

−ωγ10η7
ω2

3+ω2 )a20b10 cos(2φ20 − 2φ10 − φ30) +
1

8ω (γ4 +
ω3γ10η7
ω2

3+ω2 )a20b10 sin(2φ20 − 2φ10 − φ30),

J22 = ∂F2
∂a21

= − 1
2 (2µ + η4η8

ω2
4+ω2 ) +

3
8 (α3 − 2γ11η8

ω2
4+ω2 −

2ω4γ15η2
8

(ω2
4+ω2)

2 )a2
20 +

1
8 (2α4 − γ13η7

ω2
3+ω2 −

ω3γ14η7
ω2

3+ω2

− 2γ16η8
ω2

4+ω2 )a2
10 +

1
8 (−α4 + α7 −

2ω3γ12η2
7

(ω2
3+ω2)

2 −
γ13η7

ω2
3+ω2 +

ω3γ14η7
ω2

3+ω2 )a2
10 cos(2φ20 − 2φ10) +

1
8 (

α2
ω − α5ω

+
(ω2

3−ω2)γ12η2
7

ω(ω2
3+ω2)

2 + ω3γ13η7
ω(ω2

3+ω2)
+ ωγ14η7

ω2
3+ω2 )a2

10 sin(2φ20 − 2φ10)− 1
4ω γ1a20b20 sin(φ40)

− 1
8ω γ3b2

20 sin(2φ40) +
1

4ω (γ2ω− 2ωγ8η8
ω2

4+ω2 )a20b20 cos(φ40)− 1
8ω (ωγ10η7

ω2
3+ω2 )a20b10 cos(φ30)

+ 1
8ω (ω3γ10η7

ω2
3+ω2 )a10b10 sin(φ30) +

1
8ω (γ6ω− ωγ10η7

ω2
3+ω2 )a10b10(cos(2φ20 − 2φ10 − φ30) +

1
8ω (γ4

+ω3γ10η7
ω2

3+ω2 )a10b10 sin(2φ20 − 2φ10 − φ30) +
1

8ω γ5b2
10 sin(2φ20 − 2φ10 − 2φ30),

J23 = ∂F2
∂b11

= − 1
8ω (ωγ10η7

ω2
3+ω2 )a20a10 cos(φ30) +

1
8ω (ω3γ10η7

ω2
3+ω2 )a20a10 sin(φ30) +

1
8ω (γ6ω

−ωγ10η7
ω2

3+ω2 )a20a10 cos(2φ20 − 2φ10 − φ30) +
1

8ω (γ4 +
ω3γ10η7
ω2

3+ω2 )a20a10 sin(2φ2 − 2φ1 − φ3)

+ 1
4ω γ5a20b10 sin(2φ20 − 2φ10 − 2φ30),
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J24 = ∂F2
∂b21

= (− 1
2ω η3 − 1

8ω γ1a2
20 −

1
4ω γ7a2

10) sin(φ40)− 1
4ω γ3a20b20 sin(2φ40) +

1
8ω (γ2ω− 2ωγ8η8

ω2
4+ω2 )a2

20 cos(φ40)

+ 1
8ω γ7a2

10 sin(2φ20 − 2φ10 + φ40),

J25 = ∂F2
∂φ11

= 1
4 (−α4 + α7 −

2ω3γ12η2
7

(ω2
3+ω2)

2 −
γ13η7

ω2
3+ω2 +

ω3γ14η7
ω2

3+ω2 )a20a2
10 sin(2φ20 − 2φ10)− 1

4 (
α2
ω − α5ω

+
(ω2

3−ω2)γ12η2
7

ω(ω2
3+ω2)

2 + ω3γ13η7
ω(ω2

3+ω2)
+ ωγ14η7

ω2
3+ω2 )a20a2

10 cos(2φ20 − 2φ10)− 1
4ω γ7a2

10b20 cos(2φ20 − 2φ10 + φ40)

+ 1
4ω (γ6ω− ωγ10η7

ω2
3+ω2 )a20a10b10 sin(2φ20 − 2φ10 − φ30)− 1

4ω (γ4 +
ω3γ10η7
ω2

3+ω2 )a20a10b10 cos(2φ20 − 2φ10 − φ30)

− 1
4ω γ5a20b2

10 cos(2φ20 − 2φ10 − 2φ30),

J26 = ∂F2
∂φ21

= − 1
4 (−α4 + α7 −

2ω3γ12η2
7

(ω2
3+ω2)

2 −
γ13η7

ω2
3+ω2 +

ω3γ14η7
ω2

3+ω2 )a20a2
10 sin(2φ20 − 2φ10) +

1
4 (

α2
ω − α5ω

+
(ω2

3−ω2)γ12η2
7

ω(ω2
3+ω2)

2 + ω3γ13η7
ω(ω2

3+ω2)
+ ωγ14η7

ω2
3+ω2 )a20a2

10 cos(2φ20 − 2φ10)− 1
4ω γ7a2

10b20 sin(2φ20 − 2φ10 + φ40)

+ 1
4ω (γ6ω− ωγ10η7

ω2
3+ω2 )a20a10b10 cos(2φ20 − 2φ10 − φ30) +

1
4ω (γ4 +

ω3γ10η7
ω2

3+ω2 )a20a10b10 cos(2φ20 − 2φ10 − φ30)

+ 1
4ω γ5a20b2

10 cos(2φ20 − 2φ10 − 2φ30) +
1

2ω (ω + σ)2 f sin(φ20),

J27 = ∂F2
∂φ31

= 1
8ω (ωγ10η7

ω2
3+ω2 )a20a10b10 sin(φ3) +

1
8ω (ω3γ10η7

ω2
3+ω2 )a20a10b10 cos(φ30) +

1
8ω (γ6ω

−ωγ10η7
ω2

3+ω2 )a20a10b10 sin(2φ20 − 2φ10 − φ30)− 1
8ω (γ4 +

ω3γ10η7
ω2

3+ω2 )a20a10b10 cos(2φ20 − 2φ10 − φ30)

− 1
8ω γ5a20b2

10 cos(2φ20 − 2φ10 − 2φ30),

J28 = ∂F2
∂φ41

= (− 1
2ω η3b20 − 1

8ω γ1a2
20b20 − 1

4ω γ7a2
10b20) cos(φ40)− 1

4ω γ3a20b2
20 cos(2φ40)− 1

8ω (γ2ω

− 2ωγ8η8
ω2

4+ω2 )a2
20b20 sin(φ40) +

1
8ω γ7a2

10b20 cos(2φ20 − 2φ10 + φ40),

J31 =
∂F3

∂a11
=

1
2(ω + σ1)

η5 sin(φ30),

J32 =
∂F3

∂a21
= 0,

J33 =
∂F3

∂b11
= −µ1,

J34 =
∂F3

∂b21
= 0,

J35 =
∂F3

∂φ11
= 0,

J37 =
∂F3

∂φ31
=

1
2(ω + σ1)

η5a10 cos(φ30),

J38 =
∂F3

∂φ41
= 0,

J41 =
∂F4

∂a11
= 0,

J42 =
∂F4

∂a21
=

1
2(ω + σ2)

η6 sin(φ40),

J43 =
∂F4

∂b11
= 0,
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J44 =
∂F4

∂b21
= −µ2,

J45 =
∂F4

∂φ11
= 0,

J46 =
∂F4

∂φ21
= 0,

J47 =
∂F4

∂φ31
= 0,

J48 =
∂F4

∂φ41
=

1
2(ω + σ2)

η6a20 cos(φ40),

J51 = ∂F5
∂a11

= 1
4ω (3α1 + α6ω2 + 2ω3β11η7

ω2
3+ω2 +

(ω2
3−ω2)β15η2

7

(ω2
3+ω2)

2 )a10 + ( −1
2a2

10
η1b10 +

3
8 β1b10 − 1

4a2
10

β7a2
2b10

+ 1
4

ω3β8η7
ω2

3+ω2 b10)
cos(φ30)

ω − 1
8

β8η7
ω2

3+ω2 b10 sin(φ30)− 1
8 β2b10 sin(φ30)− 1

8ωa2
10

β7a2
20b10 cos(2φ10 − 2φ20 + φ30)

− 1
2ωa2

10
(ω + σ)2 f cos(φ10),

J52 = ∂F5
∂a21

= 1
4ω (2α2 + 2α5ω2 + ω4β13η8

ω2
4+ω2 −

ω2β14η8
ω2

4+ω2 + 2ω3β16η7
ω2

3+ω2 )a20 +
1

4ω (α2 − α5ω2 +
(ω2

4−ω2)β12η2
8

(ω2
4+ω2)

2

+ω4β13η8
ω2

4+ω2 + ω2β14η8
ω2

4+ω2 )a20 cos(2φ10 − 2φ20) +
1

4ω (α4ω− α7ω +
2ω4ωβ12η2

8

(ω2
4+ω2)

2 + ωβ13η8
ω2

4+ω2

−ω4ωβ14η8
ω2

4+ω2 )a20 sin(2φ10 − 2φ20) +
1
4

β7a2
2b1

ωa1
cos(φ30) +

1
8ω (2β4 +

ω4β10η8
ω2

4+ω2 )b20 cos(φ40) +
1
8 (−2β6

+ β10η8
ω2

4+ω2 )b20 sin(φ40) +
1

4ωa10
β7a20b10 cos(2φ10 − 2φ20 + φ30) +

1
8ω (β4

+ω4β10η8
ω2

4+ω2 )b2 cos(2φ10 − 2φ20 − φ40) +
1

8ω (−β6ω + ωβ10η8
ω2

4+ω2 )b2 sin(2φ10 − 2φ20 − φ40),

J53 = ∂F5
∂b11

= 1
2ω β3b10 + ( 1

2 η1 +
3
8 β1a2

10 +
1
4 β7a2

20 +
1
4

ω3β8η7
ω2

3+ω2 a2
10)

cos(φ30)
ωa10

+ 1
4ω β3b10 cos(2φ30)

− 1
8

β8η7
ω2

3+ω2 a10 sin(φ30)− 1
8 β2a10 sin(φ30) +

1
8ωa10

β7a2
20 cos(2φ10 − 2φ20 + φ30),

J54 = ∂F5
∂b21

= 1
2ω β5b20 +

1
8ω (2β4 +

ω4β10η8
ω2

4+ω2 )a20 cos(φ40) +
1
8 (−2β6 +

β10η8
ω2

4+ω2 )a20 sin(φ40) +
1

8ω (β4

+ω4β10η8
ω2

4+ω2 )a20 cos(2φ10 − 2φ20 − φ40) +
1

8ω (−β6ω + ωβ10η8
ω2

4+ω2 )a20 sin(2φ10 − 2φ20 − φ40)

+ 1
4ω β5b20 cos(2φ10 − 2φ20 − 2φ40),

J55 = ∂F5
∂φ11

= − 1
4ω (α2 − α5ω2 +

(ω2
4−ω2)β12η2

8

(ω2
4+ω2)

2 + ω4β13η8
ω2

4+ω2 + ω2β14η8
ω2

4+ω2 )a2
20 sin(2φ10 − 2φ20) +

1
4ω (α4ω

−α7ω +
2ω4ωβ12η2

8

(ω2
4+ω2)

2 + ωβ13η8
ω2

4+ω2 −
ω4ωβ14η8

ω2
4+ω2 )a2

20 cos(2φ10 − 2φ20)− 1
4ωa10

β7a2
20b10 sin(2φ10 − 2φ20 + φ30)

− 1
4ω (β4 +

ω4β10η8
ω2

4+ω2 )a20b20 sin(2φ10 − 2φ20 − φ40) +
1

4ω (−β6ω + ωβ10η8
ω2

4+ω2 )a20b20 cos(2φ10 − 2φ20 − φ40)

− 1
4ω β5b2

20 sin(2φ10 − 2φ20 − 2φ40)− 1
2ωa10

(ω + σ)2 f sin(φ10),

J56 = ∂F5
∂φ21

= 1
4ω (α2 − α5ω2 +

(ω2
4−ω2)β12η2

8

(ω2
4+ω2)

2 + ω4β13η8
ω2

4+ω2 + ω2β14η8
ω2

4+ω2 )a2
20 sin(2φ10 − 2φ20)− 1

4ω (α4ω− α7ω

+
2ω4ωβ12η2

8

(ω2
4+ω2)

2 + ωβ13η8
ω2

4+ω2 −
ω4ωβ14η8

ω2
4+ω2 )a2

20 cos(2φ10 − 2φ20) +
1

4ωa10
β7a2

20b10 sin(2φ10 − 2φ20 + φ30)

+ 1
4ω (β4 +

ω4β10η8
ω2

4+ω2 )a20b20 sin(2φ10 − 2φ20 − φ40)− 1
4ω (−β6ω + ωβ10η8

ω2
4+ω2 )a20b20 cos(2φ10 − 2φ20 − φ40)

+ 1
4ω β5b2

20 sin(2φ10 − 2φ20 − 2φ40),
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J57 = ∂F5
∂φ31

= − 1
ωa10

( 1
2 η1b10 +

3
8 β1a2

10b10 +
1
4 β7a2

20b10 +
1
4

ω3β8η7
ω2

3+ω2 a2
10b10) sin(φ30)− 1

4ω β3b2
10 sin(2φ30)

− 1
8

β8η7
ω2

3+ω2 a10b10 cos(φ30)− 1
8 β2a10b10 cos(φ30)− 1

8ωa10
β7a2

20b10 sin(2φ10 − 2φ20 + φ30),

J58 = ∂F5
∂φ41

= − 1
8ω (2β4 +

ω4β10η8
ω2

4+ω2 )a20b20 sin(φ40) +
1
8 (−2β6 +

β10η8
ω2

4+ω2 )a20b20 cos(φ40) +
1

8ω (β4

+ω4β10η8
ω2

4+ω2 )a20b20 sin(2φ10 − 2φ20 − φ40)− 1
8ω (−β6ω + ωβ10η8

ω2
4+ω2 )a20b20 cos(2φ10 − 2φ20 − φ40)

+ 1
4ω β5b2

20 sin(2φ10 − 2φ20 − 2φ40),

J61 = ∂F6
∂a11

= 1
4ω (2α2 + 2α5ω2 + ω3γ13η7

ω2
3+ω2 −

ω2γ14η7
ω2

3+ω2 + 2ω4γ16η8
ω2

4+ω2 )a10 +
1

4ω (α2 − α5ω2 +
(ω2

3−ω2)γ12η2
7

(ω2
3+ω2)

2 + ω3γ13η7
ω2

3+ω2

+ω2γ14η7
ω2

3+ω2 )a10 cos(2φ20 − 2φ10) +
1

4ω (α4ω− α7ω +
2ω3ωγ12η2

7

(ω2
3+ω2)

2 −
ωγ13η7
ω2

3+ω2 +
ω3ωγ14η7

ω2
3+ω2 )a10 sin(2φ20 − 2φ10)

+ 1
2 γ7a10b20

cos(φ40)
ωa20

+ 1
8ω (2γ4 +

ω3γ10η7
ω2

3+ω2 )b10 cos(φ30) +
1
8 (−2γ6 +

γ10η7
ω2

3+ω2 )b10 sin(φ30)

+ 1
4ωa20

γ7a10b20 cos(2φ20 − 2φ10 + φ40) +
1

8ω (γ4 +
ω3γ10η7
ω2

3+ω2 )b10 cos(2φ20 − 2φ10 − φ30) +
1
8 (−γ6

+ γ10η7
ω2

3+ω2 )b10 sin(2φ20 − 2φ10 − φ30),

J62 = ∂F6
∂a21

= 1
4ω (3α1 + α6ω2 + 2ω4γ11η8

ω2
4+ω2 +

(ω2
4−ω2)γ15η2

8

(ω2
4+ω2)

2 )a20 + ( −1
2a2

20
η3b20 +

3
8 γ1b20 − 1

4a2
20

γ7a2
10b20

+ 1
4

ω4γ8η8
ω2

4+ω2 b20)
cos(φ40)

ω − 1
8

γ8η8
ω2

4+ω2 b20 sin(φ40)− 1
8 γ2b20 sin(φ40)− 1

8ωa2
20

γ7a2
10b20 cos(2φ20 − 2φ10 + φ40)

− 1
2ωa2

20
(ω + σ)2 f sin(φ20),

J63 = ∂F6
∂b11

= 1
2ω γ5b10 +

1
8ω (2γ4 +

ω3γ10η7
ω2

3+ω2 )a10 cos(φ30) +
1
8 (−2γ6 +

γ10η7
ω2

3+ω2 )a10 sin(φ30) +
1

8ω (γ4

+ω3γ10η7
ω2

3+ω2 )a10 cos(2φ20 − 2φ10 − φ30) +
1
8 (−γ6 +

γ10η7
ω2

3+ω2 )a10 sin(2φ20 − 2φ10 − φ30)

+ 1
4ω γ5b10 cos(2φ20 − 2φ10 − 2φ30),

J64 = ∂F6
∂b21

= 1
2ω γ3b20 + ( 1

2 η3 +
3
8 γ1a2

20 +
1
4 γ7a2

10 +
1
4

ω4γ8η8
ω2

4+ω2 a2
20)

cos(φ40)
ωa20

+ 1
4ω γ3b20 cos(2φ40)

− 1
8

γ8η8
ω2

4+ω2 a20 sin(φ40)− 1
8 γ2a20 sin(φ40) +

1
8ωa20

γ7a2
10 cos(2φ20 − 2φ10 + φ40),

J65 = ∂F6
∂φ11

= 1
4ω (α2 − α5ω2 +

(ω2
3−ω2)γ12η2

7

(ω2
3+ω2)

2 + ω3γ13η7
ω2

3+ω2 + ω2γ14η7
ω2

3+ω2 )a2
10 sin(2φ20 − 2φ10)− 1

4ω (α4ω− α7ω

+
2ω3ωγ12η2

7

(ω2
3+ω2)

2 −
ωγ13η7
ω2

3+ω2 +
ω3ωγ14η7

ω2
3+ω2 )a2

10 cos(2φ20 − 2φ10) +
1

4ωa2
γ7a2

10b20 sin(2φ20 − 2φ10 + φ40)

+ 1
4ω (γ4 +

ω3γ10η7
ω2

3+ω2 )a10b10 sin(2φ20 − 2φ10 − φ30)− 1
4 (−γ6 +

γ10η7
ω2

3+ω2 )a10b10 cos(2φ20 − 2φ10 − φ30)

+ 1
4ω γ5b2

10 sin(2φ20 − 2φ10 − 2φ30),

J66 = ∂F6
∂φ21

= 1
4ω (α2 − α5ω2 +

(ω2
3−ω2)γ12η2

7

(ω2
3+ω2)

2 + ω3γ13η7
ω2

3+ω2 + ω2γ14η7
ω2

3+ω2 )a2
10 sin(2φ20 − 2φ10) +

1
4ω (α4ω− α7ω

+
2ω3ωγ12η2

7

(ω2
3+ω2)

2 −
ωγ13η7
ω2

3+ω2 +
ω3ωγ14η7

ω2
3+ω2 )a2

10 cos(2φ20 − 2φ10)− 1
4ωa2

γ7a2
10b20 sin(2φ20 − 2φ10 + φ40)

− 1
4ω (γ4 +

ω3γ10η7
ω2

3+ω2 )a10b10 sin(2φ20 − 2φ10 − φ30) +
1
4 (−γ6 +

γ10η7
ω2

3+ω2 )a10b10 cos(2φ20 − 2φ10 − φ30)

− 1
4ω γ5b2

10 sin(2φ20 − 2φ10 − 2φ30) +
1

2ωa20
(ω + σ)2 f cos(φ20),

J67 = ∂F6
∂φ31

= − 1
8ω (2γ4 +

ω3γ10η7
ω2

3+ω2 )a10b10 sin(φ30) +
1
8 (−2γ6 +

γ10η7
ω2

3+ω2 )a10b10 cos(φ30)

+ 1
4ω γ5b2

10 sin(2φ20 − 2φ10 − 2φ30) +
1

8ω (γ4 +
ω3γ10η7
ω2

3+ω2 )a10b10 sin(2φ20 − 2φ10 − φ30)

− 1
8 (−γ6 +

γ10η7
ω2

3+ω2 )a10b10 cos(2φ20 − 2φ10 − φ30),
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J68 = ∂F6
∂φ41

= −( 1
2 η3b20 +

3
8 γ1a2

20b20 +
1
4 γ7a2

10b20 +
1
4

ω4γ8η8
ω2

4+ω2 a2
20b20)

sin(φ40)
ωa20

− 1
4ω γ30b2

20 sin(2φ40)

− 1
8

γ8η8
ω2

4+ω2 a20b20 cos(φ40)− 1
8 γ2a20b20 cos(φ40)− 1

8ωa2
γ7a2

10b20sin(2φ20 − 2φ10 + φ40),

J71 = ∂F7
∂a11

= 1
2(ω+σ1)b10

η5 cos(φ30)− 1
4ω (3α1 + α6ω2 + 2ω3β11η7

ω2
3+ω2 +

(ω2
3−ω2)β15η2

7

(ω2
3+ω2)

2 )a10 − (− 1
2a2

10
η1b10

+ 3
8 β1b10 +

1
4 β7b10 +

1
4

ω3β8η7
ω2

3+ω2 b10)
cos(φ30)

ω + 1
8

β8η7
ω2

3+ω2 b10 sin(φ30)− 1
8 β2b10 sin(φ30)

− 1
2ωa2

10
(ω + σ)2 f cos(φ10),

J72 = ∂F7
∂a21

= − 1
4ω (2α2 + 2α5ω2 + ω4β13η8

ω2
4+ω2 −

ω2β14η8
ω2

4+ω2 + 2ω3β16η7
ω2

3+ω2 )a20 − 1
4ω (α2 − α5ω2 +

(ω2
4−ω2)β12η2

8

(ω2
4+ω2)

2

+ω4β13η8
ω2

4+ω2 + ω2β14η8
ω2

4+ω2 )a20 cos(2φ10 − 2φ20)− 1
4ω (α4ω− α7ω +

2ω4ωβ12η2
8

(ω2
4+ω2)

2 + ωβ13η8
ω2

4+ω2

−ω4ωβ14η8
ω2

4+ω2 )a20 sin(2φ10 − 2φ20)− 1
2 β7a20b10

cos(φ30)
ωa10

− 1
8ω (2β4 +

ω4β10η8
ω2

4+ω2 )b20 cos(φ40)− 1
8 (−2β6

+ β10η8
ω2

4+ω2 )b20 sin(φ40)− 1
4ωa10

β7a20b10 cos(2φ10 − 2φ20 + φ30)− 1
8ω (β4 +

ω4β10η8
ω2

4+ω2 )b20 cos(2φ10 − 2φ20 − φ40)

− 1
8ω (−β6ω + ωβ10η8

ω2
4+ω2 )b20 sin(2φ10 − 2φ20 − φ40),

J73 = ∂F7
∂b11

= − 1
2(ω+σ1)b2

10
η5a10 cos(φ30)− 1

2ω β3b10 − ( 1
2 η1 +

3
8 β1a2

10 +
1
4 β7a2

20 +
1
4

ω3β8η7
ω2

3+ω2 a2
10)

cos(φ30)
ωa10

− 1
4ω β3b10 cos(2φ30) +

1
8

β8η7
ω2

3+ω2 a10 sin(φ3)− 1
8 β2a10 sin(φ30)− 1

8ωa10
β7a2

20 cos(2φ10 − 2φ20 + φ30),

J74 = ∂F7
∂b21

= − 1
2ω β5b20 − 1

8ω (2β4 +
ω4β10η8
ω2

4+ω2 )a20 cos(φ40)− 1
8 (−2β6 +

β10η8
ω2

4+ω2 )a20 sin(φ40)− 1
8ω (β4

+ω4β10η8
ω2

4+ω2 )a20 cos(2φ10 − 2φ20 − φ40)− 1
8ω (−β6ω + ωβ10η8

ω2
4+ω2 )a20 sin(2φ10 − 2φ20 − φ40)

− 1
4ω β5b20 cos(2φ10 − 2φ20 − 2φ40),

J75 = ∂F7
∂φ11

= 1
4ω (α2 − α5ω2 +

(ω2
4−ω2)β12η2

8

(ω2
4+ω2)

2 + ω4β13η8
ω2

4+ω2 + ω2β14η8
ω2

4+ω2 )a2
20 sin(2φ10 − 2φ20)− 1

4ω (α4ω− α7ω

+
2ω4ωβ12η2

8

(ω2
4+ω2)

2 + ωβ13η8
ω2

4+ω2 −
ω4ωβ14η8

ω2
4+ω2 )a2

20 cos(2φ10 − 2φ20) +
1

4ωa1
β7a2

20b10 sin(2φ10 − 2φ20 + φ30)

+ 1
4ω (β4 +

ω4β10η8
ω2

4+ω2 )a20b20 sin(2φ10 − 2φ20 − φ40)− 1
4ω (−β6ω + ωβ10η8

ω2
4+ω2 )a20b20 cos(2φ10 − 2φ20 − φ40)

+ 1
4ω β5b2

20 sin(2φ10 − 2φ20 − 2φ40) +
1

2ωa10
(ω + σ)2 f sin(φ10),

J76 = ∂F7
∂φ21

= − 1
4ω (α2 − α5ω2 +

(ω2
4−ω2)β12η2

8

(ω2
4+ω2)

2 + ω4β13η8
ω2

4+ω2 + ω2β14η8
ω2

4+ω2 )a2
20 sin(2φ10 − 2φ20) +

1
4ω (α4ω− α7ω

+
2ω4ωβ12η2

8

(ω2
4+ω2)

2 + ωβ13η8
ω2

4+ω2 −
ω4ωβ14η8

ω2
4+ω2 )a2

20 cos(2φ10 − 2φ20)− 1
4ωa1

β7a2
20b10 sin(2φ10 − 2φ20 + φ30)

− 1
4ω (β4 +

ω4β10η8
ω2

4+ω2 )a20b20 sin(2φ10 − 2φ20 − φ40) +
1

8ω (−β6ω + ωβ10η8
ω2

4+ω2 )a20b20 cos(2φ10 − 2φ20 − φ40)

− 1
8ω β5b2

20 sin(2φ10 − 2φ20 − 2φ40),

J77 = ∂F7
∂φ31

= ( 1
2 η1b10 +

3
8 β1a2

10b10 +
1
4 β7a2

20b10 +
1
4

ω3β8η7
ω2

3+ω2 a2
10b10)

sin(φ30)
ωa10

+ 1
4ω β3b2

10 sin(2φ30)

+ 1
8

β8η7
ω2

3+ω2 a10b10 cos(φ30)− 1
8 β2a10b10 cos(φ30) +

1
8ωa10

β7a2
20b10 sin(2φ10 − 2φ20 + φ30),

J78 = ∂F7
∂φ41

= 1
8ω (2β4 +

ω4β10η8
ω2

4+ω2 )a20b20 sin(φ40)− 1
8 (−2β6 +

β10η8
ω2

4+ω2 )a20b20 cos(φ40)− 1
8ω (β4

+ω4β10η8
ω2

4+ω2 )a20b20 sin(2φ10 − 2φ20 − φ40) +
1

8ω (−β6ω + ωβ10η8
ω2

4+ω2 )a20b20 cos(2φ10 − 2φ20 − φ40)

+ 1
4ω β5b2

20 sin(2φ10 − 2φ20 − 2φ40),
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J81 = ∂F8
∂a11

= − 1
4ω (2α2 + 2α5ω2 + ω3γ13η7

ω2
3+ω2 −

ω2γ14η7
ω2

3+ω2 + 2ω4γ16η8
ω2

4+ω2 )a10 − 1
4ω (α2 − α5ω2 +

(ω2
3−ω2)γ12η2

7

(ω2
3+ω2)

2

+ω3γ13η7
ω2

3+ω2 + ω2γ14η7
ω2

3+ω2 )a10 cos(2φ20 − 2φ10)− 1
4ω (α4ω− α7ω +

2ω3ωγ12η2
7

(ω2
3+ω2)

2 −
ωγ13η7
ω2

3+ω2

+ω3ωγ14η7
ω2

3+ω2 )a10 sin(2φ20 − 2φ10)− 1
2 γ7a10b20

cos(φ40)
ωa20

− 1
8ω (2γ4 +

ω3γ10η7
ω2

3+ω2 )b10 cos(φ30)− 1
8 (−2γ6

+ γ10η7
ω2

3+ω2 )b1 sin(φ30)− 1
4ωa2

γ7a10b20 cos(2φ20 − 2φ10 + φ40)− 1
8ω (γ4 +

ω3γ10η7
ω2

3+ω2 )b10 cos(2φ20 − 2φ10 − φ30)

− 1
8 (−γ6 +

γ10η7
ω2

3+ω2 )b10 sin(2φ20 − 2φ10 − φ30),

J82 = ∂F8
∂a21

= 1
2(ω+σ2)b20

η6 cos(φ40)− 1
4ω (3α1 + α̂6ω2 + 2ω4γ11η8

ω2
4+ω2 +

(ω2
4−ω2)γ15η2

8

(ω2
4+ω2)

2 )a20 − (− 1
2a2

20
η3b20 +

3
8 γ1b20

− 1
4a2

20
γ7a2

10b20 +
1
4

ω4γ8η8
ω2

4+ω2 b20)
cos(φ40)

ω + 1
8

γ8η8
ω2

4+ω2 b20 sin(φ40) +
1
8 γ2b20 sin(φ40)

+ 1
8ωa2

20
γ7a2

10b20 cos(2φ20 − 2φ10 + φ40) +
1

2ωa2
20
(ω + σ)2 f sin(φ20),

J83 = ∂F8
∂b11

= − 1
2ω γ5b10 − 1

8ω (2γ4 +
ω3γ10η7
ω2

3+ω2 )a10 cos(φ30)− 1
8 (−2γ6 +

γ10η7
ω2

3+ω2 )a10 sin(φ30)− 1
8ω (γ4

+ω3γ10η7
ω2

3+ω2 )a10 cos(2φ20 − 2φ10 − φ30)− 1
8 (−γ6 +

γ10η7
ω2

3+ω2 )a10 sin(2φ20 − 2φ10 − φ30)

− 1
4ω γ5b10 cos(2φ20 − 2φ10 − 2φ30),

J84 = ∂F8
∂b21

= −1
2(ω+σ2)b2

20
η6a20 cos(φ40)− 1

2ω γ3b20 − ( 1
2 η3 +

3
8 γ1a2

20 +
1
4 γ7a2

10 +
1
4

ω4γ8η8
ω2

4+ω2 a2
20)

cos(φ40)
ωa20

− 1
4ω γ3b20 cos(2φ40) +

1
8

γ8η8
ω2

4+ω2 a20 sin(φ40) +
1
8 γ2a20 sin(φ40)− 1

8ωa20
γ7a2

10 cos(2φ20 − 2φ10 + φ40),

J85 = ∂F8
∂φ11

= − 1
4ω (α2 − α5ω2 +

(ω2
3−ω2)γ12η2

7

(ω2
3+ω2)

2 + ω3γ13η7
ω2

3+ω2 + ω2γ14η7
ω2

3+ω2 )a2
10 sin(2φ20 − 2φ10) +

1
4ω (α4ω− α7ω

+
2ω3ωγ12η2

7

(ω2
3+ω2)

2 −
ωγ13η7
ω2

3+ω2 +
ω3ωγ14η7

ω2
3+ω2 )a2

10 cos(2φ20 − 2φ10)− 1
4ωa20

γ7a2
10b20 sin(2φ20 − 2φ10 + φ40)

− 1
4ω (γ4 +

ω3γ10η7
ω2

3+ω2 )a10b10 sin(2φ20 − 2φ10 − φ30) +
1
4 (−γ6 +

γ10η7
ω2

3+ω2 )a10b10 cos(2φ20 − 2φ10 − φ30)

− 1
4ω γ5b2

10 sin(2φ20 − 2φ10 − 2φ30),

J86 = ∂F8
∂φ21

= 1
4ω (α2 − α5ω2 +

(ω2
3−ω2)γ12η2

7

(ω2
3+ω2)

2 + ω3γ13η7
ω2

3+ω2 + ω2γ14η7
ω2

3+ω2 )a2
10 sin(2φ20 − 2φ10)− 1

4ω (α4ω− α7ω

+
2ω3ωγ12η2

7

(ω2
3+ω2)

2 −
ωγ13η7
ω2

3+ω2 +
ω3ωγ14η7

ω2
3+ω2 )a2

10 cos(2φ20 − 2φ10) +
1

4ωa2
γ7a2

10b20 sin(2φ20 − 2φ10 + φ40)

+ 1
4ω (γ4 +

ω3γ10η7
ω2

3+ω2 )a10b10 sin(2φ20 − 2φ10 − φ30)− 1
4 (−γ6 +

γ10η7
ω2

3+ω2 )a10b10 cos(2φ20 − 2φ10 − φ30)

+ 1
4ω γ5b2

10 sin(2φ20 − 2φ10 − 2φ30)− 1
2ωa20

(ω + σ)2 f cos(φ20),

J87 = ∂F8
∂φ31

= 1
8ω (2γ4 +

ω3γ10η7
ω2

3+ω2 )a10b10 sin(φ30)− 1
8 (−2γ6 +

γ10η7
ω2

3+ω2 )a10b10 cos(φ30)− 1
8ω (γ4+

ω3γ10η7
ω2

3+ω2 )a10b10 sin(2φ20 − 2φ10 − φ30) +
1
8 (−γ6 +

γ10η7
ω2

3+ω2 )a10b10 cos(2φ20 − 2φ10 − φ30)

− 1
4ω γ5b2

10 sin(2φ20 − 2φ10 − 2φ30),

J88 = ∂F8
∂φ41

= ( 1
2 η3b20 +

3
8 γ1a2

20b20 +
1
4 γ7a2

10b20 +
1
4

ω4γ8η8
ω2

4+ω2 a2
20b20)

sin(φ40)
ωa20

+ 1
4ω γ3b2

20 sin(2φ40)

+ 1
8

γ8η8
ω2

4+ω2 a20b20 cos(φ40) +
1
8 γ2a20b20 cos(φ40) +

1
8ωa2

γ7a2
10b20 sin(2φ20 − 2φ10 + φ40).
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