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Abstract: Nonlinear vibration control of the twelve-poles electro-magnetic suspension system was
tackled in this study, using a novel control strategy. The introduced control algorithm was a combina-
tion of three controllers: the proportional-derivative (PD) controller, the integral resonant controller
(IRC), and the positive position feedback (PPF) controller. According to the presented control
algorithm, the mathematical model of the controlled twelve-poles rotor was established as a nonlinear
four-degree-of-freedom dynamical system coupled to two first-order filters. Then, the derived non-
linear dynamical system was analyzed using perturbation analysis to extract the averaging equations
of motion. Based on the extracted averaging equations of motion, the efficiency of different control
strategies (i.e., PD, PD + IRC, PD + PPF, and PD + IRC + PPF) for mitigating the rotor’s unde-
sired vibrations and improving its catastrophic bifurcation was investigated. The acquired analytical
results demonstrated that both the PD and PD + IRC controllers can force the rotor to respond as a
linear system; however, the controlled system may exhibit the maximum oscillation amplitude at
the perfect resonance condition. In addition, the obtained results demonstrated that the PD + PPF
controller can eliminate the rotor nonlinear oscillation at the perfect resonance, but the system may
suffer from high oscillation amplitudes when the resonance condition is lost. Moreover, we report
that the combined control algorithm (PD + IRC + PPF) has all the advantages of the individual
control algorithms (i.e., PD, PD + IRC, PD + PPF), while avoiding their drawbacks. Finally, the
numerical simulations showed that the PD + IRC 4 PPF controller can eliminate the twelve-poles
system vibrations regardless of both the excitation force magnitude and the resonant conditions at a

short transient time.

Keywords: nonlinear vibration control; rotor electro-magnetic suspension system; PD-control
algorithm; IRC-control algorithm; PPF-control algorithm; forward whirling motion; rub/impact force

1. Introduction

Vibration analysis and control of the electro-magnetic suspension system are among
the most important research topics for scientists and engineers worldwide. The importance
of this suspension system is due to its many industrial applications, including its use in
rotor dynamics and in the automobile industries. The rotor electro-magnetic suspension
system is a special type of active bearing that is used to support the rotating shafts without
any physical contact with the stator parts of the system. The working principle of rotor
electro-magnetic suspension is the application of controllable electro-magnetic attractive
forces to support the rotating shafts in their hovering positions via compensating for
the external loads that are exerted on these shafts. The operation of the rotating shafts
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without physical contact with the stators gives this suspension system many preferable
features when compared with conventional bearings systems, such as less maintenance,
no need for lubrication between the rotors and stators, a clean working environment, high
operational speed, high reliability, and high durability. Accordingly, many research articles
have investigated the dynamical characteristics of different configurations of the rotor
electro-magnetic suspension system.

Different control algorithms have been proposed to enhance the vibratory characteris-
tics and eliminate the undesired nonlinear bifurcation behaviors of this suspension system.
Ji et al. [1] studied the nonlinear dynamics and motion bifurcations of a rotor electro-
magnetic suspension system consisting of a four-poles configuration. They established the
mathematical model that governs the rotor lateral vibrations as a two-degree-of-freedom
nonlinear dynamical system. Then, they investigated the derived equations of motion
using the multiple-time scales perturbation method. Based on their analysis, they reported
that the rotor system may lose its stability either via saddle-node or Hopf bifurcations.

Saeed et al [2] investigated the vibratory characteristics of a rotor supported by a
six-poles electro-magnetic suspension system. They introduced two control strategies
utilizing the PD-control algorithm. The first control technique was established based on the
Cartesian displacements and velocities of the rotor in the horizontal and vertical directions,
while the second control technique was designed according to the radial oscillations of the
rotor in the direction of the six poles. Based on their analysis, they reported that the rotor
system may lose its stability and exhibit unbounded oscillation in the case of the radial
control technique at a specific value of the proportional gain. In addition, they showed
that the system may perform either a quasi-periodic or chaotic response in the case of the
Cartesian control strategy at a strong excitation force.

Ji and Hansen [3,4] studied the nonlinear dynamics of a rotor supported by an eight-
poles electro-magnetic suspension system. They applied the Cartesian PD-control strategy
to improve the vibratory characteristics of that system at both primary [3] and super-
harmonic resonance conditions [4]. They reported that the eight-poles system has bi-stable
and tri-stable solutions. In addition, they showed that the system may be exposed to a
multi-jump when the rotor angular speed crosses its first critical speed.

El-Shourbagy et al. [5] introduced a nonlinear PD-control algorithm to enhance the
nonlinear lateral vibrations of a rotor supported by an eight-poles electro-magnetic sus-
pension system. Saeed et al. [6] explored numerically the motion bifurcations of a rotor
system supported by the eight poles when the rub-impact force between the rotor and
stator occurs. They illustrated that the rotor may execute either full annular rub mode
or rub-impact motion, depending on both the impact stiffness and the dynamic friction
coefficients. In addition, Zhang et al. [7-12] introduced detailed investigations of the eight-
poles electro-magnetic suspension system with variable stiffness coefficients. The nonlinear
dynamical behaviors of the twelve-poles electro-magnetic suspension system were inves-
tigated utilizing the PD-control algorithm for the first time by El-Shourbagy et al. [13].
They reported that proportional control gain can play an important role in reshaping the
system dynamics. In addition, they demonstrated that the twelve-poles system may lose its
stability at a strong excitation force. Saeed et al. [14] explored the dynamical characteristics
of the sixteen-poles system with constant stiffness coefficients utilizing the conventional
PD-control algorithm. Zhang et al. [15-18] introduced extensive investigations for the
sixteen-poles rotor system with time-varying stiffness coefficients. Due to the controllability
and flexibility of the rotor electro-magnetic suspension system, it was used as an active
actuator to control the dynamical behaviors of some rotating machines [19-23].

The positive position feedback (PPF) control algorithm has been applied extensively
to eliminate the resonant vibrations of many dynamical systems [24-28]. Saeed et al. [28]
utilized the PPF-control strategy with a PD controller to mitigate the undesired vibrations
of the eight-poles rotor system for the first time. They concluded that the PPF controller
can eliminate the system’s lateral vibration at the perfect resonance condition. However,
the main drawback of this control strategy was that the controller may add excessive
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vibratory motion to the rotor system if the tuning condition was lost. In addition, the
integral resonance controller (IRC) was one of the feasible control methods that was
applied to mitigate the undesired vibrations and eliminate the nonlinear bifurcations of
different dynamical systems [29-36]. Recently, Saeed et al. [36] introduced the IRC-control
algorithm for the first time to mitigate the unwanted vibrations of the eight-poles rotor
system. They reported that the IRC controller can reduce the system’s vibrations and
suppress the corresponding catastrophic bifurcations. However, the main drawback of this
control method was that the IRC-controller could not eliminate the rotor vibrations at a
resonance condition close to zero.

In the present work, a new control strategy is introduced to eliminate the nonlinear
lateral vibrations of the twelve-poles rotor system. The proposed controller is a combina-
tion of the three control algorithms: PD, IRC, and PPF. Accordingly, the whole-system
mathematical model is derived as a four-degree-of-freedom dynamical system that is
coupled to two first-order differential equations. Then, the system dynamical model is
analyzed, and the corresponding slow-flow modulation equations are extracted. Based on
the obtained slow-flow modulation equation, the performance of the suggested control
technique is explored. The obtained analytical results showed that the PD, IRC, and
PD + IRC controllers can mitigate the nonlinear oscillation of the system and force the
rotor to respond as a linear system. but the main drawback of these types of controllers
(i.e., PD, IRC, and PD + IRC) is that the controlled system may perform the maximum
oscillation amplitude at the resonant condition. In addition, we found that the coupling
of the PD + PPF controller to the system can eliminate the rotor’s undesired oscillation at
the perfect resonance, but the system may suffer from high oscillation amplitudes if the
resonance condition is lost. Moreover, the acquired analytical and numerical investigations
demonstrated that the PD + IRC + PPF controller has all the advantages of the individual
control algorithms (i.e., PD, PD + IRC, and IRC + PPF), while avoiding their drawbacks.

2. Equations of Motion

The studied rotor system is assumed to be a rigid body with a two-degree-of-freedom
system that has mass m and eccentricity e and rotates with angular velocity ¥, as shown in
Figure 1. In addition, this rotor system is supported in its nominal position via the restoring
forces fy and f, that are generated by twelve electro-magnetic poles. Therefore, the system
equations of motion can be expressed as follows [37,38]:

mx — fy = me?* cos(ipt) (1)

mijy — fy = mey?®sin(yt) )

where fy and f, represent the resultant restoring forces of the twelve poles in both the X
and Y directions, respectively. In this study, the attractive forces f] G=12,...,6)are
designed so that each adjacent pair of the poles generates a push-pull attractive force.
Therefore, f] (j=1,2,..., 6) can be expressed according to the electro-magnetic theory, as
follows [38]: ) )
f-o (Io I])z_(Io+I])2 =126 3)
(co—6j)"  (co+9j)

where © = %yON 2 Acos( @) is constant, Iy is constant current defined as a bias current, i
(j=1,2,...,6)is the control currents that will be defined later according to the purposed
control algorithm, ¢ is the nominal air-gap size between the rotor and the twelve poles,
and ¢; is the radial deviation of the rotor away from the geometric center O in the direction

of the j* pole.
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(b)

Figure 1. (a) twelve-poles rotor system at its nominal position, (b) twelve-poles rotor system with

small displacements x(t) and y(t) in the horizontal and vertical directions, respectively.

Based on the system’s geometry as shown in Figure 1, for the small temporal Cartesian
displacements x(t) and y(t) of the rotor in both the X and Y directions, one can express the
radial displacements é;, (j =1,2,...,6) of the rotor system as follows:

S1(x,y) = x(t) cos(a) — y(t) sin(a), a(x,y) = x(t),
d3(x,y) = x(t) cos(a) + y(t) sin(a), da(x,y) = x(t)sin(a) + y(t) cos(a), (4)
5(x,y) = y(b), J6(x,y) = —x(t) sin(a) + y(t) cos ()

where « is the angle between every two consecutive poles (i.e., & = 360°/12 = 30°). In
this work, the control currents were designed so that the control forces f1, f», and f3
depend on the horizontal displacement x(t), while the forces fs, f5, and fs depend on the
vertical displacement y(t). Accordingly, the control currents I i (j=1,2,...,6) are selected
as follows:

Ix=h=h=05 Iy=k=Ik=I ®)

where Ix is the control current that is responsible for eliminating the nonlinear oscillations
of the rotor system in the X direction, while Iy is the control current that is responsible for
eliminating the nonlinear oscillations of the rotor system in the Y direction. Accordingly,
to eliminate the undesired vibrations of the system, an advanced control strategy was
introduced. The suggested control method is a combination of three control algorithms:
the PD controller, the IRC controller, and the PPF controller. Therefore, the control laws
(i.e., control currents Ix and Iy) are designed as follows:

Ix = kix + kox — kauq + kqup, Iy = k1y + kzy — ksv1 + keva 6)

where ki and k; are the control gains of the PD controller, k3 and k5 denote the control
gains of the PPF controller, and k4 and k¢ represent the control gains of the IRC controller.
Accordingly, k1 x + kpx and k1y + kyy are the components of the control currents (Ix and
Iy) due to the PD controller in the X and Y directions, respectively, —k3u; and —ksv; are
the components of the control currents due to the PPF controller in the X and Y directions,
respectively, while +k4uo and +kev, denote the control current components due to the IRC
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controller in the X and Y directions, respectively. The equations of motion that describe the
oscillatory behaviors of the PPF controllers are provided as follows [24-28]:

U1+ ciug + AMquy = Lix (7)

U1 + €201 + Apvy = Loy (8)

where ¢; and ¢, denote the damping coefficients of the PPF controllers, A and A, represent
the controller’s natural frequencies, and L; and L, are the feedback signals gains. In
addition, the dynamical behaviors of the IRC controllers are governed by first-order
differential equations that are provided as follows [29-36]:

Uy + Agup = Lax 9)

i)z + Agvp = L4y (10)

where A3 and A4 denote the internal feedback gain of the IRC controller, and L3 and Ly
represent the feedback signals gains. The interconnection between the twelve-poles system
and the proposed control algorithm (i.e., the PD + IRC + PPF controllers) is illustrated
schematically in Figure 2, where the temporal Cartesian oscillations (i.e., x(t) and y(t)) of
the rotor in both the X and Y directions can be measured using two position sensors that
may be fixed on the poles-housing in the +-X and +Y directions, as shown in Figure 1a.
Then, the measured signals, x(t) and y(t), are fed into a digital computer on which the
control algorithm (i.e., the PD+IRC+PPF controller) is implemented. According to the
programmed algorithm, the controller computes the control currents Ix = kjx + kpx —
kauq + kaup and Iy = kiy + kpy — ksv1 + kv, as shown in Figure 2. Finally, the computed
control currents are applied to a power amplifiers network to energize the twelve-poles
electrical coils in order to generate the electro-magnetic forces (f1, f2, ..., f¢), which in
turn try to mitigate the lateral oscillations, x(t) and y(t), of the rotor system.

Now, to investigate the performance of the proposed closed-loop system, the whole-
system model should be obtained and then analyzed to report the optimum working
conditions of this system. Therefore, by substituting Equations (4) to (6) into Equation (3),
we have the following;:

(Ip — k1x — kox + kauq — k4u2)2 (Ip + kyx + kox — kauq + k4u2)2

=0 - 11
S ( (co — xcos (&) + ysin (a))? (co + x cos () — ysin (a))? ) ()
Io — kix — kot + kauy — kauin)® (I + knx + ko — kg + kguin)’
f2:®((0 1 2 321 )" (Io+k 2 321 42)) (12)
(co —x) (co +x)

(Ip — k1x — kox + kauq — k4u2)2 (Ip + ky1x + kox — kauq + k4u2)2
f3:@( X 2 - N 5 ) (13)
(co — xcos () —ysin (a)) (co+ xcos (o) + ysin (a))
f4 _ ®( (Io — kly — sz/ + ksvg — k6Z)2)2 B (I() +k1y+k2y — ksvq +k602)2) (14)
(co — xsin () — y cos («))? (co + xsin () 4y cos («))?

. 2 : 2
Iy — k1y — koy + ksvp — kev Io + kiy + koy — ksvq + kev
f5:®((0 1Y — Y 52>1 62)_(0 1Y — K2l 52>1 62)) (15)
(co—y) (co+y)
Io — kyy — koyy + ksoy —kev2)® (To + kry + ko — kso1 + keoa)”
f6=@((0 1Y — koy + ksv1 —kev2)”  (Io + k1y + koy — ksvy 62)) (16)

(co + xsin (&) — y cos (a))? (co — xsin (@) 4y cos (a))?
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Figure 2. The engineering implementation of the combined control algorithm (i.e., PD + IRC + PPF
controller).

Based on the system geometry, as shown in Figure 1, the resultant attractive forces fy
and f, in the X and Y directions due to the forces f1, f2, ..., fs can be expressed as follows:

fx = fa+ (fi + f3) cos(a) + (fa — fo) sin(a) (17)
fy = f5+ (fa+ fo) cos(a) + (f3 — f1) sin(a) (18)

To simplify the rational form of the attractive forces fi, f2, ..., fs, Equations (11) to
(16) were expanded, using the Maclaurin series, up to the third order approximation, as
provided in Appendix A. Now, substituting the expanded Equations (A1) to (A6) that are
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provided in Appendix A into Equations (17) and (18), then inserting the resulting equations

into Equations (1) and (2) and mtroducmg the dimensionless parameters =0t 2z1 = ’; ,
o x 2 X _ Yy _y _y [ S e — _
1= oy A1 T ggr 22 T oy (2 = B’ 22 = ogr BT g A3 T 1900 3 = 192 124 = gy
: v - 2 U . v : v, Ay A
24 = 9oy 24T gy 25:75,2521%0 z6 = 2126:19%),011*\/192,602— Fows =G,
A o 142 cos (a))c
wy = 4Q_¢f—00,}9—°k1,d kzrm—w,ﬂz:ﬁ,ﬂl:%k&
_ (142cos (a))cg (142 cos (a))cg _ (142cos (a))co _ Ly _ L _ L3
gy = L2esllay, o (2eslag, g, QR2es@lag, b= by oo Ly yy = Ly

ng = L—l;‘, ® = /©/mc}, one can obtain the following dimensionless equations of motion
that govern the nonlinear dynamics of the proposed closed-loop system:

Zy +2uzy + w?zy — (0612% + apz125 + a3z%21 + a42123 + 045zlz'§ + 046212% + a7z1292>

+ﬁ1Z%Z3 + ,32212123 + ,332125 + Baz122z4 + ,552122 + .36212224 + ,B7ZgZ% + B8z12325 (19)
+Boz12125 + Pr02124%6 + P112325 + P122122 + P13Z12226 + P14Z122Z6 + P152122 + P167525)

= O?f cos(Q) + 1123 + 11225

Zp 4 2uzy + w?zy — (0125 + apz02% + 32320 + 42027 + X5Z077 + 62075 + 7ZoZ1 20

+712524 + V2222224 + V32275 + VaZ07123 + V52275 + V6222123 + V72473 + Y8Z2Za%6 (20)
+79222926 + V10222325 + ’7112526 + 712222% + V13222125 + 714222125 + ’715222% + 7162%26)

= sz sin(Q)t) + 1324 + 1426

23 + 21123 + wizs = 7571 (21)
Zy + 2Upzy + WiZy = 622 (22)
25 + w3z5 = 11721 (23)
Zg + Waze = 132 (24)

Equations (19) and (20) represent the dimensionless equations of motion of the con-
trolled twelve-poles system, while Equations (21) and (22) are the dimensionless equations
of motion of the PPF controller. In addition, Equations (23) and (24) are the dimensionless
equations of motion of the IRC controller. Accordingly, the suggested closed-loop system
is governed by six-coupled nonlinear ordinary differential equations, four of which are of
the second order and the other two of which are of the first order, where the coefficients of
the above six equations are provided in Appendix B.

3. Analytical Investigations

Many analytical methods have been introduced in the literature to investigate both
the linear and nonlinear vibration problems [39-41]. Accordingly, to explore the efficiency
of the introduced closed-loop system, we sought an approximate solution for the system
equations of motions (i.e., Equations (19) to (24)) within this section, in the form of a
first-order perturbation series as follows [39,40]:

z1(t,€) = z10(To, Tv) +ez11(To, T1) (25)
za(t,€) = z20(To, T1) + €221 (To, T1) (26)
z3(t,€) = z30(To, T1) + €231(To, T1) (27)
z4(t,€) = z40(To, T1) + €241(To, T1) (28)
z5(t,€) = ez50(To, Ty) + %251 (To, T1) (29)
z6(t,€) = e260(To, Ty) + €°261(To, Tr) (30)
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where Ty = t, T; = ¢t, and ¢ is the perturbation parameter that was used as a bookkeeping
coefficient during this analysis [40] According to the introduced two-time scales (i.e.,

To, T1), the ordinary derivatives 4 T and 4 7 should be re-written as follows:

d? 0
— =D} +2eDyD;, andD; = —, j=0,1 (31)
dr? T oT;

d
— =D D
at o +¢eDq,

In addition, to perform the perturbation analysis using ¢ as a bookkeeping coefficient,
the parameters of Equations (19) to (24) should be re-scaled as follows:

f=¢f, w=ei, m=¢h, ma=chy aj=¢, Bj=¢p;, V=%, Uk==ci (32)
j=1,---,7, k=1,3,56,7,8

Then, by substituting Equations (25) to (32) into Equations (19) to (24), we have O(¢%):

(D3 + w?)z10 =0 (33)
(D§ + w?)z20 = 0 (34)
(D3 + w?)z30 = 0 (35)
(D3 + w3)z40 =0 (36)
O(e):
(D} +w?)z11 = —2DgDyz10 — 2jiDoz10 + 061210 + Bpz1023) + 063210D0210 + 064220[)0210
+0€5210(D0220) + “6210(D0210) + &7210220 Doz20 + ,31210230 + Baz10Doz10230
+ﬁ3210230 + Baz10220240 + [35210240 + Bsz10D0z20240 + Brz30230 + Bsz10230250 (37)

+B9z10Doz10250 + B10Z210Z40Z60 + 5112%0250 + /31221026() + B13210220Z60
2
+B14z10Doz20260 + B1521023 + B16739750 + Q2 f cos(Q) + 71230 + 172250

(D3 + w?)zp1 = —2DgD1z20 — 2jiDoza0 + &123 + Aaz2025, + X3239Doz20 + K423 Doz20
+555220(D0210)2 + 6220(Do220)” + F7220210Doz10 + ’71250240 + ¥2220D0z20240
+7322025 + V4220210230 + 522023 + ’76220D0210230 + V7230240 + 8220240260 (38)
+Y9220Doz20260 + ')’10220230260 =+ 711220260 + 712220250 + Y13220210250
+714220Doz10250 + 715220260 + 716210260 +Q fszn(Qt) + 113240 + 11aZ60

(D§ + w?)z31 = —2DgD1z30 — 2¢ji1 Doz30 + 75210 (39)
(D§ + w3)z41 = —2DgDiz40 — 22 Doz40 + 76220 (40)
(Do + w3)zs0 = 17210 (41)
(Do + w4)ze0 = 18220 (42)

The steady-state periodic solutions of Equations (33) to (36), (41), and (42) can be
written as follows:

z10(To, T1) = A1(Ty)e ™0 4+ Ay (Ty)e "0 (43)
20(To, T1) = Ap(Ty)e ™0 4 Ay(Ty)e "o (44)
230(To, T1) = By(Ty)e™ ™0 + By (Ty)e 1o (45)
240(To, Ty) = Ba(T1)e™>™ + By(Ty )e™ 270 (46)
250(To, Th) = p1A1(T)e ™+, Ay (Ty)e 0 (47)
z60(To, T1) = p2A2(T)e™ ™0 + Py Ay (Ty)e ™0 (48)

where i = v—1, p1 = {37577, 0y = ;‘jgi;‘;;% P2 = Falls P2 = %ﬁs- Ai(Th),
Ay(Ty), B1(Ty) and B,(Ty) are unknown that will be defined later. A{(Ty), Ax(Ty), B1(Ty),
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(D(% + w2)211

(D3 + w?)zp

—ZiWDl Al

and B, (Ty) are the complex conjugate forms of A1(Ty), A2(Ty), B1(T1), and B(Ty), respec-
tively. Inserting Equations (43) to (48) into Equations (37) to (40), we have the following:

= (—2iwDy Ay — 2ifiwA; + 381 AT A1 + 200 A1 Ag Ay + Gp A1 AS + idaw AT Ay

+21¢024(UA1A222 — Z”Dz4CUZ1 A% + 22)75(4]2141 AzZz — §5WZZ1 A2 + &6(4)214221

+1067CL)A1A2 + 2ﬁ3A1BlBl + 2ﬁ5A1Bsz + 2511P1A A1 + ﬁlZPzAlA

+ﬁ1392A1A2A2 + B1ap2A1AS — iBrawpr A1 A Ay + 1,3146092141142

+B1503 AT A1 + 2B16p1 A1 A2 Ar+i12p1 A1 ) To + 77y Bre' 1 To 4 (@ A3

+&2A1A2 + id3wAS + idgw Ay A — Rsw? A1 A5 — 526w2A3 + i&wAlAg

+z/39wp1A + B A3 + ﬁlngAlA + B13p2A1AS + iBrawpr A1 A3

+BrspR A+ Brepn A1 AT + (B A2By + ifow A2B, + B AZBy “9)

+,38P1A231) i(2w+wq) Ty + (/31A2B1+1/32wA B1 + ,57A2B1+,58p1AzBl) i(2w—w1) Ty
+(2B1A1A1By +2B7 A2 AgBy+Bsp1 A1 A1 By )1 To + B3 Ay Blel(0 200 To

+[‘53A132 i@wr=@)To 4 (B4A1A2By +lﬁ6WA1Asz+l310P2A1Asz) i(2w+w)Ty
+(BaA1A2By + ifsw A1 AyBa+Bropa A1 Ag By )elPw=w2)To 4 (B4 A1 Ay By

+E421A2B2 - iﬁéwAlzsz + iB(,leAsz+ﬁ10pQZ1Asz)€iw2T0

+ESAlB%ei(w+2w2)To + BSZl B%ei(sz—w)TO + %szemn} +cc

= (—2iwD1 Ay — 2ifiwAy + 381 A5Ay + 20, Ag A1 Ay + Bp Ay A2 + izw A3 Ay
—|—2l‘524wA2A121 z“&4wZZA + 205w AzAlzl — 52560 ZzAZ + E6w2AZZz
+idzwAy A3 + 273 A2B2 By + 275 A2 B1 By + 271102434, + ')/12p1A2A2
+71301A2A1A1 + 11301 A2A% — iy140p1 Ag A1 Ay + Z’Y146&JP11‘\2A + 11505 A3 A,
+2’)/16p2A2A1A1 + 174p2A2) WTO + 773BQEWZTO + (DélA?’ + DQAQA + 1063(UA3
+iﬁ4wA2A% — R5w2A2A% — 526(4)214% + iR7wA2A% + i'yga)pzA% + 'ynpzA%
+71207 A2 AT 4 11301 A2 A2 + i713wP1 Ay AT + 11503 A3 + 11602 A2 AT )30
+(714A3By + i72wA3By + 77 A3By + ysp2 A3 By )e! 20t @) To (7, A2B, (50)
+iY2wA3By + ¥7A3Ba + 18p2A3B, ) e 20 =w2)To 4 (251 Ay Ay By + 277A1 A1 By
+78p2A22282)ei‘*’2T0 + 73A23%€i(w+2w2ﬂb + ,73223%ei(2w2—w)T0 + (74A2A131
+iYewArA1B1 + Y1001 A2 A1 By )P0t To (7,45 A1 By + 6w A2 A1 By
+71001A2A1 By )20~ 4 (33 Ay A1 By + 74 A2 A1By — iF6wAr A1 By
+i¥ew Ay A1 By + y10p1A2A1 By )10 + §5 Ay B2e! (w200 o - 55 A, B (201 —@)To
—1i02 el 4 ¢c

(D% + (U%)Zgl = —Ziwl DlBleiw]TO — ZiﬁlwlBleiwlTO + 7’75A1€in0 +cc (51)
(D(z) + (U%)Z;l] = —Ziszleei“’zTo — ZiﬁzaJQBzeiszO + ﬁéAzeinO +cc (52)

where cc in Equations (49) to (52) denote the complex conjugate term. To obtain the periodic
solutions of Equations (49) to (52), the resonance conditions should be eliminated. Therefore,
let o, 01, and o, represent the closeness of the rotor angular speed (2) and the controller
natural frequencies (w; and wy) to the rotor system natural frequency (w), as follows:

O=w+0, w=w+0, wWw=w+0n (53)

Inserting Equation (53) into Equations (49) to (52), one can extract the following
solvability conditions:

— 2iflwAq + 381 AZA1 + 20 A1 Ar Ag + B A1 AL + itzw AT AL + 2ifaw A1 Ay Ay

—z“u”qulAz + 2&5&)2A1A222 — ﬁ5w221A2 + ﬁ6w2AZZl + i%(uZlA + 253A131§1
+2B5A1B2By + 2ﬁ11P1A2A1 + B12p3 A1 A3 + Br3p2A1Ar Ay + Biapr A1 AS — zﬁ14wp2A1A2A2

+z/514wp2A1A -+ ,B15p1A A1 + 2,516p1A1A2A2 + 1’]13161€ng0 + 772P1A1 + (,B]A B]
+iawAIBy + B7A3By + Psp1ATBy)e 01T0 4 (2By Ay Ay By +2B7 A2 AgBy + Psp1 A1 AL By e To

(,341411425'2

(54)
+ Zf3660AlAsz + Brop2A1A2Br)e ~ie0aTo 4 B3 A1 B30 o 4 (B4 A1 AsBy

Jr,B4A1Asz — zﬁ6wA1A2B2 + 1,86wA1Asz + ﬁ10P2A1A2B2) g0 To + ﬁ5A 32 2ie0, To
+3(w + o) 2 feic0To —
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—ZzwDiAz — ZlﬁCLJAz + 3&1714%22 + Z@AZAlzl + ﬁz&A% + lvﬂvégﬁ)A%ZZ + 21&4(4]4214121
—itgwAr AZ + 2525w2A2A1A1 — E5w2A2A2 + Qw2 A5 Ay + iyw Ay A3 + 273 A2 BBy
+275A2B1B1 + 2’711P2A A + 11203 A2 A2 + 1301 A2A1 A1 + 11301 A2 AT — iy1awp1 Ay AT A
+1’h4wP1A2A + 715921‘1 Ap + 271602 A2A1 A1 + T3 Bae%T0 + 14y Ay + (71 A%B,

—i—z'yzwAsz + ’Y7A B2 + ’)/gpzAsz) —ie0y Tp + (2’)/1~A2A2Bzi- 2’)’7A1~A1Bz + ’ngzfAzAsz)eieﬁzTU (55)
+(74A2A1B1 + iYew Ay A1B1 + 1001 A2 A1 By e €01 T0 4 33 A, B2ee02To 4+ (74 Ay A1 By
+74A2A1B1 — iY6w Ay A1By + iYew Az A1 By + Y10p1A2A1 By )e T + y5Ap B2 To
—Li(w + €0) felWTO =0
— 21(6&] + 551)D1B1ei531T0 — ZZﬁl ((,U + S’(}l)BleiS&lTo + ;75A1 =0 (56)
— Zi(w + 85’2)D1 BinEﬁZTO — 2i1ip (w + s?rz)BzeiEalTo + 1A =0 (57)

To obtain the autonomous dynamical system that describes the oscillatory behaviors
of the considered closed-loop system, let us express the unknown functions A, Ay, By, and
B, in the polar form as follows:

A1(Th) = a1 (T)e1 ), Ay (Ty) = Jap(Ty)e®2(M) -
Bl(Tl) = %bl(Tl)EIGS(Tl), Bz( ) %b ( ) i04(Th)

According to Equation (58), we have the following;:

D1A1 d A1 = %([h@iel + ia1913i91), D1A2 = TAZ ({126192 + za292e’ 2) } (59)
2e

o T 2e
DB, = EdtB = L(b1e® +ib103¢'®), DiBy = LBy = L(byel® + iby0e™®s)

Substituting Equations (58) and (59) into Equations (54) to (57) and separating the real
and imaginary part yields the following:

. 2 2
a1 = Fi(ay,az, by, by, 1,02, $3,44) = —%(2]1+ ’72777 )al—i—l(oc . 2/511777 . w3515'772)a%

witw?  (w+4aw?)

1 _ Bisns  waPrays _ 2Bisly 2,1 2w4ﬁ12’73 _ Bizns
+35(2 witw?  witw? w§+w2)a1a2 + 8( g + o7 + (@iHa?)?  witw?

_|_w4/5147]8)a1a% os(21 — 2¢) + %(% — 5w + (wi—w?) B3 + wyPr3is

w2 w(wW+w?)? w(wi+w?)
Zﬁfﬂs )a1a3 sin(2¢1 — 2¢) + (—5511b1 — g5 P1a3b1 — 1 B7a3by) sin(¢3) (60)
kBt sin(293) + 3 (B — 2B )by cos(s) — b B )arabs cos ()
+$(%)a1a2bz sin(¢s) + £ﬂ7{12b1 sin(2¢1 — 2¢n + ¢3) + i([%w
—%)alazbz cos(2¢1 — 2¢2 — ¢4) + L(ﬁz; + %)a1azb2 sin(2¢1 — 2¢p — ¢4)
4

+ gk B5a1b3 sin (291 — 29 — 2¢) + 5 (w + o) f sin(Pr)

ay = Fy(ay,az,by,ba, ¢1, ¢2, ¢3,4) = —3 (20 + wgfi,z)ﬂz + (a3 — 5%32,82 - (zu‘:j%‘l:i;])gz)ﬂ%
5 (20 — G — N i%fl%mza% +g(-atar - (2 L?:fo)i ~
+Z3§Eg7§)a2a% cos(2¢p —2¢1) + g (w K5 + (w3 o 2:321;;77 + wﬁ%ﬂ;)
+%)a2ﬂ% sin(2 — 2¢1) + (=55 73b2 — g5 718302 — 7577a1b2) sin(¢) (61)
— 50573265 80 (24) + g5 (7200 — %)a&bz cos(¢4) — i(%)azalh cos(¢3)

56 (oo Jamba sin(¢s) + g5 77atbs Sin(24’2 =201+ ¢a) + 555 (V6w
o )aza1by cos(2¢, — 21 — ¢3) + 5 (74 + S Vapay by sin(2¢r — 2¢1 — ¢P3)

wi+w? Witw?
+ g 15207 sin (29 — 21 — 2¢3) — 5 (w + 0)2f cos(¢n)

by = Fs(a1, a2, b1, by, 1, ¢2, P3, 1) = —pu1by + 150 sin(¢3) (62)

o
2w+,
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by = Fy(ay, az, by, by, g1, §o, b3, ¢s) = —piobo + )176612 sin(¢y) (63)

1
2(60 + 0

4)1 = FS (al/ as, bl/ bZ/ (Pl/ (PZI 4)3/ 4’4) =0+ i( Lyatly ) (3061 + 06660 + 72W3ﬁ11177

w3 2 +w? w3 2 +w?

2
N R g Sy 2t L

+ 1 Bsb3 + o (an — asw? + (Wit 4 wspron 4 ’514'78)112 cos(2p; — 2¢»)

(w 2+w2) wi+w? wl+w?
2
(w42w/51z;723 + wfﬁzg . wzwflws)az sin(2¢y — 2¢) + (%Ulbl

+%,31a%b1 + }1/37a%b1 + Lwsbsiy a?by )COS’((I73 + iﬁgbz cos(2¢3)

4wz+wz a101) %a,
—% w/?f;z a1by sin(¢3) — ,52!11b1 sin(¢3) + g5 (284 + “’42’5;275 )azby cos(¢s) + §(—2Bs
+filiﬁz Jazba sin(¢a) + goa-Brazby COS(2<P1 — 202 + ¢3) + g (Ba

+%)ﬂ2b2 C08(21 — 292 — pa) + g5 (—Bow + B )arby sin (21 — 22 — ps)

P wita?

+gi B5b3 cos(2¢1 — 292 — 2¢4) + 3 (w +0)*f COS(<P1)

y _ _ w, 2 2wy y
4)2 - F6<al/a2/ bl/bZI 4)1/472/ 473/4)4) =0+ E(wgiizg) + %(30‘1 + apw” + gfl:]zs

(W3—w) 11513 1 2, warsly  wWirialz | 2wsTiels 1 2
+4( 2 2)? )a3 + g (200 + 20507 + Witw? | wltw? + Wl taw? )83 + 357353

2_ .2 2
a5 gl (nn — s (ORI 4 I G0 cos (2, — 291)
3

g (aw — 7w + 2(“’3“:“2;’27 — A+ LAt sin(292 = 2¢1) + (371502
+ 3713y + Jy7adby + }Lwﬁs'ﬁz‘ a3by )COZ(;’;‘*) + 55733 cos(2¢4)

—§ o mbasin(gy) 872612172 sin(¢s) + g5 (272 + 507 )albl cos(¢s) + 5(—276

+ o (rgw — a7w +
(64)

(65)

w3 2+w?
+ 'le]r’ZZ )aiby sin(¢s) + Swaz Y7836 o8 (29 — 2¢1 + ¢4) s (74
+w3')’10777 )ayby cos(2¢p — 21 — ¢3) + 8( Yo + —220% )arby sin(2¢, — 21 — ¢3)

2+w wi+w?

+a5 75172 c0s (27 — 291 — 293) + 5 (w + 0)* f sin(¢)

¢y = Fr(ar, a2, by, by, ¢1, 2, ¢3,¢a) = —01 + qul cos(¢3) — 5 (“31212 )

wi+w?

2
~ g (301 + a6w? + wgilif * (w(3 +2£;5177 )a3 — g5 (20 + 2050 + %

w /314178 I 2wg[316'77) . '33172 /55172 (042 — asw? + (w] )/312’78

wy 2+ w? 2+w2 ( 2+w2)

2wyw
B SR cos(2n — 242) — gl (s — ageo + TP ot

w4wﬁ14778)a2 sin(2¢1 — 2¢) — (j’?lbl + gﬁlﬂlbl + 1‘37612171 41 w3 Btz 2b )COS(¢3)

wi+w? 4 w2+w2 way
—iﬁﬂ)z cos(2¢3) + %(ﬁiﬁzalbl sin(¢3) — §B2arby sin(¢3) — i(2/34

+%)ﬂzbz cos(¢s) — §(—2B6 + L0, 11'782 Jazby Sin(¢4) Swa; B7a5b1 cos(21 — 2¢ + ¢3)

o (Ba+ WPWI8 ) 7 by cos (24 — 2472 — 1) — g (—Pew + CPUIS )arby sin (291 — 29 — Pa)

2+2 wl+w?

7%[35bgcos(2q>1 20 — 2¢4) — 2wa1 (w+0)? fcos(4>1)

(66)
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94

= Fy(a1,a2,b1, by, 1, 9, 95, §4) = —02 + Wﬂeﬂz cos(¢a) = 55 (G3105)
o 3oy + wpw? + Zw‘*figg + (wf’;f”;;”% )3 — g (205 4 20502 + w”SjZ
—“;511227 + Zwé‘fﬂs) 73b3 — sb? — g (ap — asw? + (w3—«?)ran : 2:31;2177
—i—% + ‘:} ”24’727)111 cos(2¢ — 2¢1) — (a4w — ayw + 2(“}32‘125?27 — waZZ
+7w5}wr4’77)a1 sin(2¢n — 2¢1) — (3773b2 + 8’7102172 + Yy7a2by + 15418;,72 a3y )°°Z(a‘§4) “

— %73[72 COS(2¢4) + % zéfs 5 arby Sil‘l(¢4) g’yzﬂzbz sm(gb4) 30 (2')’4
+%)a1bl cos(¢3) — (=276 + 2V )arby sin(¢3) — gug; V70362 O (22 — 201 + ¢a)

wi+w?

('Y + WNOI7) g cos (24 — 24,1 $3) — l(_ + 2017 g1 by sin(2¢n — 21 — P3)

wl+w? wi+w?

*%')/5171 COS(2472 —2¢1 — 2(/)3) Zwaz (w + 0') fSln((Pz)

where ¢p1 = ot — 61, ¢p =0t — 0, ¢3 = 01 — 03 — 01t, and ¢4 = 0 — 04 — 02t By inserting
Equations (43) to (48) and (58) into Equations (25) to (30), one can extract an approximate
solution for the closed-loop system given by Equations (19) to (24), as follows:

z1(t) = ay(t) cos (Ot — Py (¢)) (68)

22(t) = aa(t) cos (O — pa(t)) (69)

z3(t) = by (t) cos (Qt — (¢1(f) + ¢3(t))) (70)

z4(t) = ba(t) cos (O — (¢p2(t) + Pa(t))) (71)

=5(t) = 2 2 (@ cos(O = a (1)) + wsin(Qt = (1)) 72)
26(t) = %(M cos(Qt — o (1)) + wsin(Qt — o (1)) (73)

It is clear from Equations (68) to (71) that a;(t) and ay(t) are the steady-state os-
cillation amplitudes of the twelve-poles rotor system, while ¢, (t) and ¢,(t) represent
the phase angles of the controlled rotor. In addition, b;(t) and b,(t) represent the os-
cillation amplitudes of the PPF controllers and ¢4 () + ¢3(t), ¢2(t) + ¢p4(t) are the cor-
responding phase angles. In addition, Equations (72) and (73) show that the dynam-
ical characteristics of the IRC controller depend on the dynamics of the rotor system
(i-e., z5(t) depends on ay(t), ¢1(t) and z¢(t) depends on ax(t), ¢2(t)). Moreover, the
derived nonlinear autonomous system that is provided by Equations (60) to (67) gov-
erns the evolution of the oscillation amplitudes (a1, a2, by, by) and the corresponding
phase angles (¢1, ¢2, ¢3,¢4) of the closed-loop system as a function of the different
system parameters (i.e., f, o, 01, 02, P, d, M1, W2, Y3, N4, W5, Y6, N7, ng,...,etc.). Ac-
cordingly, the dynamical characteristics of the closed-loop system can be explored by
investigating the nonlinear dynamical system provided by Equations (60) to (67). There-
fore, one can explore the steady-state dynamics of the closed-loop system by inserting
iy =iy = by = by = ¢, = ¢, = 3 = ¢, = 0 into Equations (60) to (67), which results in
the following nonlinear algebraic system:

Fj(al/a2/ bl/bZI(Pl/ (PZI(PEH ¢4) = O/ ] = 1/21- . '/8 (74)

Solving Equation (74), utilizing ¢ as a bifurcation parameter at the different values of
the system and control parameters (f, o1, 02, p, 4, 41, %12, 43, Ha, Y5, W6, N7, Y8, - .., €tc.),
we can explore the efficiency of the introduced control technique (i.e., PD + IRC + PPF
controller). In addition, to investigate the stability of the solution of Equation (74), one
can check the eigenvalues of the Jacobian matrix of the dynamical system given by
Equations (60) to (67), which can be obtained via letting (a19, 420, D10, 020, $10, $20, $30, Pa0)
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be the solution of Equation (74) and (a11, a21, b1o, b20, ¢11, $21, P31, $a1) be a small devia-
tion about this solution. Therefore, one can write

aj =ajo+ajp, bj=bjo+by, =0t P, a4 =a, 75)

b]:b]l, ¢k:¢k1; ]:1,2; k:1,2,...,4.

Inserting Equation (75) into Equations (60) to (67) and expanding for the small devia-

tions (a11, a21, b1o, b2o, P11, P21, P31, Pa1), retaining the linear terms only, one can derive
the following linearized dynamical system:

le Ju Jiz Jiz Jiu Jis5 e iz 8\ /o
21 Jov J2 J23 Joa Jos Jas Joz Jas | | 4
bn o1 J2 Js3 Jaa Jss Jse Jaz Jas || bu
b | _|Ja Jeo Jis Ju Jis Jis Jw Js||bn (76)

¢1 Js1 Js2 Js3 Jsa Jss Jse  Jsz Jss | | ém1
Py Joo Je2 Je3 Jea Je5 Jeo Jo7 Jes | | P21
. Jn J2 J Jm Js Je Tz Js | | ¢31
b Js1 Js2 Jss Jsa Jss Jse Jsz Jss/ \¢m

where [, (in=1,2,...,8, n=1,2,...,8) are provided in Appendix C. Accordingly, the
stability of the dynamical system provided by Equations (60) to (67) has been studied by
examining the eigenvalues of the linearized system provided by Equation (76) (see [42]),
where the stable solution was illustrated as a solid-line, while the unstable solution was
plotted as a dotted-line, as shown in the different bifurcation diagrams in Section 4.

4. Steady-State Oscillation and Bifurcation Analysis

Based on both the derived mathematical model of the closed-loop system provided by
Equations (19) to (24) and the nonlinear algebraic Equation (74), one can investigate the
efficiency of the proposed control technique (i.e., PD + IRC + PPF controller) in improving
the oscillatory characteristics and eliminating the catastrophic bifurcation behaviors of the
studied twelve-pole system. As Equation (74) governs the steady-state vibration amplitudes
(a1,a2, b1, b2) and the corresponding phase angles (i.e., ¢1, ¢2, ¢3, ¢4), we can investigate
the steady-state oscillatory behaviors of both the rotor system and the connected controller
via solving Equation (74) numerically using the Newton—-Raphson predictor—corrector
algorithm (see [43]), utilizing ¢ as the bifurcation parameter, where the stable solution is
plotted as a solid-line and the unstable solution is shown as a dotted-line. In addition, to
validate the accuracy of the derived analytical solution (i.e., Equation (74)), as well as to
investigate the full system response (i.e., steady-state and transient response) of the closed-
loop system, one can simulate the system’s temporal equations of motion (i.e., Equations (19)
to (24)) numerically using the Rung-Kutta method of fourth order. Accordingly, the
following values of the parameters have been used to simulate the system dynamics [29,36]:
f:0013,p = 15,d :0005,171 =12 = N3 = N4 = 15 = He :0.2,177 = 18 = 1,
U1 = U2 =00l,0 =00 =0 =00 =wH40o,w =w40,w) =w+0,ws =wy =1,
a = 30°, where the other system parameters y, w, a;, B, Y., Gj=12...,7k=1,2,...,16)
are defined below Equation (24). Before proceeding further, let us go back first to the
normalized equations of motion (Equations (19) to (24)), where the rotor normalized

_ x()

temporal displacements in the X and Y directions are defined such that z;(t) = 5

and z(t) = %, where ¢ is the nominal air-gap size between the rotor and the poles-
housing and x(t), y(t) are the actual temporal displacement of the rotor in the X and Y
directions, respectively. Accordingly, for safe working conditions for the rotor system
without the occurrence of rub and/or impact forces between the rotor and the pole housing,
x(t) and y(t) should be smaller than the air-gap size ¢y (i.e., %‘ = |z1(¢)] < 1 and
y(t)

0

C

= |zp(t)| < 1). Therefore, for the safe operation of the rotor system without rub
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and/or impact between the rotor and the stator, |z1 ()| = |a1(t) cos (Ut — ¢p1(t))| and
|z2(t)| = |az(t) cos (Ot — ¢ (t))| should be smaller than unity, which implies that |a;| and
|az| must be lower than unity (i.e., |a1] < 1& |az| < 1). In addition, the parameter ¢ is
defined in Equation (53) such that ) = w + ¢. Accordingly, ¢ is used in the whole article
as a bifurcation control parameter to describe the rotor dynamics when the system angular
speed (Q)) is close to or equal to the rotor’s natural frequency (w).

4.1. System Dynamics in the Case of PD-Control Algorithm

The parameters P = %gkl and d = %kz denote the normalized proportional gain

and derivative gain of the PD-control algorithm, respectively. In addition, the parameters

1= %k?, and 173 = %h are the normalized control gains the PPF-

control algorithm that is connected to the rotor system, while 17, = %h and

Ny = %ké represent the normalized control gains of the IRC-control algorithm
(see Equations (6), (19) and (20)). Moreover, the parameters 15 = L—% and

Ne = % are the normalized feedback gains of the PPF-control algorithm, while 777 = L—&”,
ng = L4 denote the feedback gains of the IRC-control algorithm (see Equations (7)—(10) and
(21)—(24)). Accordingly, one can investigate the influence of the PD controller only on the
rotor dynamics via setting 7, = 0 (k =1,2,...,4).

This section is dedicated to investigating the rotor dynamics in the case of the PD-
control algorithm only, at different levels of the excitation force f, as shown in Figure 3.
The figure was obtained by solving the nonlinear system provided by Equation (74) when
=0, (k=1,2,...,8) at f = 0.004, 0.007, 0.01, and 0.013. Figure 3a,b shows the rotor
steady-state vibration amplitudes in both the X and Y directions at four different values
of the excitation force f, while Figure 3c shows the evolution of the phase angles ¢; and
¢ versus 0 when f = 0.004. In addition, Figure 3d illustrates the phase angles ¢; and
¢ at f = 0.013. It is clear from Figure 3a,b that the vibration amplitudes (4; and ay) of
the twelve-poles system is a monotonic increasing function of the excitation force, where
the rotor system may be subjected to rub and/or impact force between the rotating disk
and the pole-housing if f > 0.013 (i.e., the rotor may exhibit vibration amplitudes a; > 1
and/or ay > 1if f > 0.013). Accordingly, one can conclude that the considered system can
work properly without a catastrophic rub and/or impact between the rotor and stator, as
long as the excitation force f is smaller than 0.013 when only the PD-control algorithm is
applied. In addition, Figure 3c,d depicts that the phase angle ¢, is always greater than ¢,
which means that the rotor system performs a forward whirling motion only (according to
Equations (68) and (69)) along the ¢ axis, regardless of the excitation force magnitude. By
examining Figure 3, one can note that the rotor system has symmetric oscillation amplitudes
in both the X and Y directions (i.e., a; = a) and the phase difference ¢ — ¢ is always 7,
which demonstrates that the rotor system performs a circular forward whirling motion
along the ¢ axis, regardless of the excitation force magnitude.

4.2. System Dynamics in the Case of the PD + PPF-Control Algorithm

The rotor dynamics at four different magnitudes of the excitation force were inves-
tigated when both the PD- and PPF-control algorithms were applied simultaneously.
Figure 4a—c shows the steady-state vibration amplitudes of both the rotor system (a; and
ay) and the PPF-control algorithm (b; and by) when p = 1.5, d = 0.005, 1 = 173 = 0.2,
and 1, = 74 = 0.0 at the four excitation force amplitudes f = 0.0025, 0.0075, 0.0125, and
0.0175. In addition, Figure 4e,f illustrates the evolution of the rotor phase angles ¢; and ¢,
at f = 0.0025 and f = 0.0175, respectively. By comparing Figure 3a,b with Figure 4a,b, one
can deduce that the integration of the PPF-control algorithm to the twelve-poles rotor has
suppressed the system'’s vibrations at the perfect resonance condition (i.e., it has suppressed
the system’s vibrations at o = 0.0). However, two undesired resonant peaks appeared on
both sides of o = 0.0. In addition, Figure 4a,b demonstrates that the rotor system may
work safely without rub and/or impact between the rotor and the poles-housing, as long



Appl. Sci. 2022, 12, 8300 15 of 46

Phase angles

0.8

0.6

0.4

0.2

3wl2

w2

as the excitation force f < 0.0175 (i.e., 41 < 1 and ap < 1 aslong as f < 0.0175). Moreover,
Figure 4e f shows that the phase difference (¢, — ¢1) of the rotor lateral oscillations in the X
and Y directions is always constant, so that ¢, — ¢1 = 7, which implies that the system
exhibits only a forward circular whirling motion, regardless of both the angular speed
and the excitation force magnitude. Generally, Figure 4 shows that the integration of the
PPF-control algorithm to the system with the P-controller suppressed the rotor’s undesired
vibrations at the perfect resonance condition (i.e., when ) = w + o, ¢ = 0.0), regardless
of the excitation force amplitude; however, the system may suffer from high oscillation,
especially if O > w. Accordingly, the PPF-control algorithm acts as a notch filter that
eliminates the system’s vibrations at a specific frequency band.

Stable periodic solution
=== Unstable periodic solution
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Figure 3. Vibration amplitudes and phase angles of the twelve-poles rotor in the case of the PD-
control algorithm only: (a,b) vibration amplitudes (a1, a2) when f = 0.004, 0.007, 0.01, and 0.013,
(c) phase angles (¢1, ¢2) when f = 0.004, (d) phase angles (¢1, ¢») when f = 0.013.
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PD + PPF-control algorithm when f = 0.0025, 0.0075, 0.0125, and 0.0175: (a,b) vibration amplitudes

Figure 4. Vibration amplitudes of the twelve-poles rotor and the PPF controller in the case of the
(a1, ap) of the rotor, (c,d) vibration amplitudes (b1, by) of the PPF controller, (e) phase angles (¢1, ¢»)

when f = 0.0025, and (f) phase angles (¢1, ¢2) when f = 0.0175.
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4.3. System Dynamics in the Case of the PD + IRC-Control Algorithm

The oscillatory behaviors of the system were explored when the IRC-control algorithm
was coupled to the rotor system with the PD controller, while the PPF controller was turned
off. Accordingly, Figure 5 shows the motion bifurcation of the rotor system when p = 1.5,
d =0.005, 71 = 173 = 0, and 1 = 14 = 0.2 at four different magnitudes of the excitation
force (i.e., f = 0.02, 0.04, 0.06 and 0.08). It is clear from Figure 5a,b that the IRC-control
algorithm forced the twelve-poles system to respond like the linear system, even at the
strong excitation forces. Moreover, Figure 5c,d demonstrates that the system can perform
only a circular forward whirling motion along the ¢ axis, regardless of the excitation force
magnitude, where ¢, — ¢; = T and ay, a, are symmetric on the interval —0.3 < ¢ < 0.3.
By examining Figure 5, we can deduce that the system can rotate safely without rub and/or
impact force between the rotor and the stator, even at the strong excitation forces (i.e.,
f = 0.08), compared with the case of the PD-control algorithm only, as shown in Figure 3.
Therefore, coupling the IRC-control algorithm to the system increased the rotor linear
damping coefficients, which ultimately decreased the lateral vibrations even at the large
excitation forces. However, the IRC controller could not eliminate the system vibrations
close to zero at the resonance condition (i.e., at ¢ = 0), as in the case of the PPF-control
technique, but the maximum vibration occurred at o = 0. Therefore, utilizing the PPF- and
IRC-control techniques as a one-control algorithm, along with the PD controller, may have
the advantages of both the PPF and IRC controllers, as illustrated in the next subsection.
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Figure 5. Vibration amplitudes of the twelve-poles rotor in the case of the PD 4 IRC-control algorithm
when f = 0.02, 0.04, 0.06, and 0.08: (a,b) vibration amplitudes (a3, a2) of the rotor, (c) phase angles
(¢1, ¢2) when f = 0.02, and (d) phase angles when f = 0.08.
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4.4. System Dynamics in the Case of PD + IRC + PPF-Control Algorithm

The dynamical behaviors of the considered twelve-poles rotor system were explored
when the three control algorithms (i.e., PD + IRC + PPF-control algorithms) were ac-
tivated simultaneously. Figure 6 shows the nonlinear dynamics of the controlled rotor
system when P = 1.5, d = 0.005, #; = 12 = 13 = 4 = 0.2 when the extinction force
f = 0.025, 0.045, 0.065, and 0.085. Figure 6a,b illustrates the evolution of the system’s
lateral vibrations (a1, a2) against o, while Figure 6c,d shows the vibration amplitudes of
the PPF controller against the detuning parameter ¢. In addition, Figure 6e,f illustrates
the phase difference of the rotor’s lateral vibrations in both the X and Y directions when
f =0.025 and f = 0.085, respectively. It is clear from Figure 6a,b that the vibration ampli-
tudes (a1, a2) of the twelve-poles system was close to zero, regardless of the excitation force
magnitude, as long as o = 0, due to the effect of the PPF-control algorithm. In addition,
the resonant peaks that appeared on both sides of ¢ = 0 (as in Figure 4a,b) were mitigated,
due to the effect of the IRC-control algorithm. Moreover, Figure 6a,b shows that the rotor
system worked properly without impact occurrence between the rotor and stator, as long
as f < 0.085. It was also clear from Figure 6e,f that the controlled rotor system performed a
circular forward whirling motion, as long as —0.3 < ¢ < 0.3, where the phase difference
was ¢p — ¢1 = 71/2. Based on Figure 3 to Figure 6, one can conclude that the integration of
the PD—, IRC—, and PPF-control algorithms to act as a single controller can provide for
the safe operation of the considered rotor system with small oscillation amplitudes at the
resonant conditions (i.e., when o = 0.0), even if the excitation force is strong.
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Figure 6. Cont.
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Figure 6. Vibration amplitudes of the twelve-poles rotor in the case of the PD + IRC 4 PPF-control
algorithm when f = 0.025, 0.045, 0.065, and 0.085: (a,b) vibration amplitudes (a1, a3) of the rotor,
(c,d) vibration amplitudes (b1, bp) of the PPF controller, (e) phase angles (¢1, ¢) when f = 0.025,
and (f) phase angles (¢, ¢2) when f = 0.085.

4.5. Sensitivity Analysis of the PD + IRC + PPF-Control Algorithm

As the combined control algorithm (i.e., PD + IRC + PPF) has many advantages
over the individual three control techniques, this subsection explores the sensitivity of
this control method to the variation of different control gains. The effect of increasing the
proportional gain (P) on the vibration suppression efficiency of the control algorithm is
illustrated in Figure 7. The figure shows that the increase in P increases the oscillation
amplitudes (a1, a2) of the twelve-poles system and degrades the control algorithm’s effi-
ciency. Therefore, the P gain should be kept at the small possible value to guarantee the
high performance of the proposed control technique. Based on the system parameters
provided below Equation (24), the natural frequency of the rotor system w is defined as
= /2P cos («) + P — 3. Therefore, the minimum value of P should be selected in a way
that guarantees that w > 0. On the other hand, the effect of the PPF-control gains (i.e.,
171 and 773) on the whole-system dynamics is depicted in Figure 8. The figure demonstrates
that the increase of 1 and #3 (i.e., #1 = 173 = 0.5) enhanced the controller performance in
eliminating the rotor oscillations at the perfect resonance condition (i.e., when o = 0.0),
as well as widening the frequency band at which the system could work properly with
small vibration amplitudes. In addition, Figure 9 demonstrates that the increase in the
IRC-control gains (i.e., 72 = 14 = 0.5) decreased the resonant peaks that appeared on
both sides of o = 0.0, and improved the controller efficiency in suppressing the twelve-
poles rotor vibrations along the ¢ axis (i.e., the controller was able to eliminate the rotor
oscillations at any angular speed (O = w + ¢, —0.3 < ¢ < 0.3). Finally, the best tuning
conditions between natural frequencies of both the rotor system (w) and the suggested
control technique (w; and wy) are shown in Figure 10, where the rotor vibration amplitudes
(a1 and ap) are plotted in 3D space against the variables ¢ and ¢; = 0. By examining
Figure 10a,b, we deduced that the smallest oscillation amplitudes of the rotor system (i.e.,
a1 = ap = 0) occurred along the dashed line that had the equation o = 0 = 0. Therefore,
the best working condition of the introduced control algorithm occurred if ¢ = 07 = 0».
Accordingly, one can conclude from Equation (53) that the optimum tuning conditions
(i.e., 0 = 01 = 0y) occurred when adjusting the controller’s natural frequencies (w; and
w») had the same value of rotor angular speed (€)). Accordingly, the combined control
algorithm eliminated the rotor vibrations close to zero, regardless of the excitation force
amplitude and its angular speed, if the control gains and the tuning condition were applied,
as discussed above.
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Figure 7. Vibration amplitudes of the twelve-poles rotor in the case of the PD + IRC 4 PPF-control
algorithm at f = 0.013, 71 = 1 = 3 = 4 = 02 when p = 1.2, 1.6, and 2.0: (a,b) vibration
amplitudes (a1, az) of the rotor, and (c,d) vibration amplitudes (b1, by) of the PPF controller.
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Figure 8. Vibration amplitudes of the twelve-poles rotor in the case of the PD + IRC 4 PPF-control
algorithm at f = 0.013, P = 1.5, o = 4 = 0.2 when 17; = 53 = 0.1, 0.3, and 0.5: (a,b) vibration

amplitudes (a1, ay) of the rotor, and (c,d) vibration amplitudes (b1, by) of the PPF controller.
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Figure 9. Vibration amplitudes of the twelve-poles rotor in the case of the PD + IRC + PPF-control
algorithm at f = 0.013, #; = 3 = 0.2, when 17, = 174 = 0.1, 0.3, and 0.5: (a,b) vibration amplitudes
(a1, ap) of the rotor, and (c,d) vibration amplitudes (b, by) of the PPF controller.
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Figure 10. Vibration amplitudes of the twelve-poles s rotor in the case of the PD + IRC + PPF-control
algorithm at f = 0.013, and 177 = 17, = 173 = 14 = 0.2: (a,b) vibration amplitudes (a1, a3) of the rotor,
and (c,d) vibration amplitudes (b1, by) of the PPF controller.

5. Numerical Simulations and Comparative Study

Numerical validations for all of the obtained results in Section 4 were validated nu-
merically via solving the temporal equations of the closed-loop system (i.e., Equations (19)
to (24)), using the Rung-Kutta method. In addition, the performances of the different
control algorithms in eliminating the twelve-poles system vibrations were compared. It is
worth mentioning that the small circles illustrated in Figure 11 represents the steady-state
numerical solution of Equations (19) to (24). This numerical solution was obtained via
solving Equations (19) to (24) numerically, using the ODE MATLAB solver for a long
time-period until reaching the steady-state response at the different values of ¢ (notice
that QO = w + ). Then, the maximum temporal vibration amplitudes at steady-state were
captured as the steady-state vibration amplitudes (i.e., a7 = max (z1(t)), a2 = max(z(t)),
a3 = max(z3(t)), a4 = max(z4(t))).
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Figure 11. Vibration amplitudes and phase angles of the twelve-poles rotor in the case of both the PD-
control only and the PD + PPF-control algorithms, when f = 0.013: (a,b) vibration amplitudes (a1, a2)
of the rotor, and (c,d) vibration amplitudes (b;, b,) of the PPF-controller, (e) phase angles (¢1, ¢2)
when 171 = 12 = 173 = 1734 = 0.0, and (f) phase angles (¢;, ¢2) when 71 = 13 = 0.2, 2 = 14 = 0.0.
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Figure 11 compares the rotor dynamics in the case of both the PD- and the PD + PPF-
control algorithms, when the excitation force f = 0.013. The excellent correspondence
between the numerical solutions (i.e., small circles) obtained by solving Equations (19)—(22)
and the analytical solutions (i.e., solid and dotted lines) obtained by solving the algebraic
system provided by Equation (74) is clear. In addition, the figure demonstrates that
the coupling of the PPF-control algorithm with the PD controller eliminated the strong
vibration amplitudes of the rotor at the resonance condition (i.e., when ¢ — 0); however,
two resonant peaks appeared on both sides of ¢ = 0. Accordingly, we concluded that
the PD + PPF-control algorithm had high efficiency in eliminating the rotor’s undesired
vibrations at the perfect resonance case (i.e., when o = 0 or, in other words, when the
angular speed () was equal to the system’s natural frequency w, () = w + ). However, if
the resonant condition was lost (i.e., () # w), the controller may pump excessive vibratory
energy to the rotor system, rather than suppress it (see, for example, Figure 11a,b at o = 0.1).

The instantaneous oscillations of the controlled twelve-poles system in the case of both
the PD- and the PD + PPF-control algorithms are simulated in Figure 12, according to
Figure 11, at ¢ = 0.0, f = 0.013, and () = w. The figure was obtained by solving Equations
(19) to (22) numerically on the time interval 0 < ¢ < 500 and turning off the PPF-control
algorithm (i.e., with setting 71 = 73 = 175 = 36 = 0); then, at the instant ¢t = 500, the
PPF-control algorithm was turned on via setting 1 = 173 = #5 = 176 = 0.2 along the period
500 <t <1000. Figure 12a,b illustrates the instantaneous oscillations of the twelve-poles
system in the case of both the PD-control algorithm on the time interval 0 < t < 500 and
the PD + PPF-control algorithm on the time interval 500 < t < 1000, while Figure 12¢c
shows the rotor whirling orbit before and after turning on the PPF-control algorithm.
Figure 12d compares the vibration amplitude of the rotor system in the case of both the
PD and PD + PPF-control algorithms. In addition, Figure 12ef illustrates the temporal
oscillations of the PPF controller. It is clear from the figure that the high instantaneous
oscillations of the rotor system (i.e., z1 (t) and z,(t)) in the case of the PD controller only
were suppressed close to zero when the PPF-control algorithm was activated at the time
instant t = 500, where the rotor vibration energy was channeled to PPF controller.

Figure 13 illustrates the instantaneous oscillatory behaviors of the twelve-poles system
in the case of both the PD-control algorithm only and the PD + PPF-control algorithm,
according to Figure 11, when ¢ = 0.1 (i.e., when the perfect resonance condition is lost,
Q) = w + 0.1). Therefore, Figure 13 is a repetition of Figure 12, but ¢ = 0.1. It is clear from
Figure 13a,b that the twelve-poles system exhibited small vibration amplitudes on the time
interval 0 < ¢t < 500, as long as the PD controller only was activated. However, the figures
demonstrate that the activation of the PPF controller along with PD controller on the time
interval 500 < t < 1000 increased the rotor lateral vibration rather than suppressing it,
which agrees with Figure 11 at ¢ = 0.1.

The steady-state oscillatory motion of the rotor system in the case of both the PD-
control algorithm only and the PD +- IRC-control algorithm is compared in Figure 14, when
f = 0.013. It is clear from the figure that the high oscillation amplitudes that occurred at
the resonance case (i.e., when ¢ — 0) in the case of the PD-control algorithm only was
mitigated to small lateral oscillations when the combined PD + IRC-control algorithm
was activated. However, while the PD + IRC-control algorithm can mitigate the rotor
vibrations along the ¢ axis, it cannot eliminate the rotor vibration close to zero at the
resonant condition, as in the case of the PD + PPF-control algorithm.
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Figure 12. Time response of the rotor system according to Figure 11 when ¢ = 0 (i.e., when Q) = w)
in the case of the PD-control algorithm and the PD + PPF-control algorithm: (a,b) the temporal
oscillations z1 (t) and z5(t) of the rotor system, (c) the rotor whirling orbits, (d) the rotor frequency
spectrum, and (e f) the temporal oscillations z3(t) and z4(t) of the PPF controller.
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Figure 13. Time response of the rotor system according to Figure 11 when ¢ = 0.1 (i.e.,, when
Q = w +0.1) in the case of the PD-control algorithm and the PD + PPF-control algorithm: (a,b) the
temporal oscillations z; () and z(t) of the rotor system, (c) the rotor whirling orbits, (d) the rotor
frequency spectrum, and (e,f) the temporal oscillations z3(t) and z4(t) of the PPF controller.

Numerical simulations for the instantaneous lateral vibrations of the rotor system
(i-e., z1(t) and z,(t)) and the IRC-control algorithm (i.e., z5(t) and z¢(t)) are illustrated in
Figures 15 and 16, according to Figure 14 when ¢ = 0.0 and ¢ = 0.1, respectively. The two
figures were obtained via solving Equations (19), (20), (23), and (24) using ODE45 MATLAB
solver on the time interval 0 < ¢ < 700 and deactivating the IRC-control algorithm (i.e.,
when 1 = 14 = 7 = 113 = 0), while at t = 700 the IRC controller was turned on by setting
72 = 4 = 0.2, y7 = g = 1 on the interval 700 < t < 1000. One can note from Figure 15
that the strong instantaneous vibrations of the system (i.e., z; () and z5(t)) in the case of
the PD-control technique at ¢ = 0 was reduced to small values (but not close to zero) when
the IRC-control algorithm was turned on at t = 700 and the rotor vibration energy was
partially transferred to the IRC controller. On the other hand, Figure 16 shows that the IRC-
control algorithm also reduced the rotor vibrations to a small value when ¢ = 0.1 rather
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than pumping more excess energy to the system, as in the case of the PD + PPF-control

technique (see Figure 13).
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Figure 14. Vibration amplitudes and phase-angles of the twelve-poles rotor in the case of both the
PD-control only and the PD + IRC-control algorithm when f = 0.013: (a,b) vibration amplitudes
(a1, ap) of the rotor, (c) phase angles (a1, ap) when 171 = 5 = 173 = 14 = 0.0, and (d) phase angles
(¢1, ¢2) when i1 =173 = 0.0, 172 = 174 = 0.2.
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Figure 15. Time response of the rotor system according to Figure 14 when ¢ = 0.0 (i.e., when Q) = w)
in the case of the PD-control algorithm and the PD + IRC-control algorithm: (a,b) the temporal
oscillations z1 (t) and z,(t) of the rotor system, (c) the rotor whirling orbits, (d) the rotor frequency
spectrum, and (e f) the temporal oscillations z5(t) and z¢ () of the IRC controller.
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Figure 16. Time response of the rotor system according to Figure 14 when ¢ = 0.1 (i.e.,, when
Q) = w + 0.1) in the case of the PD-control algorithm and the PD 4 IRC-control algorithm: (a,b) the
temporal oscillations z; () and z(t) of the rotor system, (c) the rotor whirling orbits, (d) the rotor

frequency spectrum, (e,f) the temporal oscillations z5(t), and z¢(t) of the IRC controller.

Finally, the rotor dynamics in the case of both the PD- and the PD + IRC + PPF-control
algorithms are compared in Figure 17, when f = 0.013. It is clear from the figure that the
high oscillation amplitudes of the rotor system in the vicinity of o = 0 in the case of the
PD-control algorithm only have been eliminated close to zero, when the PD + IRC + PPF-
control algorithm is considered. In addition, the resonant peaks that appeared in Figure 11
(i.e., in the case of PD 4 PPF-control) were also suppressed, as shown in Figure 17. In other
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words, the PD + IRC + PPF-control algorithm had all the advantages of the individual
control algorithms PD, IRC, and PPF, while avoiding their drawbacks.
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Figure 17. Vibration amplitudes and phase angles of the twelve-poles rotor in the case of both the
PD-control algorithm only and the PD + IRC + PPF-control algorithm when f = 0.013: (a,b) vibra-
tion amplitudes (a1, a) of the rotor, and (c,d) vibration amplitudes (b1, bp) of the PPF controller,
(e) phase angles (¢1, ¢2) when 1777 = 112 = 13 = 14 = 0.0, and (f) phase angles (¢;, ¢2) when
== n2=14=02



Appl. Sci. 2022, 12, 8300

32 of 46

0.6

0.4

0.2

-0.2

-0.4

0.6

Figures 18 and 19 compare the instantaneous oscillations of the rotor system in the
care of both the PD- and the PD + IRC + PPF-control algorithms, according to Figure 17,
when f = 0.013 at ¢ = 0 and ¢ = 0.1, respectively. Figure 18 was obtained by solving
Equations (19) to (24) numerically, using the ODE45 solver along the time interval
0 <t < 700 and activating the PD controller only (i.e., P = 1.5, d = 0.005, and
e =0, k =1,2,...,4); then, at the time instant t = 700, the IRC + PPF-control algo-
rithm was turned on, along with the PD controller, via setting 71 = #p = 173 = #4 = 0.2
on the time interval 700 < t < 1000. Figure 19 is a repetition of Figure 18, but when
o = 0.1 rather than ¢ = 0.0. By examining Figure 18a—c, one can notice that the high
oscillation amplitudes of the twelve-poles system were eliminated close to zero at a very
small transient time as soon as the PD + IRC + PPF controller was turned on. In addition,
Figure 19 demonstrates that the PD + IRC + PPF-control algorithm did not add excessive
energy to the rotor system when the resonant condition was lost (i.e., when = 0.1).
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Figure 18. Time response of the rotor system according to Figure 17 when ¢ = 0.0 (i.e.,, when
Q) = w) in the case of the PD-control algorithm and the PD + IRC 4 PPF-control algorithm: (a,b) the
temporal oscillations z; () and z(t) of the rotor system, (c) the rotor whirling orbits, (d) the rotor
frequency spectrum, (e,f) the temporal oscillations z3(t) and z4(t) of the PPF controller, and (g /h) the
temporal oscillations z5(t) and z¢(t) of the IRC controller.
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Figure 19. Time response of the rotor system according to Figure 17 when ¢ = 0.1 (i.e., when
Q) = w + 0.1) when the PD-control algorithm and the PD + IRC + PPF-control algorithm are
applied: (a,b) the temporal oscillations z; (t) and z;(#) of the rotor system, (c) the rotor whirling
orbits, (d) the rotor frequency spectrum, (e f) the temporal oscillations z3(t) and z4(t) of the PPF
controller, and (g,h) the temporal oscillations zs5(t) and z¢(#) of the IRC controller.

6. Conclusions

In this article, three different control techniques were introduced to eliminate the un-
desired vibrations of the twelve-poles electro-magnetic suspension system. The introduced
control algorithms were the PD, IRC, and PPF controllers and their different combinations
(i.e.,, PD + IRC, PD + PPF, PD + IRC + PPF). Relying on the classical mechanics’ princi-
ple, the dynamical model that governs the controlled twelve-poles rotor was established
as a nonlinear four-degree-of-freedom system that is coupled to two first-order filters.
Then, an approximate analytical solution for the controlled system mathematical model
was obtained using the asymptotic analysis. Based on the derived analytical solution,
the efficiency of the different control algorithms in suppressing the undesired vibrations
and improving the bifurcation characteristics of the considered twelve-poles system was
explored. In addition, numerical simulations were performed to confirm the accuracy of the
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obtained analytical investigations, as well as to explore the transient oscillatory behaviors
of the rotor system with the different control strategies. Based on our analysis and the
discussions above, we reached the following conclusions:

1.  The rotor system responds as a linear dynamical system with small vibration ampli-
tudes in the case of the PD-control algorithm, as long as the excitation force f < 0.004.

2. When only the PD-control algorithm is activated, the twelve-poles rotor behaves like
a hardening duffing oscillator, and the nonlinearities dominate its response when the
rotor is exposed to a considerable excitation force amplitude (i.e., f > 0.004) at the
resonance condition. In addition, the electro-magnetic suspension system may suffer
from rub and/or impact force between the rotor and the stator if f > 0.013 in the case
of PD-control algorithm.

3.  Integrating the PPF-control algorithm with P-controller can eliminate the rotor’s
undesired vibrations at the resonance condition (i.e., when O — w, ¢ — 0) to neg-
ligible oscillation amplitudes, regardless of the excitation force magnitude, but two
undesired resonant peaks appear on both sides of o = 0.0 that may result in high
vibrations for the rotor system if the resonant condition is lost (i.e., if Q) # w).

4. The IRC + PD-control algorithm can mitigate the undesired vibrations and eliminate
the nonlinear bifurcation behaviors of the twelve-poles system. However, the main
drawback of this controller is that the rotor may perform high oscillation amplitude
at the perfect resonance (i.e., when O — w, o — 0).

5. Utilizing the three control algorithms (i.e., PD + IRC + PPF) as one control strategy
eliminated the high oscillation amplitudes of the rotor system close to zero at the
perfect resonance conditions. In addition, the resonant peaks that appeared in the
case of PD + PPF controller were also suppressed close to zero.

6. The PD + IRC + PPF-control algorithm has all the advantages of the individual
control algorithms, PD, PD + IRC and PD + PPF, while avoiding their drawbacks.

7. Although both the PD 4 PPF and PD + IRC + PPF-control algorithms can eliminate
the nonlinear vibrations of the twelve-poles system at the perfect resonance condi-
tion, the PD + IRC + PPF has the advantage of having the short transient time in
suppressing this undesired motion.

8. Tuning the natural frequencies (w; and wy) of the PD + IRC + PPF-control algorithm
to be close to or equal to the rotor angular speed ((2) guarantees the elimination of the
system’s lateral vibrations, regardless of the excitation force magnitude.
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Abbreviations

Normalized displacement, velocity, and acceleration of the twelve-poles system in the X direction.
Normalized displacement, velocity, and acceleration of the twelve-poles system in the Y direction.
Normalized displacement, velocity, and acceleration of the PPF-control algorithm that connected to the
twelve-poles system in the X direction.

Normalized displacement, velocity, and acceleration of the PPF-control algorithm that connected to the
twelve-poles system in the Y direction.

Normalized displacement, and velocity of the IRC-control algorithm that connected to the twelve-poles
system in the X direction.

Normalized displacement, and velocity of the IRC-control algorithm that connected to the twelve-poles
system in the Y direction.

Normalized damping parameter of the twelve-poles rotor system.

Normalized damping parameters of the PPF-control algorithms.

The normalized natural frequency of the twelve-poles rotor system.

Normalized natural frequencies of the PPF-control algorithms.

Normalized Internal-loop feedback gains of the IRC-control algorithms.

The normalized angular speed of the twelve-poles rotor system.

Normalized excitation force of the twelve-poles rotor system.

Normalized proportional and derivative control gains of the PD-control algorithm, respectively.
Normalized control gains of the PPF-control algorithms.

Normalized control gains of the IRC-control algorithms.

Normalized feedback gains of the PPF-control algorithms.

Normalized feedback gains of the IRC-control algorithms.

Normalized nonlinear coupling coefficients due to the PD-control algorithm.

Normalized nonlinear coupling coefficients due to both the IRC and PPF control algorithms in the X direction.
Normalized nonlinear coupling coefficients due to both the IRC and PPF control algorithms in the Y direction.
Normalized vibration amplitudes of the twelve-poles rotor system in the X and Y directions, respectively.
Phase angles of the twelve-poles rotor system in the X and Y directions, respectively.

Normalized vibration amplitudes of the PPF-control algorithms in the X and Y directions, respectively.
Phase angles of the PPF-control algorithms in the X and Y directions, respectively.
Difference between the angular speed (Q2) and the normalized natural frequency (w): o = Q — w.

Appendix A

Expanding Equations (11) to (16), using the Maclaurin series up to the third-order
approximation, yields the following:
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k2k3C0 sin?(a) —
cocos( ))xut +

6k Ioco sin(a) cos(a))xyuq + +(2kaksc? sin®(a) —
+ (k3c3 Cos(zx))xu2

6kyIoco sin(a) cos(a))xyuy

+ (—k3c3sin(a) )yu3 + (2kzkyscl cos(a))xuquz

(- k200 sin (& ))yu%

2k3k4c0 sin(a))yuyup + (—2k1kscj cos(a) — 2kikycl cos(a))xxuy + (2kikac3 sin(a) + 2k1kgcd sin(a) )y
k3[0C0)141 +(k410c0)u2]

fr =~ %yoNzAcos((p) [(—kqlocd —
+(—3k210C0 + 2k1k3C%)X25C + (—2k2k36% + 3k310¢:0)x2u1 + ( 2k2k4C0 + 3k410c0)x Up + (kzco)xul

+(2
+(
+(k
+(—
+(— 2k2k460 cos( ) + BkgIgco cos? (a) ) x2uy + (3ksIoco — 3kzIpco cosz(zx))y2u1 + (BkyqIoco — 3kyIoco cos® () )y?uy
+(2
+(k
+(—
+(

Igc%) X+ (2[& + k:{'C% - 3k1[0€0) 3 (k2 2>x3t2 + (*kzlng) X

+ k2 2)xu 2 (A2)

+(—2k1k3c3)xxu1 + (—2k1k4c%)x5m2 + (2k3k4c%)xu1u2 + (kgloco)ul +(k310C0)u2]
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= %yONZAcos((p) [(I3c3sin(a))y + (—kqIoc] + I3c% cos(a))x + (213 cos® () + k3c3 cos(a) — 3k Ipco cos® (a) ) x>

fa

fo

4—(212 sm( ) — 213 sin(a) cos?(a))y> + (—3ky Inco + 3kqIoco cos?(a) + 612 cos(a) — 612 cos®(a) ) xy?

+(612 cos?(w )sin( ) — 6k1Igco cos() sin(a) + k3¢ sin(a))x?y + (—3kaloco + ko loco cos? (a) ) y*x

+ (k32 sin(a))yx” + (K32 cos(a))xx” + (— kaIocd)x + (—3kaloco cos®(a) + 2kqkac3 cos(a))x?x

+(—6kaIpco cos(a) sin(a) + 2k1koc3 sin(a))xxy + (—2kokac3 cos(a) + 3ksloco cos?(a))x%uy (A3)
+( 2k2k4C0 COS( ) + 3k410C0 COSz(DC))XZMZ + (3k3IOC() - 3k310C0 COSZ(D())]/zul + (3k410C0 - 3k410C0 COSZ(DC))yZMZ

+(2 k2k3c0 sin? (&) + 6k3 Ioco sin(a) cos(a))xyuy + (2kaksc sin?(a) + 6kqloco sin(a) cos(a))xyua

+(K3c3 cos(a))xu? + (k3c3 cos(a ))xu2 + (kK3cZ sin(a) )yu? + (K3c3 sin(a))yu3 + (2kskac? cos(a))xuyun

—|—(2k3k4(:0 sin(a))yuuy 4+ (—2kikac3 cos(a) — 2k1kacd cos(a))xxuy + (—2kiksch sin(a) — 2kikyc? sin(a) )yxuq
+(kslocd)uq +(kaIocy ) uz]

= ZpoN?Acos(¢) [(—Iic§ sin(w)) x + (k1locy — I5cg cos(a))y + (=215 cos® (a) — kicg cos(a) + 3ky Ioco cos® ()

2 sm( ) + 212 sin(a) cos?(a) ) x® + (3kq Ipcg — 3k Ipco cos? (&) — 613 cos(a) + 613 cos® () )y x>
612 cos? (w )sin( )+ 6k110c0 cos(a) sin(a) — k2c3 sin(a))y?x + (3kaIpco — 3kaloco cos?(a))x%y

| KR

+(—212
+(— 12
+(—K3c3 sin(a ))xy + (—k3c3 cos( ))yy2 + (kaIoed)y + (3kaIpco cos? (a) — 2k1k3c0 cos(a))y?y

+(6kaIpco cos( ) sin(a) — 2k1k2cO sin(a))yyx + (—2koksc3 cos(a) + 3ksIoco cos?(a))y?vq (A4)
+( 2k2k6C0 COS( ) + 3k61()C0 Ccos ( ))yzng + (3k5[0C0 - 3k5I()C0 Ccos ( ))x U1+ (3k61000 - 3k61060 cos? (IX)).’XZUZ

+(— 2k2k5cO sin?(«) 4 6ksIoco sin(a) cos(a))xyvy + (— 2k2k6c0 sin?(a) 4 6keIoco sin(a) cos(a))xyv,

+(K2c3 cos( w))yv? + (k3c3 cos(a))yo3 + (ki3 sin(oc))xv1 + (k2c3 sin(a))xv3 + (2k5k6c0 cos(a))yv10;

+(— 2k5k600 sin(a))xv10; + (—2k1kecj cos(a) — 2kiksc3 cos(a) )yyor + (2k1kec sin(a) + 2kqkscj sin(a))xyoq
+(k5IQCO)‘U1 +(k610C0)’02}

2 .
fs = 5;40N2A cos(@) [(—kiloc3 — I3c3) y + (213 + k3ck — 3kiIoco)y® + (k3c3)yy~ + (—kalocd)y
+(— 3k2[0€0 + 2k1k3co)y v+ (- 2k2k5c% + 3k51000)y2"()1 + (_2k2k6cg + 3k610C0)y202 + (k%c%)yvl (k6C0)y‘(,72 (A5)
( 2k1k5c0)yyvl + ( 2k1k6c0)yyvz + (2k5k6c%)yvlvz + (k5IoC8)01 + (ké[ocg)vz +(O)3}

= 5;40N2A cos(@) [(—I3c3sin(a)) x + (—kqIpcd + I3c5 cos(a))y + (213 cos® (a) + k3c3 cos(a) — 3ky Ioco cos? (a))y®

+(— 212 sm( ) + 213 sin(a) cos?(a))x® + (—3kqIpco + k1 Ipco cos? (a) + 612 cos(a) — 613 cos®(a) )yx?

+(— 612 cos?(w )sm( ) + 6k1Ioco cos() sin(a) — k3¢ sin(a))y?x + (—3kaIpco + 3kaloco cos?(a))x%y

+(—k3Z sin(a))xy” + (K3c3 cos(a))yi” + (—kaIocd)y + (—3kaloco cos? () + 2k1k3C0 cos(a))y’y

+(6kaIpco cos( )sin(a) — 2kikoc3 sin(a) )yyx + (—2kokscj cos(a) + 3ksIoco cos? (&) )y?vy (A6)
-l—( 2k2k6C0 COS( ) ~+ 3kegIpco COSZ(DC))]/ZUQ + (3k510C0 — 3ksIpcg cos (uc))x U1+ (3k610C0 — 3kgIoco cos? (&))XZUQ
4—(2k2k5c0 sin?(«) — 6ksIoco sin () cos(a))xyvy + (2k2k6c0 sin?(a) — 6kgIoco sin(a) cos(a))xyov,

+(K3c3 cos( w))yvs + (k3c3 cos(a))yv3 + (—kic3 sin(a ))xv1 (—k2c3 sin(a ))xv2 (2kskec’ cos(a))yvy 02

+(— 2k5k600 sin(a ))xvlvz + (—2kykgc3 cos(a) — 2k1kscd cos(a))yyvr + (2k1kecd sin(a) + 2kiksc3 sin(a) ) xyo
+(ksIoc3)v1 + (ke Ioc3 ) v
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Appendix B

u= %(chos(rx) +4d),

N =

N3 =

—6p cos (zx) 3p +2p? cos?(a) + 6 + p* + 8cost(a) —
ay = 2p* — 2p? cos?(«) + 24 cos? (a) —

—3d + 2pd + 4pd cos?(a) — 6d cos®(a),

w5 = 24° sin(a),
ay = 4d(3cos3( ) —3cos(a) + psin®(a)),

M=

T2 =

3=
Y4 =
Y5 =
Y6 =
Y7 =
8 =
Y9 =

Y10 =
111 =
Y12 =
T3 =
T4 =
Y15 =
Y16 =

73— 2p + 6cos®(a) — 4p cos?(a)),

1+2cos ()
1+2COS ( 2d — 4d cos*(a)),
2
(1+2(:105(04))2(1+2COS (a)),
4y

71+2CWOS(“) (—sin?(a) + 3 cos(a) sin®(«)),
_2yisin’(a)

(142 cos(a))?’

—4di sin®(a)

14+2cos(a) *
__ 6n3cos(a) sin®(a)

1;2,7&)5(«) ’ )
3174
(1+2cos( )’ z(=2—4cos’(a)),

1+2cos (2d + 4d cos? (),

—4dinm smz( )
(1+2cos )’

’

1+2c0s (a)
23 sin*(a)
(1+2c05( )2'
T2 e0sa) (4psin® (@) — 12 cos(a) sin® (a)),
4, sin (ac)
T+2cos(a) ’
o 2
(1+2c05(0¢))2 (1 +2cos (0()),
—614 cos(a)sin’ ()
1+2 cos(a)

Appendix C

Jn =g =30+ B +3

T dapy witw?

2. .2
3w

2B16M7 V2 1
— a5y + g(—ag +ay +
@ Jaz + g(—aa + a7 w?

—05W +

(=3 +2p +4pcos?(a) — 6cos’(w)),

24 cos*(a) — 18p cos(a) + 18p cos®(«),

2pcos(a) +p —

ay = 6d cos®(a) — 6d cos(a),
ng = d2(1 +2cos (),

B1=

B2
B3
Ba
Bs
Be

B7 =

Bs
Bo

Bio =
Bi1 =

P12 =
P13 =
Bia =
P15 =
P16 =

_ 2w3Pisna )

(w+

2)°

1+2c05(u¢
H;Zw(*2d - 4dCOS (0()),
ngw(l +2C052(1X)),

H;% (—psin®(«) 4 3 cos(a) sin?(«)),

i
1+2cos(a) 7

—23s m( )

(1+2cos( N

1+2cos (4p sin?(«) — 12 cos(«) sin?(a)),
4dyy sin’ (zx)

1+2cos( )’

_om 2
(142 cos(a))* (1+2COS (IX))'

—6172 cos(a)sin’(«)
142 cos(a) ’

_ Pisis  waPuais
10 +3 (2“4 w2+w2 w2+w2

(wi—w?)Brag waPi3ng

Wi tw?

w(w 2+w2)2 w(wi+w?)
Sw & Bablysin(2¢30) + 1 (B2 —

g (P8 ) 0 bog sin (ag) +

)ﬂloblo cos(¢30)
7)020520 COS(2<P10 — 2¢20 — Pa0)

wz;zijing )”zo cos(2¢10 — 2¢20) + 51;(%

)ﬂzo sin(2¢10 — 2¢20) — 15 B1a10b10 sin(¢3o)

— LBy a0y cos(hso)

wj 2 +w?

+g (Ba+ w425+12728 )aobzo sin(2¢10 — 2¢20 — 4>4o) + g5 B55 Sin (2910 — 220 — 2¢40),

Bisns _ waPians

2
w4+w

w .
—%)ﬂloﬂzo sin(2¢10 — 2¢20) —

2 2 2 2
w4+w w4+w

+ %)gloazo cos(2¢10 — 2¢20) +

2w,
)a10a20 + § (—ta + a7 + 4/8127782 — st

%5701201710 sin(¢30) —

(W3 +w?) wi+w?
(wi—w?)Brang w4513'78
w(wiﬂuz)z w(wi+w?)

§ (52252 )an0bao cos (o)

+8%(%)ﬂ1obzo sin(¢a0) + ﬁfhﬂzoblo Sin(2¢1o — 200 + $30) + 555 (Bsw

- M)ﬂlobzo cos(2¢10 — 2¢20 — ¢Pa0) +

2
witw

_ _ 1 1 2
Js = gy = (Zag — saPrafo —

+ % (B2 — 2138717

W+ )alo cos(¢30)

155 B70%0) sin(¢p30) —
+ iﬁﬂéo sin(2¢10 — 2¢20 + ¢P30),

@IS \ g1 b sin (210 — 2020 — o),

wltw?

1 Baaobio sin(2¢30)

7(3—2p+ 6 cos®(a) — 4pcos?(w)),

—3 4 2p +4pcos?(a) — 6cos’(a)),
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OF .
Ju =g = —%(aglﬁz )a10a20 cos(¢ao) + i(ffﬁfﬁ )atoazo sin(¢ao) + g5 (Bew
—%)awﬂzo cos (210 — 2¢20 — Pa0) + 55 (Ba + ‘;),4/11275 )a10a20 Sin(2¢10 — 2¢20 — ¢P40)
+ 15 Bsa10b20 Sin (210 — 2¢20 — 240,
_ 0 _ 1 2w0Brong  Puans | wapa 2 1
Jis = 37111 = —g(—ag+a7+ (w§4+52;2 - wzlijjz + w%ii,zg)ﬂloﬂzo sin(2¢19 — 2¢20) + (2 — asw
“ w(w? +)521§}78 + wﬁéflsz) B foj}i )a1085 €08(2¢10 — 2¢20) — 55 B7850b10 50210 — 2620 + p30)
+5i (Bow wffjﬁ )a10a20b20 Sin (210 — 220 — Pa0) + 705 (Ba + w@fjf )a10a20b20 €08 (210 — 220 — Pao)
2
+ 265 B510b3) o8 (2010 — 2920 — 240) + 555 (w + ) f cos(no),
JF 2w4B1o13 . 1
e = 84;7211 — Z( g+ + = 4+12 )32 _ jﬁlﬁiz + Z‘%ﬁgﬁ)amu%o sin(2¢19 — 2¢20) — 7(2 — asw
(,Uz*a) .
(;(wz +le§§8 + wfé,?fz,%) - fozg )a10a3) c08(2¢10 — 2¢20) + 75 Bra3yb10 SIn (210 — 2¢20 + ¢30)
4
+gi (Bow — zf_ﬂg )a10a20b20 Sin (2910 — 2020 — Pa0) — 755 (Ba + %)ﬂloﬂzobzo cos (210 — 220 — ¢Pa0)
— 165 B5810b3) cos (210 — 2020 — 240,
oF
L7 = gpk = (—agmbio — iﬁlﬂ%obw — 15 B750b10) cos(¢30) — 15 B3a10b3 cos(230) — g (B2
2
wﬁfgz )aloblo sm(q‘)30) + 55 ,3761 blO COS(Z(])lO — 2¢0 + ¢3O),
oF .
fis = a5y = §( /5211722 )a10a20b20 sin(¢s0) + i(%)ﬂloﬂzobzo cos(¢ao) + 55 (Bew
- fo:,z )a10a20b20 SN (210 — 220 — Pao) — g5 (Ba + Zéﬁ_ﬁijlf )a10420b20 c0s (2910 — 220 — Pa0)
— 105 B581003 €08 (210 — 220 — 240),
_ B _1 Tl wsmaly 276l 1 2037215 1131
J1 = ﬁ = 1( Xq — “’21J3r(32 — w324:227 — wzf 82)11206110 + Z(—ﬂé4 + oy — (w§+w2)72 _ wgliuzz
1 (@W3—w?) 112177
SR a0mo cos 2920 — 210) + F(E — asw + L2 + Sl
+Z§’f£§ )a2010 Sin (220 — 2¢10) — 215 Y7810b20 Sin(¢a0) — 515 (jjgsz )azob1o cos(¢30)
+5w (76;},3%&?527 )azob1o sin(¢30) + 7577810020 Sin(2<i>2o — 2910 + Pa0) + g5 (V6w
_%)“201710 €08 (220 — 210 — ¢30) + 515 (74 + ‘:322?27 )a20b10 sin(2¢20 — 2410 — P30),
oF, _ 1 1a1] 3 27117 2w4m1573 7137 w3147
J22 a“221 =22+ wj iiﬂ) +las - wﬁ}:wsz (@ 2 4+w? )8 )‘120 ts (2044 B wzlicjz N wszii;g
2 2w3y121%
Zfz,sz)ﬂlo +g(—aa +az " 215;7)72 - lefzz + wﬁw{)alo c0s (220 — 2¢10) + § (2 — asw
(w2 ) 11215 w3 Y1317 Wty 1 :
w3(w§+w2)27 (W) + +a? )Cllo SIH(Z(PZQ — 2¢10) — @71“20b20 s1n(¢40)
: 2
— 5571305 8in (2¢0) + 755 (1200 — w(gfz}]g )a20b20 cos(¢a0) — i(%)ﬂzoblo cos(¢30)
5 (ot Jaobio sin(¢a0) + g (76w — mfzi )a10b10(cos(2¢20 — 210 — P30) + g5 (74
+7u:,3§sz7 )a1obig sin(2¢20 — 2¢10 — ¢30) + 55 L ysb2, sin(2¢n0 — 2910 — 2¢30),
OF .
s =5 = s (vaZZ)azoalo cos(¢30) + i(iﬁ%ﬁﬂ@ﬂzoaw sin(¢30) + go (V6w
- ngjz )azo1o cos(290 — 2910 — pao) + g (74 + ‘:%Z:gf )azoa10 sin(2¢2 — 21 — ¢3)

+ 457520010 SN (220 — 210 — 2¢30),
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9 . . 2
= 552 = (= 2573 — 5511830 — 35778%0) sin(Pa0) — 7573820020 SIN(240) + g5 (Y20 — wizjfw"g)ﬂ%o cos(¢0)

Joa by
1
+ 5 y7a%, Sin(2¢20 — 2910 + Pag),
_ 95 _1 _ 2w3v1013 Y137 w314 2 o 1/
Jos 64)121 ( g4 + oy ( §+w2)72 - w%lj-(jz + a%_;i};)azoalo sm(Z(PZO - 2¢10) - Z(UZ — A5W
(‘Uz )'Y w w
T ws(w w21§;7 : a,(f%ffz) + wg’sz )azoaz, cos (240 — 2<P1o) 1577034020 €08 (220 — 2910 + Pao)
3
1 : w
+ 15 (Yew — ;;OZZ )a20a10b10 8in (220 — 210 — P30) — 705 (74 + 31]2727 )a20a10b10 €08 (220 — 2¢10 — P30)
— 17582003 c0s(2¢20 — 2910 — 230),
_ b _ 1 20371275 Y3y, Wiy 2 o 1/
e = W —1(—064 + a7y — (w§+w2)2 — w%—i—wz + w%—i—wz )llzo[llo Sln(Z(l)zo — 2(P10) + 1(5 — K5W
(Wi —w®)y1213 W3Y1317 w1417 2 1 2 :
cus(w§+w2)27 D@t T Rra? )a2083 €0S(2¢20 — 24’10) — 35 178gb20 SN (2920 — 2910 + Pao)
w w
P07 ) az0a10b10 COS (2420 — 24710 —¢30) + 55 (74 + 32&2727 )a20a10b10 €08 (220 — 2¢10 — P30)

+i(76“)_ W ta?

+ 157582063 €08 (220 — 210 — 230) + 755 (w + ) f sin(¢hao),

L(w)azoaloblo COS(¢30) + é (’Yéw

JF, 1 (wriol7 i +
Ja7 = P31~ 8w (w§+w2)a20a10b10 51n(4>3) 8wt witw?
w . w
— L0 ap0m10b10 SIn (220 — 2¢10 — P30) — g5 (’Y + 32&2727 )a20a10b10 os(2¢20 — 2¢10 — ¢30)

2 2
witw

— o= Y5a20b% cos (220 — 2910 — 230),

— y7a30b20) cos(Pag) — 157302003 c08(2a0) — g (V2w

F 1 1. 2
2 (—m%bzo—@’h%obzo

Jos 2?07%% "
Tra? )a30b20 Sin($ao) + g 17030b20 COS(2¢20 — 210 + Pao),
Ja1 = ;:31 = 2<w101)175 sin(¢30),
J2 = aaai =0,
Ja3 = ;b% = —u1,
Jaa = % =0,
J35 = aaf) =0,
Ja7 = 54131 = z(wial)m;am cos(¢30),
J3s = aa(;% =0,
Jn = 387?1 =0,
F_ 16 sin(¢ao),
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Jus = oF,
“= g 2,
oF,
Jss o
oF,
J6 3 ,
oo OB
47 — 84)31 - Yy
oF, 1
Jag = E = 2(w+02)’76ﬂ20 cos(¢s0),
2 _
Js1r = % = 2 (31 + wew?® + ZSTL? + (w(s 2+)€;5’77)ﬂ10 + (ﬁ’?lblo + 3B1bro — 4ﬂz Brazbig
+1 1 :’3/3_85; blO) COSE‘?BO) %wﬁSW blO sm(¢3o) 8,32b10 Sil’l((]b30) — ﬁﬁ7a%0b10 COS(Z(PIO - 24720 —+ 4730)
2
e (@ + 0 cos(),
oF 2 2 2
o = ﬁ = (20&2 + 20(5(412 + w4€£j28 — 22@?;]; + :)}S’TZ?)IZN + 4w (0(2 — 0(5(,0 + 7( @ 2+Z£;§’78

w4.513778 w?B1any . 1 . ZuJ4w/312118 wpi3ns
+ =5 W ta? + 2+w2 )6120 COS(Z(])lO Zgbzo) ic (06460 K7W + (@t ) + Wt w?

2b
— 9B ) 0y, sin (210 — 2¢20) + § 22 cos(a0) + 55 (2Ba + w“ﬁ 1905 ) bg cos(Pa0) + §(—2Bs

wy Jr wg + 2
— Lo ﬂiz )bao sin(¢ao) + gn—B7a20b10 COS(2<P10 - 24720 + ¢30) + g5 (Ba
+¢:4ﬁ+m'728 )b €08 (210 — 2920 — Pao) + 5oz (—Pew + wﬁlor]s 3)b2 sin(2¢10 — 2¢20 — $ao),
oF;
53 = a5 = 5= Bsbio + (3171 + 2B1a3, + 1B7a3, + %Zéigwﬂz a3) Cozglfzo) + 45 Bsbio cos(2¢30)

—3 g?f;z a105in(¢30) — §B2010 SIN($30) + grrs 703 €08 (2910 — 220 + P30),

Jss = aalisl = 5L Bsbag + g (2B + 4F 1O’ig)ﬂzo cos(¢a0) + & (—2B6 + B Yary sin(dao) + g (B

wl+w? wi+w?
+7“;§T‘jf§ )z cos (210 — 220 — Pao) + g (—Pew + Zﬁf”g )z sin(2¢10 — 2¢20 — o)
+ 365 B5b20 €08(2¢10 — 2920 — 2¢a0),
P 2
Jss = 3;151 = — 5 (0 — asw? + = ( 2+a);§;§778 + (fﬁi?; + ﬁlws)“zo sin(210 — 2¢20) + g (4w
—ayw + (wiﬁu;?g + wzﬁfzfﬁ - wwfgg 8)ag cos (210 — 220) — g B7a50b10 SN (2910 — 2920 + P30)
— 25 (Ba + ‘;44‘?5275 )azob2o sin(2¢10 — 24’20 — ¢a0) + g5 (—Bow + Z’Sﬂg )ax0bag cos(2¢10 — 2¢20 — ¢Pa0)
— 15 Bsb3) sin (2910 — 2920 — 2040) — 5 (w + 0) f sin(¢10),
2_ .2 2
IES aarp% = g (02 — a5 + (w? zcicllzg;%ns * wg@fj; +2 ,514778)a20 sin (2910 — 2¢20) — g5 (taw — a7w
2
+ (‘:;ﬁij;;?s + wffﬁ - Wflﬁ?s a3y cos(2¢10 — 2¢20) + 4wa10137a20b10 sin(2¢10 — 220 + $30)
+15 (B + %)ﬂzobzo sin(2¢10 — 2¢20 — Pa0) — 15 (—Pew + Z,}ffjﬁ )a20b20 cos(2¢10 — 2¢20 — Pao)

+ 1 Bsb3y sin(2¢10 — 220 — 2¢a9),
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JFs .
Js7 = 84)3 = wam (2171b10 + 8,51{110b10 + 4ﬁ7a20b10 + }LMS‘TZZ a%oblo) sin(¢30) — ,B3b10 sin(2¢3)
% /5 Zza10b10 cos(¢30) — 1 Baa1obio cos(dao) — swaloﬁWzobm sin(2¢10 — 2¢20 + ¢30),
oF .
Js8 = agn = a5 (2B + w“z’iﬂf )axobao sin(¢ao) + §(—2B6 + j 13_732)“20%0 cos(¢40) + 55 (Pa
+%)ﬂmbzo sin(2¢10 — 2420 — ¢a0) — gi5 (—Pew + wffjﬁ )az0b20 cos(2¢10 — 220 — Pao)
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