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Abstract: Soft soil is widely distributed in the riverside area of southern China. The creep deformation
characteristics of the soft soil affect the long-term stability of the structure foundation, which cannot be
ignored. Through the triaxial drainage creep test, the creep characteristics of riverside soil with a soft
interlayer from Jiangsu Province were studied. The test results show that the creep procedure of the
soft soil is divided into two stages, exhibiting steady-state creep and shear shrinkage characteristics
with time and stress growth, which presents typical nonlinear behavior. Additionally, the confining
pressure and stress are critical factors affecting creep characteristics. The fractal dashpot based
on fractal derivative theory is introduced in place of the Abel dashpot in the classical fractional
Burgers model; a fractal Burgers creep model with few parameters, high precision, and clear physical
significance is established. Additionally, an analytical solution to the creep model is given. The model
parameters are determined by fitting the test results, and the comparison shows that the results
estimated with the model are more accurate than those estimated with the traditional model. The
sensitivity analyses of the model parameters reveal the influence of key parameters on the creep
characteristics of the soil. The results further confirm that the proposed fractal Burgers model can
characterize the creep behavior of viscoelastic soil. These observations are extremely important for
predicting the foundation displacement and formulating measures to prevent the deformation, which
can provide a reference for engineering applications in the riverside area of southern China.

Keywords: silty clay; triaxial creep test; creep characteristics; fractal derivative; fractal Burgers model

1. Introduction

In response to the call for national transportation power, the construction of several
high-quality bridges to garner worldwide attention in China has gradually been put on
the agenda. Zhangjinggao Yangtze River Bridge is a super long-span highway suspension
bridge with a main span of 2300 m under construction in China, which is located in Jiangsu
Province and crosses the Yangtze River, as shown in Figure 1. The bridge foundation by
the riverside is situated in an area of strata with a deep silty clay interlayer and abundant
pore water, as shown in Figure 2. This kind of soil usually has the characteristics of high
moisture content, high compressibility, low shear strength, and low permeability, showing
obvious creep characteristics of deformation with stress and time growth, which will affect
the long-term stability of the bridge foundation. To effectively control the post-construction
displacement of the foundation and ensure the long-term stable operation of the foundation,
it is of great practical significance to study the creep characteristics of this soft soil interlayer.

Creep characteristics are one of the most important engineering properties of soft soil
and represent the relationship between soil stress and strain with time. These characteristics
of soil have an important impact on the stability and long-term operation of foundations.
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Laboratory testing is an important method to investigate creep characteristics. The pre-
vious studies have mainly focused on direct shear creep tests [1,2], ring shear tests [3,4],
uniaxial compression tests [5–7], and triaxial creep tests [8–10], to reveal the mechanism
of soil and rock creep deformation. As far as theoretical analysis is concerned, the creep
theory model of the relationship between soil deformation and time change is primarily
established by a mathematical formula. At present, the commonly applied creep model can
be divided into two types, the empirical and the element creep model. The empirical creep
model, such as the Singh–Mitchell model and Mesri model [11,12], directly fits the creep
relationship curve of the soil through the mathematical function, which is an empirical
formula based on the regression analysis of the soil creep test results. It can describe the
creep characteristics of the soil in a targeted manner but has the disadvantage of lacking a
theoretical basis. Element creep model is a combination of ideal basic components with
elasticity, plasticity, and viscosity, while the creep constitutive model is further derived
according to the constitutive relationship of each component. There are several widely
used models including the Maxwell model, the Kelvin model, the Bigham model, and the
Nishihara model [13–15]. Hou et al. [16] established an improved Nishihara model that
considered hardening variables and damage variables, which could excellently describe
the creep characteristics of artificially frozen soil. Zhang et al. [17] proposed a creep model
combined with Hook, Kalvin, and viscoplastic elements, which accurately characterized
the creep behavior of mudstone. Ye et al. [18] established an improved nonlinear dam-
age Burgers model to reflect the creep process of calcareous coral sand and verified its
effectiveness. Tian et al. [19] proposed a damage creep model by combining the Maxwell
element with the viscoplastic element and perfectly expressed the shear creep behavior
of microbial improved expanded soil. The established model is helpful to understand
the creep behavior, stress relaxation, and stable deformation of soil. Compared with the
empirical model, the element creep model has the advantage of the flexible description of
different creep behaviors. However, the complexity of the constitutive model makes the
parameters difficult to determine.
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Figure 2. The geological condition of the south anchorage foundation. 
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Figure 2. The geological condition of the south anchorage foundation.

The fractional creep model based on fractional calculus theory is able to achieve
higher accuracy with fewer parameters in the simulation of the rheological phenomenon of
materials [10,20,21], and is widely used to describe the viscoelastic behavior of concrete,
rock, coal, and soil. Liang et al. [22] have well characterized the ultraslow creep process
of self-compacting concrete by the fractional Maxwell model. Wu et al. [23] established a
viscoelastic creep model of salt rock based on the theory of a fractional calculus operator
and verified the reliability of the model in simulating the creep process of rock. On the basis
of the Scott-Blair fractional order element and variable coefficient fractional order element,
Su et al. [24] proposed a nonlinear variable-order fractional viscoelastic plastic creep model
and extended the model to a three-dimensional situation, which well characterized the
creep characteristics of deep coal. Liao et al. [25] established a fractional rheological element
model of warm frozen silt and proposed a creep strength criterion by promoting a triaxial
test. Zhang et al. [26] verified the validity of the proposed viscoelastic Kevin-V fractional
derivative model based on the laboratory test of frozen sand. Xu et al. [20] described
the time-dependent behavior of Shanghai marine clay through the improved fractional
merchant model. However, compared with the integer derivative model, the development
of global operators through convolution integration of fractional derivatives requires higher
computing costs and memory requirements [27].

Therefore, the fractal theory, which evolved from the fractional theory, gradually
developed because of its local operator without convolution integrals [27]. Compared
with fractional derivative theory, fractal derivative theory can provide a higher calcula-
tion efficiency and fitting accuracy under the same number of parameters, which have
been applied and promoted in many engineering fields [28–30], and gradually began to
be applied in geotechnical engineering to characterize the rheological behavior of rock
and soil materials. Cai et al. [27] first proposed the fractal Maxwell model and the frac-
tal Kelvin model and confirmed the proposed fractal model could characterize the creep
behavior of viscoelastic frozen soil. Su et al. [31] applied Hausdorff’s fractal derivative
to establish the fractal Bingham model to describe the viscoelastic deformation charac-
teristics and verified the accuracy of the proposed fractal model by fitting the relevant
rheological test data. Wang et al. [32] proposed a time fractal derivative constitutive model
to describe the whole creep region of granite by replacing the Newton dashpot with a
fractal dashpot. Yao et al. [33] introduced an unsteady fractal derivative creep model to
describe a soft interlayer’s complete creep failure process. Kabwe et al. [34] proposed a
fractal derivative viscoelastic and viscoplastic constitutive model with isotropic damage to
describe the creep mechanism and mean deformation in squeezing ground reasonably well.
Gao et al. [35] suggested a fractal merchant model that characterizes the creep behavior of
marine-terrestrial deposit soil, which obtained satisfactory results, demonstrating that the
fractal derivative theory is appropriate to describe the creep characteristics of the soil.
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In general, the fractal derivative theory has been verified in several fields with high
computational efficiency and the ability to characterize the creep of materials. However,
there have been few reports on the fractal derivative creep model of geotechnical materials
at present. It is not clear whether the fractal derivative creep model can be used to char-
acterize the creep characteristics of silty clay in riverside areas of south China. Based on
the above considerations, a triaxial drainage creep test was carried out to study the creep
characteristics of the undisturbed silty clay samples along the Yangtze River in Jiangsu
Province. By introducing fractal derivative theory, an improved fractal derivative Burg-
ers model is proposed to describe the creep behavior of silty clay with fewer parameters
and higher accuracy. The research results can be used to predict the displacement of the
foundation and formulate measures to control the deformation, which provide a reference
value for the creep characteristics of riverside soft soil in southern China.

2. Test Procedure and Results
2.1. Soil Properties

The South Anchorage Foundation of Zhangjinggao Yangtze River Bridge is located
in Zhangjiagang, Jiangsu Province. The soil within the buried depth of the foundation is
mainly silty sand, but there is a silty clay soil interlayer with a thickness of 20~37 m below
−30 m, as shown in Figure 3. The creep characteristic of this layer of soft soil is a crucial
factor affecting the long-term deformation of the bridge foundation. To study the creep
characteristics of the soft soil interlayer, a series of laboratory triaxial drained creep tests
of this layer of undisturbed soil was carried out. The soil samples were obtained from
55 m-deep boreholes drilled by the Yangtze River in Zhangjiagang, sealed on site, and
transported to the laboratory for storage under constant temperature and humidity. Their
basic physical and mechanical property indexes are shown in Table 1 and Figure 4. The soil
is defined as flow-plastic silty clay with reference to the Chinese code [36].
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2.2. Test Procedure

The triaxial consolidation drained tests were carried out by the TSZ automatic tri-
axial apparatus, and the diameter and height of the samples were 39.1 mm and 80 mm,
respectively. The temperature was controlled to 20 ± 1 ◦C during the test, and a series
of various eccentric stress were applied to different samples separately. Compared with
applying a graded loading, this method can directly obtain the soil creep test data and
avoid manual processing errors to reflect the creep characteristics of soil more accurately.
To obtain the failure deviatoric stress of qf = (σ1 − σ3)f under different confining pressures
σ3, a series of triaxial consolidated drained shear (CD) tests were carried out at four lev-
els, the shear rate was set as 0.01%/min, and the test was performed in accordance with
Chinese standards [37]. The obtained shear strength indexes (effective cohesion c′ and
effective friction angle ϕ′) are shown in Table 2, and the results are shown in Figure 5. The
failure deviatoric stress qf was divided into 5 levels, the loading increment of each level
was ∆q = qf/5, and the creep characteristics of sample soils below the failure deviatoric
stress levels q were researched through a triaxial consolidated drained creep test. The
samples were consolidated under the target confining pressure for 30 h prior to the test,
respectively. Then, the axial loads were imposed on the samples until the target deviatoric
stress q was reached. Finally, the stress was kept constant with a precision of ±10 kPa
and the creep behavior was observed. At present, there are no standardized creep stability
criteria; Sun [14] suggests that the general total observation time is set to 7~14 d in the case
of the deformation reaching the stabilization stage or the constant strain rate stage. In this
paper, the test was terminated after the observation time of the deformation stabilization
stage reached 7 d, and the cumulative creep deformation of one consecutive 24 h period
was lower than 0.01 mm [14]. The testing procedure was performed in accordance with
Yuan et al. [38], and the data were automatically collected by the acquisition system of the
instrument. The loading application scheme is shown in Table 3.

Table 2. The triaxial consolidated drained shear test program.

Test No. σ3 (kPa) qf (kPa) c′ (kPa) ϕ′ (◦)

1 100 288

12.4 33.7
2 200 568
3 300 836
4 400 1057
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Table 3. Loading application scheme of the triaxial creep test.

Test No. σ3 (kPa) qf (kPa) q (kPa) Test Time (h)

1

100 288

57 170
2 116 190
3 169 190
4 243 170

5

200 568

117 170
6 220 170
7 330 170
8 459 170

9

400 1057

197 170
10 422 170
11 617 170
12 863 170

2.3. Test Results and Analysis

The creep curves of the shear strain versus the time of undisturbed silty clay under
different stress states and confining pressures were obtained through the triaxial creep
tests, as shown in Figure 6. The corresponding relations of the creep strain rate versus time
are shown in Figure 7 (taking the confining pressure of 200 kPa and the approximately
deviatoric stress of 200 kPa as an example). Figures 6 and 7 show that the instantaneous
and total strain of the soil is more significant when the confining pressure is low, indicating
that the higher confining pressure can improve the instantaneous stiffness of the soil.
Additionally, as the soil gradually consolidates, the creep deformation is also reduced.
Furthermore, the creep deformation of the soil is mainly composed of instantaneous
deformation, and the creep deformation characteristics under low stress is negligible
but gradually become obvious when the stress increases. Nevertheless, the total creep
deformation is relatively not significant and eventually tends to an asymptotic value by
time, showing nonlinear characteristics. The creep strain rate also increases with the
promotion of deviatoric stress, decreases with the increase in confining pressure, and
gradually tends to be stable with time.
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In general, the failure deviatoric stress increases with increasing confining pressure.
Meanwhile, the deformation trends of soil under different confining pressures and devia-
toric stresses are similar. In the case where the deviatoric stress loading value during the
test is always lower than the failure level, the creep deformation presents the following
two stages. In the initial transient creep stage, the creep deformation increases significantly,
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accompanied by a remarkable change in creep rate. As time goes on, it gradually enters
the steady-state creep stage, in which the creep rate tends to zero in the low-stress state or
remains constant in the high-stress state, as is consistent with the findings of Gao [35] and
Deng [39] in coastal soft soils in South China.

To further comprehend the creep characteristics of silty clay, the stress-strain
isochronous curves of different confining pressures and deviatoric stresses are given as
shown in Figure 8. The respective curves follow similar nonlinear trends under different de-
viatoric stress conditions and are related to the loading time. In addition, as the isochronous
curves deviate from the straight line to a greater extent, the degree of nonlinearity becomes
more obvious with increasing deviatoric stress and time. For the sample with constant
deviator stress, the strain is negatively correlated with the change in confining pressure,
which illustrates that the creep behavior of soil is the result of the combined action of time,
stress, and confining pressure.
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Figure 9 shows the relation of volumetric strain versus time under different confining
pressures and deviatoric stresses. Figure 10 is the relation of volumetric strain rate versus
time (taking the confining pressure of 200 kPa and the approximately deviatoric stress
of 200 kPa as an example). It can be seen that, as time goes on, the volume strain rate is
decreasing, and the volume strain shows an increasing trend, which is showing instability
behavior. Similar to the axial strain changing tendency, the volumetric strain decreases
gradually with the increase of the time and deviatoric stress, indicating that the soil dis-
plays shear contraction behavior, which differs from the volumetric deformation changing
mode of Zhanjiang strong structured clay [40]. It is possibly caused by the differences in
consolidation state, stress history, and stress level [41]. In addition, regional differences
also lead to particle compositions and basic mechanical properties of soil in distinguishing.
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Figure 10. Relation of volumetric strain rate versus time: (a) σ3 = 200 kPa; (b) approximately q = 200 
kPa. 

3. Fractal Creep Model
3.1. Basic Theory of the Fractal Derivative

The fractal derivative of time can be expressed as follows by transforming standard 
integer time into fractal time formation [27]: 

Figure 9. Relation of volumetric strain versus time under different confining pressures and stresses:
(a) σ3 = 100 kPa; (b) σ3 = 200 kPa; (c) σ3 = 400 kPa; (d) approximately q = 200 kPa.
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3. Fractal Creep Model
3.1. Basic Theory of the Fractal Derivative

The fractal derivative of time can be expressed as follows by transforming standard
integer time into fractal time formation [27]:

d f (t)
dtβ

= lim
t0→t

f (t)− f (t0)

tβ − tβ
0

, 0 < β (1)

where β represents the fractal derivative order of time t. The significant difference in
the definitions of the fractal and fractional derivatives is that the fractal derivative is a
local operator [30]. According to the assumption of fractal invariance and equivalence,
the fractal derivative can be transformed into classical derivative form through the scale
transformation of t̂ = tβ.

3.2. Fractal Dashpot

The element model is widely used to describe the creep characteristics of soil because
of its rigorous theoretical derivation process and explicit physical meaning of parame-
ters, of which Hooke spring, Newton dashpot, and Abel dashpot elements are the most
common. In recent years, to better represent the rheological properties of viscoelastic
materials, Cai et al. [27] proposed an improved fractal dashpot to replace the Abel dashpot
of fractional derivatives. The unified form of the constitutive equations and the corre-
sponding stress-strain relationships for different models are formulated in Table 4, where η
is Young’s modulus or a viscosity coefficient, α and β denote the order of the derivative,
and Γ(·) is the gamma function. It can be easily understood from the table that the fractal
dashpot and Abel dashpot develop into a Hooke spring when α = β = 0 and evolve into
a Newton dashpot when α = β = 1; between these endpoints, they exhibit viscoelastic
material properties.

To compare the properties of the fractal dashpot and the Abel dashpot, the values
σ = 100 kPa, η = 40 kPa·hβ, β = 0.4 were substituted into the constitutive model, respectively.
The comparative analysis curves of the order β and viscosity coefficient η sensitivity of
the Abel dashpot and fractal dashpot are shown in Figure 11a,b, which demonstrates that
the fractal dashpot has nearly an equivalent effect as the Abel dashpot: the creep strain is
positively correlated with the order and negatively correlated with the viscosity coefficient.
The order and viscosity coefficient can appropriately describe the viscoelastic deformation
and attenuation rate of the material.
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Table 4. Comparison of different component models.

Hooke Spring Newton Dashpot Abel Dashpot Fractal Dashpot

Symbol

Appl. Sci. 2022, 12, 8327 11 of 21 

0

0

0

( ) ( ) ( )lim ,0
t t

df t f t f t
dt t tβ β β β

→

−= <
−  

(1)

where β represents the fractal derivative order of time t. The significant difference in the 
definitions of the fractal and fractional derivatives is that the fractal derivative is a local 
operator [30]. According to the assumption of fractal invariance and equivalence, the frac-
tal derivative can be transformed into classical derivative form through the scale transfor-
mation of t̂ tβ= .

3.2. Fractal Dashpot 
The element model is widely used to describe the creep characteristics of soil because 

of its rigorous theoretical derivation process and explicit physical meaning of parameters, 
of which Hooke spring, Newton dashpot, and Abel dashpot elements are the most com-
mon. In recent years, to better represent the rheological properties of viscoelastic materi-
als, Cai et al. [27] proposed an improved fractal dashpot to replace the Abel dashpot of 
fractional derivatives. The unified form of the constitutive equations and the correspond-
ing stress-strain relationships for different models are formulated in Table 4, where η is 
Young’s modulus or a viscosity coefficient, α and β denote the order of the derivative, and 

( )Γ ⋅  is the gamma function. It can be easily understood from the table that the fractal 
dashpot and Abel dashpot develop into a Hooke spring when 0α β= =  and evolve into 
a Newton dashpot when 1α β= = ; between these endpoints, they exhibit viscoelastic ma-
terial properties. 

To compare the properties of the fractal dashpot and the Abel dashpot, the values σ 
= 100 kPa, η = 40 kPa·hβ, β = 0.4 were substituted into the constitutive model, respectively. 
The comparative analysis curves of the order β and viscosity coefficient η sensitivity of the 
Abel dashpot and fractal dashpot are shown in Figure 11a,b, which demonstrates that the 
fractal dashpot has nearly an equivalent effect as the Abel dashpot: the creep strain is 
positively correlated with the order and negatively correlated with the viscosity coeffi-
cient. The order and viscosity coefficient can appropriately describe the viscoelastic de-
formation and attenuation rate of the material.  

Table 4. Comparison of different component models. 

Hooke Spring Newton Dashpot Abel Dashpot Fractal Dashpot 

Symbol 

Constitutive model 
Relations ( ) ( )d t

t
dt

α

β

ε
σ η=

Relationship of 
stress and strain 

( ) ( )tt t βσ
ε

η
=  ( ) ( )tt t βσ

ε
η

=  ( ) ( )
(1 )
t

t tβ
σ

ε
η β

=
⋅Γ +

 ( ) ( )tt t βσ
ε

η
=  

The order value 0α β= = 1α β= = 0 1α β≤ = ≤  1,0 1α β= ≤ ≤
Creep model traditional model traditional model fractional model fractal model 

Appl. Sci. 2022, 12, 8327 11 of 21 

0

0

0

( ) ( ) ( )lim ,0
t t

df t f t f t
dt t tβ β β β

→

−= <
−  

(1)

where β represents the fractal derivative order of time t. The significant difference in the 
definitions of the fractal and fractional derivatives is that the fractal derivative is a local 
operator [30]. According to the assumption of fractal invariance and equivalence, the frac-
tal derivative can be transformed into classical derivative form through the scale transfor-
mation of t̂ tβ= .

3.2. Fractal Dashpot 
The element model is widely used to describe the creep characteristics of soil because 

of its rigorous theoretical derivation process and explicit physical meaning of parameters, 
of which Hooke spring, Newton dashpot, and Abel dashpot elements are the most com-
mon. In recent years, to better represent the rheological properties of viscoelastic materi-
als, Cai et al. [27] proposed an improved fractal dashpot to replace the Abel dashpot of 
fractional derivatives. The unified form of the constitutive equations and the correspond-
ing stress-strain relationships for different models are formulated in Table 4, where η is 
Young’s modulus or a viscosity coefficient, α and β denote the order of the derivative, and 

( )Γ ⋅  is the gamma function. It can be easily understood from the table that the fractal 
dashpot and Abel dashpot develop into a Hooke spring when 0α β= =  and evolve into 
a Newton dashpot when 1α β= = ; between these endpoints, they exhibit viscoelastic ma-
terial properties. 

To compare the properties of the fractal dashpot and the Abel dashpot, the values σ 
= 100 kPa, η = 40 kPa·hβ, β = 0.4 were substituted into the constitutive model, respectively. 
The comparative analysis curves of the order β and viscosity coefficient η sensitivity of the 
Abel dashpot and fractal dashpot are shown in Figure 11a,b, which demonstrates that the 
fractal dashpot has nearly an equivalent effect as the Abel dashpot: the creep strain is 
positively correlated with the order and negatively correlated with the viscosity coeffi-
cient. The order and viscosity coefficient can appropriately describe the viscoelastic de-
formation and attenuation rate of the material.  

Table 4. Comparison of different component models. 

Hooke Spring Newton Dashpot Abel Dashpot Fractal Dashpot 

Symbol 

Constitutive model 
Relations ( ) ( )d t

t
dt

α

β

ε
σ η=

Relationship of 
stress and strain 

( ) ( )tt t βσ
ε

η
=  ( ) ( )tt t βσ

ε
η

=  ( ) ( )
(1 )
t

t tβ
σ

ε
η β

=
⋅Γ +

 ( ) ( )tt t βσ
ε

η
=  

The order value 0α β= = 1α β= = 0 1α β≤ = ≤  1,0 1α β= ≤ ≤
Creep model traditional model traditional model fractional model fractal model 

Appl. Sci. 2022, 12, 8327 11 of 21 

0

0

0

( ) ( ) ( )lim ,0
t t

df t f t f t
dt t tβ β β β

→

−= <
−  

(1)

where β represents the fractal derivative order of time t. The significant difference in the 
definitions of the fractal and fractional derivatives is that the fractal derivative is a local 
operator [30]. According to the assumption of fractal invariance and equivalence, the frac-
tal derivative can be transformed into classical derivative form through the scale transfor-
mation of t̂ tβ= .

3.2. Fractal Dashpot 
The element model is widely used to describe the creep characteristics of soil because 

of its rigorous theoretical derivation process and explicit physical meaning of parameters, 
of which Hooke spring, Newton dashpot, and Abel dashpot elements are the most com-
mon. In recent years, to better represent the rheological properties of viscoelastic materi-
als, Cai et al. [27] proposed an improved fractal dashpot to replace the Abel dashpot of 
fractional derivatives. The unified form of the constitutive equations and the correspond-
ing stress-strain relationships for different models are formulated in Table 4, where η is 
Young’s modulus or a viscosity coefficient, α and β denote the order of the derivative, and 

( )Γ ⋅  is the gamma function. It can be easily understood from the table that the fractal 
dashpot and Abel dashpot develop into a Hooke spring when 0α β= =  and evolve into 
a Newton dashpot when 1α β= = ; between these endpoints, they exhibit viscoelastic ma-
terial properties. 

To compare the properties of the fractal dashpot and the Abel dashpot, the values σ 
= 100 kPa, η = 40 kPa·hβ, β = 0.4 were substituted into the constitutive model, respectively. 
The comparative analysis curves of the order β and viscosity coefficient η sensitivity of the 
Abel dashpot and fractal dashpot are shown in Figure 11a,b, which demonstrates that the 
fractal dashpot has nearly an equivalent effect as the Abel dashpot: the creep strain is 
positively correlated with the order and negatively correlated with the viscosity coeffi-
cient. The order and viscosity coefficient can appropriately describe the viscoelastic de-
formation and attenuation rate of the material.  

Table 4. Comparison of different component models. 

Hooke Spring Newton Dashpot Abel Dashpot Fractal Dashpot 

Symbol 

Constitutive model 
Relations ( ) ( )d t

t
dt

α

β

ε
σ η=

Relationship of 
stress and strain 

( ) ( )tt t βσ
ε

η
=  ( ) ( )tt t βσ

ε
η

=  ( ) ( )
(1 )
t

t tβ
σ

ε
η β

=
⋅Γ +

 ( ) ( )tt t βσ
ε

η
=  

The order value 0α β= = 1α β= = 0 1α β≤ = ≤  1,0 1α β= ≤ ≤
Creep model traditional model traditional model fractional model fractal model 

Appl. Sci. 2022, 12, 8327 11 of 21 

0

0

0

( ) ( ) ( )lim ,0
t t

df t f t f t
dt t tβ β β β

→

−= <
−  

(1)

where β represents the fractal derivative order of time t. The significant difference in the 
definitions of the fractal and fractional derivatives is that the fractal derivative is a local 
operator [30]. According to the assumption of fractal invariance and equivalence, the frac-
tal derivative can be transformed into classical derivative form through the scale transfor-
mation of t̂ tβ= .

3.2. Fractal Dashpot 
The element model is widely used to describe the creep characteristics of soil because 

of its rigorous theoretical derivation process and explicit physical meaning of parameters, 
of which Hooke spring, Newton dashpot, and Abel dashpot elements are the most com-
mon. In recent years, to better represent the rheological properties of viscoelastic materi-
als, Cai et al. [27] proposed an improved fractal dashpot to replace the Abel dashpot of 
fractional derivatives. The unified form of the constitutive equations and the correspond-
ing stress-strain relationships for different models are formulated in Table 4, where η is 
Young’s modulus or a viscosity coefficient, α and β denote the order of the derivative, and 

( )Γ ⋅  is the gamma function. It can be easily understood from the table that the fractal 
dashpot and Abel dashpot develop into a Hooke spring when 0α β= =  and evolve into 
a Newton dashpot when 1α β= = ; between these endpoints, they exhibit viscoelastic ma-
terial properties. 

To compare the properties of the fractal dashpot and the Abel dashpot, the values σ 
= 100 kPa, η = 40 kPa·hβ, β = 0.4 were substituted into the constitutive model, respectively. 
The comparative analysis curves of the order β and viscosity coefficient η sensitivity of the 
Abel dashpot and fractal dashpot are shown in Figure 11a,b, which demonstrates that the 
fractal dashpot has nearly an equivalent effect as the Abel dashpot: the creep strain is 
positively correlated with the order and negatively correlated with the viscosity coeffi-
cient. The order and viscosity coefficient can appropriately describe the viscoelastic de-
formation and attenuation rate of the material.  

Table 4. Comparison of different component models. 

Hooke Spring Newton Dashpot Abel Dashpot Fractal Dashpot 

Symbol 

Constitutive model 
Relations ( ) ( )d t

t
dt

α

β

ε
σ η=

Relationship of 
stress and strain 

( ) ( )tt t βσ
ε

η
=  ( ) ( )tt t βσ

ε
η

=  ( ) ( )
(1 )
t

t tβ
σ

ε
η β

=
⋅Γ +

 ( ) ( )tt t βσ
ε

η
=  

The order value 0α β= = 1α β= = 0 1α β≤ = ≤  1,0 1α β= ≤ ≤
Creep model traditional model traditional model fractional model fractal model 

Constitutive
modelRelations σ(t) = η

dαε(t)
dtβ

Relationship of
stress and strain ε(t) = σ(t)

η tβ ε(t) = σ(t)
η tβ ε(t) = σ(t)

η·Γ(1+β)
tβ ε(t) = σ(t)

η tβ

The order value α = β = 0 α = β = 1 0 ≤ α = β ≤ 1 α = 1, 0 ≤ β ≤ 1

Creep model traditional model traditional model fractional model fractal model

Appl. Sci. 2022, 12, 8327 12 of 21 

0 2 4 6 8 10
0

5

10

15

20

25

30

Time (h)

Abel dashpotFractal dashpot

A
xi

al
 st

ra
in

 (%
)

 β = 0    β = 0 
 β = 0.2   β = 0.2 
 β = 0.4   β = 0.4 
 β = 0.6   β = 0.6 
 β = 0.8   β = 0.8 
 β = 1    β = 1

0 2 4 6 8 10
0

5

10

15

20

Time (h)

Abel dashpotFractal dashpot

A
xi

al
 st

ra
in

 (%
)

 

 η = 20       η = 20  
 η = 40       η = 40 
 η = 60       η = 60  
 η = 100     η = 100 

(a) (b) 

Figure 11. Sensitivity of the creep strain to the derivative order and viscosity coefficient: (a) σ =100 
kPa and η = 40 kPa·hβ; (b) σ = 100 kPa and β = 0.4. 

3.3. Fractal Burgers Model 
The traditional Burgers model is composed of a Maxwell model and a Kelvin model 

in series, as shown in Figure 12a. The creep modulus of the traditional Burgers model is 
expressed as 

( ) 1 1 1 1
k

k

E t

m m k

J t t e
E E

η

η
− 

= + + −  
 

 (2)

where σ and ε are the stress and strain, E and η are Young’s modulus and the viscosity 
coefficient, and the subscripts m and k represent Maxwell and Kelvin elements in a fractal 
form, respectively. 

Since the typical traditional Burgers model is unable to exactly fit the initial stage of 
viscoelastic creep, the fractional Burgers model replacing the Newton dashpot with the 
Abel dashpot was proposed, as shown in Figure 12b. The Caputo fractional derivative 
theory can be expressed as [42] 

( 1)

( )
( ) 1 ( ) , 1

1 ) ( )

n

n
d f t f d n n
dt n t

β

β β
τ τ β

β τ

+

−= − ≤ <
Γ + − −（

 (3) 

where β is the order of time fractal derivative, n represents a rational number, ( )Γ ⋅  de-
notes the gamma function. 

The fractional Burgers creep modulus based on Caputo fractional derivative theory 
can be expressed as [43] 

( ) 1 1 1 1 ,0 1
(1 )m m k k

t tJ t E
E E

ββ

β β
η β η

     = + + − − ≤ ≤  Γ +     

 (4)

where ( )Eβ ⋅  is a single-parameter Mittag-Leffler function proposed as [44]

( ) ( )0
, 0

1

n

n

xE x
nβ β

β

∞

=

= >
Γ +  (5)

This fractional derivative creep model can accurately fit the initial stage of viscoelas-
tic creep and has been widely promoted and applied. However, it has the defect of the 
complex solution process of the fractional derivative convolution integral [45]. 

In this paper, we attempt to construct the fractal Burgers model by replacing the Abel 
dashpot with a fractal dashpot, as shown in Figure 12c. Under the premise of ensuring the 

Figure 11. Sensitivity of the creep strain to the derivative order and viscosity coefficient:
(a) σ =100 kPa and η = 40 kPa·hβ; (b) σ = 100 kPa and β = 0.4.

3.3. Fractal Burgers Model

The traditional Burgers model is composed of a Maxwell model and a Kelvin model
in series, as shown in Figure 12a. The creep modulus of the traditional Burgers model is
expressed as

J(t) =
1

Em
+

1
ηm

t +
1
Ek

(
1− e−

Ek
ηk

t
)

(2)

where σ and ε are the stress and strain, E and η are Young’s modulus and the viscosity
coefficient, and the subscripts m and k represent Maxwell and Kelvin elements in a fractal
form, respectively.

Since the typical traditional Burgers model is unable to exactly fit the initial stage of
viscoelastic creep, the fractional Burgers model replacing the Newton dashpot with the
Abel dashpot was proposed, as shown in Figure 12b. The Caputo fractional derivative
theory can be expressed as [42]

dβ f (t)
dtβ

=
1

Γ(n + 1− β)

∫ f (n+1)(τ)

(t− τ)(β−n)
dτ, n− 1 ≤ β < n (3)

where β is the order of time fractal derivative, n represents a rational number, Γ(·) denotes
the gamma function.
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The fractional Burgers creep modulus based on Caputo fractional derivative theory
can be expressed as [43]

J(t) =
1

Em
+

1
ηm

tβ

Γ(1 + β)
+

1
Ek

[
1− Eβ

(
−
(

t
ηk

)β
)]

, 0 ≤ β ≤ 1 (4)

where Eβ(·) is a single-parameter Mittag-Leffler function proposed as [44]

Eβ(x) =
∞

∑
n=0

xn

Γ(1 + βn)
, β > 0 (5)

This fractional derivative creep model can accurately fit the initial stage of viscoelastic
creep and has been widely promoted and applied. However, it has the defect of the complex
solution process of the fractional derivative convolution integral [45].

In this paper, we attempt to construct the fractal Burgers model by replacing the Abel
dashpot with a fractal dashpot, as shown in Figure 12c. Under the premise of ensuring
the accuracy of the simulated creep behavior, the calculation efficiency is improved by
avoiding the local operator of convolutional integration.

According to the component element rules between Maxwell and Kelvin, the stress–
strain relationship of the fractal Burgers model can be described as

ε = εm + εk
σ = σm = σk
σm
ηm

+ 1
Em

dσm
dtβ = dεm

dtβ

σk
ηk

= Ek
ηk

εk +
dεk
dtβ

(6)

The constitutive relation is

σ +

(
ηm + ηk

Ek
+

ηm

Em

)
dσ

dtβ
+

ηmηk
EmEk

d
dtβ

(
dσ

dtβ
) =ηm

dε

dtβ
+

ηmηk
Em

d
dtβ

(
dε
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) (7)
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By performing a Laplace transform on Equation (6), the following equation can
be obtained 

ε = εm + εk
σ = σm = σk
σm
ηms +

1
Em

σm = εm

σk
ηks −

Ek
ηks εk = εm

(8)

which can be simplified as

ε =

(
1

Em
+

1
ηms

+
1

Ek(1 +
ηk
Ek

s)

)
σ (9)

Through the time scale transformation of t̂ = tβ, and combined with the inverse
Laplace transform, the fractal Burgers creep equation can be expressed as

ε(t) =
[

1
Em

+
1

ηm
tβ +

1
Ek

(
1− e−

Ek
ηk

tβ
)]

σ0 (10)

The creep modulus of the fractal Burgers model is formulated by

J(t) =
1

Em
+

1
ηm

tβ +
1
Ek

(
1− e−

Ek
ηk

tβ
)

(11)

4. Model Verification and Parametric Sensitivity Analysis
4.1. Fractal Burgers Model Verification

By fitting the test data according to the fractal Burgers model, as shown in Equation (10),
with the least-squares method, the fractal Burgers model parameters under a confining
pressure of 200 kPa are shown in Table 5. The test data and fitting curves of the fractal
Burgers model and the fractional Burgers model are shown in Figure 13.

Table 5. Creep parameters of fractal Burgers model.

σ3 (kPa) q (kPa) β Em (kPa) ηm (kPa·hβ) Ek (kPa) ηk (kPa·hβ) R2

200

117 0.7 200 47483 347 1169 0.996
220 0.7 96 16889 1026 1841 0.999
330 0.4 64 5546 511 1045 0.999
459 0.5 56 18917 266 1872 0.999

Figure 13 shows that both the fractal Burgers model and the fractional Burgers model
effectively describe the triaxial creep characteristics of the first two stages of the soil under
low deviatoric stress, while the fractal Burgers model can achieve higher accuracy in terms
of the ability to fit the test data, which verifies the applicability of the fractal Burgers
model to describe the creep characteristics of the soft soil layer. In addition, the fractal
Burgers model applies a local operator that avoids a convolution integral, making it more
computationally convenient and thus more applicable to practical problems.
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Figure 13. Comparison of test data with fractal Burgers and fractional Burgers models: (a) q = 117 
kPa; (b) q = 220 kPa; (c) q = 330 kPa; (d) q = 459 kPa.  

Figure 13. Comparison of test data with fractal Burgers and fractional Burgers models: (a) q = 117 kPa;
(b) q = 220 kPa; (c) q = 330 kPa; (d) q = 459 kPa.

4.2. Model Comparison

The component models that are widely used to describe the elastoplastic creep charac-
teristics of soft soil mainly include Merchant, traditional Burgers, five-element generalized
Kelvin, and fractional Burgers models [26], which are composed of the most basic compo-
nents connected by different connection methods, as shown in Figures 12 and 14, where
E and η are Young’s modulus and the viscosity coefficient, and the subscripts 0, 1 and 2
represent Hooke spring, the first Kelvin element and the second Kelvin element in a fractal
form, respectively. To compare and analyze the fitting accuracy of different models, the
fitting analyses of the test data using the corresponding constitutive models are shown in
Figure 15. From the comparison, it can be seen that in the case of the same type of basic
components, the greater the number of model components is, the higher the accuracy of
the model fit, but the greater the computational workload. A comparison of the fractal
Burgers and traditional Burgers models suggests that replacing the Newton dashpot with
the fractal dashpot will achieve a higher fitting accuracy in the case of an equal number of
components, and the calculation process is easy to implement.



Appl. Sci. 2022, 12, 8327 15 of 20

Appl. Sci. 2022, 12, 8327 15 of 21 
 

Table 5. Creep parameters of fractal Burgers model. 

σ3 (kPa) q (kPa) β Em (kPa) ηm (kPa·hβ) Ek (kPa) ηk (kPa·hβ) R2 

200 

117 0.7 200 47483 347 1169 0.996 
220 0.7 96 16889 1026 1841 0.999 
330 0.4 64 5546 511 1045 0.999 
459 0.5 56 18917 266 1872 0.999 

Figure 13 shows that both the fractal Burgers model and the fractional Burgers model 
effectively describe the triaxial creep characteristics of the first two stages of the soil under 
low deviatoric stress, while the fractal Burgers model can achieve higher accuracy in terms 
of the ability to fit the test data, which verifies the applicability of the fractal Burgers model 
to describe the creep characteristics of the soft soil layer. In addition, the fractal Burgers 
model applies a local operator that avoids a convolution integral, making it more compu-
tationally convenient and thus more applicable to practical problems. 

4.2. Model Comparison 
The component models that are widely used to describe the elastoplastic creep char-

acteristics of soft soil mainly include Merchant, traditional Burgers, five-element general-
ized Kelvin, and fractional Burgers models [26], which are composed of the most basic 
components connected by different connection methods, as shown in Figures 12 and 14, 
where E and η are Young’s modulus and the viscosity coefficient, and the subscripts 0, 1 
and 2 represent Hooke spring, the first Kelvin element and the second Kelvin element in 
a fractal form, respectively. To compare and analyze the fitting accuracy of different mod-
els, the fitting analyses of the test data using the corresponding constitutive models are 
shown in Figure 15. From the comparison, it can be seen that in the case of the same type 
of basic components, the greater the number of model components is, the higher the ac-
curacy of the model fit, but the greater the computational workload. A comparison of the 
fractal Burgers and traditional Burgers models suggests that replacing the Newton dash-
pot with the fractal dashpot will achieve a higher fitting accuracy in the case of an equal 
number of components, and the calculation process is easy to implement. 

E0

a ηk

Ek

 

E0

b ηk1 ηk2

Ek1 Ek2

 

Figure 14. Schematic of different models: (a) Merchant model; (b) five-element generalized Kelvin 
model. 

Figure 15 also shows that the model fitting accuracy mainly depends on the curve 
slope and inflection point. This test involves only two stages of creep deformation: the 
initial curve slope determines the initial creep deformation, the final curve slope deter-
mines the long-term creep deformation value, and the inflection point determines the 
turning point of creep from one stage to another. Comparing the Merchant model and the 
Burgers model, it can be found that the Abel dashpot in the Maxwell model has a signifi-
cant impact on the curve inflection point and slope. The Merchant model has an obvious 
inflection point delay, and the slope tends to zero with time going on, while the Burgers 
model exhibits the opposite phenomenon, which is not obvious in a short period but will 
become more pronounced in long-term observations. Comparing the traditional Burgers 
model with the fractal Burgers model, it can be found that the existence of derivative order 
β mainly plays a role in reducing the slope of the final curve. In general, the fitting laws 

Figure 14. Schematic of different models: (a) Merchant model; (b) five-element generalized
Kelvin model.

Appl. Sci. 2022, 12, 8327 16 of 21 
 

of all the above models tend to be consistent with the test data, and the difference lies in 
the degree of fitting coincidence. For low-stress soil, increasing the number of components 
can improve the fitting accuracy, while for high-stress soil, the fractional derivative and 
fractal derivative methods can effectively improve the fitting accuracy. 

0 30 60 90 120 150 180
0.5

0.6

0.7

0.8

0.9

1.0

1.1

σ3 = 200 kPa 
 q = 117 kPa

A
xi

al
 st

ra
in

 (%
)

Creep time (h)

 Test data   
 Merchant model
 Burgers model   
 Generalized Kelvin model
 Fractional Burgers model
 Fractal Burgers model

 

0 30 60 90 120 150 180
2.2

2.4

2.6

2.8

3.0

σ3 = 200 kPa 
 q = 220 kPa

A
xi

al
 st

ra
in

 (%
)

Creep time (h)

 Test  data   
 Merchant model
 Burgers model   
 Generalized Kelvin model
 Fractional Burgers model
 Fractal Burgers model

 
(a) (b) 

0 30 60 90 120 150 180
5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

σ3 = 200 kPa 
  q = 330 kPa

A
xi

al
 st

ra
in

 (%
)

Creep time (h)

 Test  data   
 Merchant model
 Burgers model   
 Generalized Kelvin model
 Fractional Burgers model
 Fractal Burgers model

 

0 30 60 90 120 150 180
8.0

8.5

9.0

9.5

10.0

σ3 = 200 kPa 
 q = 459 kPa

A
xi

al
 st

ra
in

 (%
)

Creep time (h)

 Test  data   
 Merchant model
 Burgers model   
 Generalized Kelvin model
 Fractional Burgers model
 Fractal Burgers model

 
(c) (d) 

Figure 15. Comparison of test data and the fitting curves of different models: (a) q = 117 kPa; (b) q 
= 220 kPa; (c) q = 330 kPa; (d) q = 459 kPa. 

4.3. Fractal Burgers Model Parametric Sensitivity Analysis 
The above analysis shows that the fractal Burgers model is suitable for describing the 

creep characteristics of soft soil. As seen from Equation (10), the parameters affecting the 
creep characteristics mainly include Young’s modulus E, the viscosity coefficient η of the 
dashpot, the order of the fractal derivative β, and the stress level σ. To better analyze the 
influence of model parameters, according to the results of the abovementioned test and 
the fractal Burgers model fitting, taking 200 kPa confining pressure and 220 kPa deviatoric 
stress as an example, the fitting parameters of the proposed model are shown in Table 5, 
and the parameter sensitivity analysis is carried out for the creep model to clarify the in-
fluence mechanism of each parameter. 
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Figure 15 also shows that the model fitting accuracy mainly depends on the curve
slope and inflection point. This test involves only two stages of creep deformation: the
initial curve slope determines the initial creep deformation, the final curve slope determines
the long-term creep deformation value, and the inflection point determines the turning
point of creep from one stage to another. Comparing the Merchant model and the Burgers
model, it can be found that the Abel dashpot in the Maxwell model has a significant impact
on the curve inflection point and slope. The Merchant model has an obvious inflection
point delay, and the slope tends to zero with time going on, while the Burgers model
exhibits the opposite phenomenon, which is not obvious in a short period but will become
more pronounced in long-term observations. Comparing the traditional Burgers model
with the fractal Burgers model, it can be found that the existence of derivative order β

mainly plays a role in reducing the slope of the final curve. In general, the fitting laws of
all the above models tend to be consistent with the test data, and the difference lies in the
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degree of fitting coincidence. For low-stress soil, increasing the number of components can
improve the fitting accuracy, while for high-stress soil, the fractional derivative and fractal
derivative methods can effectively improve the fitting accuracy.

4.3. Fractal Burgers Model Parametric Sensitivity Analysis

The above analysis shows that the fractal Burgers model is suitable for describing the
creep characteristics of soft soil. As seen from Equation (10), the parameters affecting the
creep characteristics mainly include Young’s modulus E, the viscosity coefficient η of the
dashpot, the order of the fractal derivative β, and the stress level σ. To better analyze the
influence of model parameters, according to the results of the abovementioned test and
the fractal Burgers model fitting, taking 200 kPa confining pressure and 220 kPa deviatoric
stress as an example, the fitting parameters of the proposed model are shown in Table 5,
and the parameter sensitivity analysis is carried out for the creep model to clarify the
influence mechanism of each parameter.

First, by changing Young’s modulus of the Maxwell and Kelvin elements, the influence
of Young’s modulus on the creep curve is analyzed. As Figure 16a indicates, Em has a
negative linear correlation with the creep strain, which affects the initial transient elastic
deformation, and Ek has a negative nonlinear correlation with the creep strain, affecting
the creep rate and inflection point, and the effect is particularly pronounced when the creep
strain is small.
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The fractal Burgers model is characterized by the use of fractal derivative theory to
solve the nonlinear creep problem, and the influence of the derivative order on the creep
characteristics is significant. Leaving the other parameters unchanged and only changing
the derivative order of the model, the rheological curves corresponding to the different
derivative orders can be obtained, as shown in Figure 16b. The derivative order is positively
correlated with the creep value and deformation rate, of which βm significantly affects the
creep rate, and βk has an obvious impact on the inflection point of the creep curve. The
presence of a derivative order causes the slope of the curve to appear to be linear.

To study the influence law of the viscosity coefficient parameters, creep curves can
be obtained by changing the viscosity coefficient, as shown in Figure 16c. The viscosity
coefficient is negatively correlated with the value and deformation rate of the creep, where
ηm significantly affects the creep rate and ηk has a more significant influence on the
inflection point of the creep curve; that is to say, ηk represents the speed rate when the
deformation tends to be in steady state during the creep stage. A larger value of ηk indicates
that the soil would take longer to reach the steady state. In addition, the presence of a
viscosity coefficient makes the curve nonlinear.

The effect of the stress level σ can be directly observed from the test result in Figure 6,
and the influence of the stress level on creep characteristics is significant. At the low-
stress level, the creep deformation is mainly determined by the transient deformation
value, while at the high-stress level, it is the result of the combination of transient creep
values and steady-state strain rates. The higher the stress level is, the greater the creep
deformation value.

According to the sensitivity analysis of the above key parameters, the creep rate is
largely limited by the derivative order; the viscosity coefficient mainly affects the mor-
phology of the curve, and Young’s modulus and the stress level significantly affect the
deformation value of the soil. For the two model elements in the fractal Burgers model,
the Maxwell component-related parameters mainly affect the initial creep value and rate,
and the Kelvin component mainly affects the creep curve inflection point and morphol-
ogy. In fact, σ/Em is an instantaneous elastic strain that can be recovered when unloaded;

σ/Ek(1− e
−Ek
ηk

tβ

) is an elastic after-effect deformation that decays by a negative exponent,
which is reflected in the first stage of the creep curve; σ/ηm is characterized as an unrecov-
erable strain of the steady-state strain rate and is embodied in the second stage of the creep
curve. In general, creep characteristics are the result of the simultaneous combination of
multiple elements and factors.

5. Discussions

The classical Burgers model and fractional Burgers model were improved by intro-
ducing the fractal dashpot, and the creep characteristics of the soft soil sampled from a
riverside in Jiangsu were analyzed in combination with the test results. The proposed frac-
tal Burgers model can accurately describe the creep characteristics of the soil, which verifies
the applicability and convenience of describing the viscoelastic plastic characteristics of
the soil with a fractal dashpot. However, the fractal derivative creep model mentioned in
this paper is only a mathematical expression based on the fractal derivative, which is a
preliminary result of the integer derivative of time [27]. As a relatively new component, the
exact physical significance of fractal dashpot and the physical mechanisms of describing
the model are still questions that need to be further studied.

The complete curve of the classical creep test consists of three stages: instantaneous
creep, steady-state creep, and accelerated creep [32]. In the actual project, the failure
deviatoric stress state usually does not occur, so the deviatoric stress state of the creep test is
lower than the failure stress, and the creep curve mainly shows the creep characteristics of
the first two stages [35,39]. By carrying out the failure deviatoric stress creep test of the soil,
the characteristics of the three stages of creep can be further understood by considering the
failure process [33]. In addition, the current traditional creep model is established under
a specified constant stress level and confining pressure, and the model parameters are
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determined by fitting the test data. However, the laboratory test samples are limited, and
the influence of confining pressure and stress at any state on the creep model parameters
are not quantified. How to deduce the creep model parameters related to any stress and
confining pressure state through the limited data of the laboratory test will have higher
practical research significance and value.

The laboratory creep test of the soil is generally carried out in a limited period of
time (ranging from a few days to several months). The proposed creep model can well
characterize the results of the short-term creep test, but the service period of the actual
project is nearly 100 years, which belongs to long-term creep, and the geological conditions
at the project site are complex—whether the proposed model can accurately characterize the
long-term creep behavior and how to speculate the long-term creep behavior in the actual
project through the laboratory test is a problem that needs future study. At present, there is
an adopted method to build a numerical simulation model through the laboratory test and
predict the long-term creep of the actual project [46], but more engineering measurement
cases are still needed to verify it.

6. Conclusions

This paper establishes an improved fractal Burgers creep constitutive model based on
the fractal derivative by replacing the Abel dashpot with a fractal dashpot in the fractional
Burgers model, and an analytical solution is given. According to the fitting analysis of
the results of the triaxial test, the relevant parameters in the model are determined, and
sensitivity analyses of the parameters are further performed. The conclusions are as follows:

1. The analysis of the triaxial consolidation drainage test indicates that the stress level
and confining pressure have a significant influence on the creep characteristics of the
soil. Under the state where the stress level is lower than the failure stress, the creep
strain curve presents a transient creep stage and a steady-state creep stage. The soil
creep curves exhibit nonlinear viscoelasticity characteristics.

2. By validating the test data at different stress levels and confining pressures, the
proposed fractal creep model has wide applicability for describing the transient
and steady stages of soft soil based on triaxial creep tests. Compared with other
creep models widely used in geotechnical materials, the proposed model can more
accurately simulate the creep behavior of soil. This model has the advantages of fewer
parameters and high accuracy.

3. Parameter sensitivity analysis has shown that creep characteristics are the result of the
combined action of multiple elements and multiple factors at the same time. Among
them, the fractal derivative order is the key factor controlling the strain rate. The
viscosity coefficient mainly affects the nonlinear morphology of the curve, and the
creep curve of different modes can be obtained by adjusting the derivative order and
viscosity coefficient in the equation.

Author Contributions: Conceptualization, Q.Y., J.D., G.D., W.G., F.Z. and M.Z.; software, Q.Y.;
validation, Q.Y.; formal analysis, Q.Y.; investigation, Q.Y.; resources, Q.Y.; data curation, Q.Y.;
writing—original draft preparation, Q.Y.; writing—review and editing, J.D., G.D., W.G., M.Z. and
F.Z.; visualization, Q.Y.; supervision, J.D., G.D. and W.G.; project administration, J.D., G.D. and W.G.;
funding acquisition, J.D., G.D. and W.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded by the National Key Research and Development Program of
China, project number 2021YFB1600300; the National Natural Science Foundation of China, project
number 52178317, 52078128 and the Natural Science Foundation of Jiangsu Province, project number
BK20200675. The authors are grateful for their support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Appl. Sci. 2022, 12, 8327 19 of 20

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the nature of this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhu, S.; Yin, Y.; Li, B.; Wei, Y.J. Shear creep characteristics of weak carbonaceous shale in thick layered Permian limestone,

southwestern China. J. Earth Syst. Sci. 2019, 128, 28. [CrossRef]
2. Miao, H.B.; Wang, G.H. Effects of clay content on the shear behaviors of sliding zone soil originating from muddy interlayers in

the Three Gorges Reservoir, China. Eng. Geol. 2021, 294, 106380. [CrossRef]
3. Wang, S.; Wang, J.G.; Wu, W.; Cui, D.S.; Su, A.J.; Xiang, W. Creep properties of clastic soil in a reactivated slow-moving landslide

in the Three Gorges Reservoir Region, China. Eng. Geol. 2020, 267, 105493. [CrossRef]
4. Miao, F.S.; Zhao, F.C.; Wu, Y.P.; Li, L.W.; Xue, Y.; Meng, J.J. A novel seepage device and ring-shear test on slip zone soils of

landslide in the Three Gorges Reservoir area. Eng. Geol. 2022, 307, 106779. [CrossRef]
5. Yao, Y.P.; Huang, J.; Wang, N.D.; Luo, T.; Han, L.M. Prediction method of creep settlement considering abrupt factors. Transp.

Geotech. 2020, 22, 100304. [CrossRef]
6. Ding, P.; Xu, R.Q.; Zhu, Y.H.; Wen, M.J. Fractional derivative modelling for rheological consolidation of multilayered soil under

time-dependent loadings and continuous permeable boundary conditions. Acta Geotech. 2022, 17, 2287–2304. [CrossRef]
7. Jessen, J.; Cudmani, R. Rate- and Time-Dependent Mechanical Behavior of Foam-Grouted Coarse-Grained Soils. J. Geotech.

Geoenvironmental Eng. 2022, 148, 04022022. [CrossRef]
8. Oliveira, P.J.V.; Santos, S.L.; Correia, A.A.S.; Lemos, L.J.L. Numerical prediction of the creep behaviour of an embankment built

on soft soils subjected to preloading. Comput. Geotech. 2019, 114, 103140. [CrossRef]
9. Sun, Y.; Gao, Y.; Shen, Y. Mathematical aspect of the state-dependent stress-dilatancy of granular soil under triaxial loading.

Géotechnique 2019, 69, 158–165. [CrossRef]
10. Li, D.W.; Zhang, C.C.; Ding, G.S.; Zhang, H.; Chen, J.H.; Cui, H.; Pei, W.S.; Wang, S.F.; An, L.S.; Li, P.; et al. Fractional

derivative-based creep constitutive model of deep artificial frozen soil. Cold Reg. Sci. Technol. 2020, 170, 102942. [CrossRef]
11. Singh, A.; Mitchell, J.K. General stress-strain-time function for soils. J. Soil Mech. Found Eng. Div. 1968, 94, 21–46. [CrossRef]
12. Mesri, G.; Febres-Cordero, E.; Shields, D.R.; Castro, A. Shear stress –strain-time behaviour of clays. Géotechnique 1981, 31, 537–552.

[CrossRef]
13. Schiessel, H.; Metzler, R.; Blumen, A.; Nonnenmacher, T.F. Generalized viscoelastic models: Their fractional equations with

solutions. J. Phys. A Math. Gen. 1995, 28, 65–67. [CrossRef]
14. Sun, J. Rheology of Geotechnical Materials and Its Engineering Application; China Construction Industry Press: Beijing, China, 1999.
15. Nishihara, M. Rheological properties of rocks I and II. Doshisha Eng. Rev. 1958, 8, 32–35, 85–115.
16. Hou, F.; Lai, Y.M.; Liu, E.L.; Luo, H.W.; Liu, X.Y. A creep constitutive model for frozen soils with different contents of coarse

grains. Cold Reg. Sci. Technol. 2018, 145, 119–126. [CrossRef]
17. Zhang, Z.L.; Wang, T. On creep behavior of mudstone in the Tianshui area, China. Bull. Eng. Geol. Environ. 2022, 81, 321.

[CrossRef]
18. Ye, J.H.; Haiyilati, Y.; Cao, M.; Zuo, D.J.; Chai, X.W. Creep characteristics of calcareous coral sand in the South China Sea. Acta

Geotech. 2022, 148, 04022022. [CrossRef]
19. Tian, X.W.; Xiao, H.B.; Li, Z.Y.; Su, H.Y.; Ouyang, Q.W.; Luo, S.P.; Yu, X.P. A Fractional Order Creep Damage Model for Microbially

Improved Expansive Soils. Front. Earth Sci. 2022, 10, 942844. [CrossRef]
20. Xu, B.X.; Cui, Z.D. Investigation of a fractional derivative creep model of clay and its numerical implementation. Comput. Geotech.

2020, 119, 103387. [CrossRef]
21. Xiang, G.J.; Yin, D.S.; Cao, C.X.; Gao, Y.F. Creep modelling of soft soil based on the fractional flow rule: Simulation and parameter

study. Appl. Math. Comput. 2021, 403, 126190. [CrossRef]
22. Liang, Y.J.; Guan, P.Y. Improved Maxwell model with structural dashpot for characterization of ultraslow creep in concrete.

Constr. Build. Mater. 2022, 329, 127181. [CrossRef]
23. Wu, F.; Zhou, X.H.; Ying, P.; Li, C.B.; Zhu, Z.M.; Chen, J. A Study of Uniaxial Acoustic Emission Creep of Salt Rock Based on

Improved Fractional-Order Derivative. Rock Mech. Rock Eng. 2022, 55, 1619–1631. [CrossRef]
24. Zhang, L.; Zhou, H.W.; Wang, X.Y.; Wang, L.; Su, T.; Wei, Q.; Deng, T.F. A triaxial creep model for deep coal considering

temperature effect based on fractional derivative. Acta Geotech. 2022, 17, 1739–1751. [CrossRef]
25. Liao, M.K.; Lai, Y.M.; Liu, E.L.; Wan, X.S. A fractional order creep constitutive model of warm frozen silt. Acta Geotech. 2017, 12,

377–389. [CrossRef]
26. Zhang, Z.; Huang, C.J.; Jin, H.J.; Feng, W.J.; Jin, D.D.; Zhang, G.K. A creep model for frozen soil based on the fractional

Kelvin–Voigt’s model. Acta Geotech. 2022, 271, 1–17. [CrossRef]
27. Cai, W.; Chen, W.; Xu, W.X. Characterizing the creep of viscoelastic materials by fractal derivative models. Int. J. Non-Linear Mech.

2016, 87, 58–63. [CrossRef]

http://doi.org/10.1007/s12040-018-1051-z
http://doi.org/10.1016/j.enggeo.2021.106380
http://doi.org/10.1016/j.enggeo.2020.105493
http://doi.org/10.1016/j.enggeo.2022.106779
http://doi.org/10.1016/j.trgeo.2019.100304
http://doi.org/10.1007/s11440-021-01417-0
http://doi.org/10.1061/(ASCE)GT.1943-5606.0002763
http://doi.org/10.1016/j.compgeo.2019.103140
http://doi.org/10.1680/jgeot.17.T.029
http://doi.org/10.1016/j.coldregions.2019.102942
http://doi.org/10.1061/JSFEAQ.0001084
http://doi.org/10.1680/geot.1981.31.4.537
http://doi.org/10.1088/0305-4470/28/23/012
http://doi.org/10.1016/j.coldregions.2017.10.013
http://doi.org/10.1007/s10064-022-02818-5
http://doi.org/10.1007/s11440-022-01634-1
http://doi.org/10.3389/feart.2022.942844
http://doi.org/10.1016/j.compgeo.2019.103387
http://doi.org/10.1016/j.amc.2021.126190
http://doi.org/10.1016/j.conbuildmat.2022.127181
http://doi.org/10.1007/s00603-021-02741-3
http://doi.org/10.1007/s11440-021-01302-w
http://doi.org/10.1007/s11440-016-0466-4
http://doi.org/10.1007/s11440-021-01390-8
http://doi.org/10.1016/j.ijnonlinmec.2016.10.001


Appl. Sci. 2022, 12, 8327 20 of 20

28. Liang, Y.J.; Ye, A.Q.; Chen, W.; Gatto, R.G.; Colon-Perez, L.; Mareci, T.H.; Magin, R.L. A fractal derivative model for the
characterization of anomalous diffusion in magnetic resonance imaging. Commun. Nonlinear Sci. Numer. Simul. 2016, 39, 529–537.
[CrossRef]

29. Reyes-Marambio, J.; Moser, F.; Gana, F.; Seveion, B.; Calderom-Muno, W.R.; Palma-Behnke, R.; Estevez, P.A.; Orchard, M.; Cortes,
M. A fractal time thermal model for predicting the surface temperature of air-cooled cylindrical Li-ion cells based on experimental
measurements. J. Power Sources 2016, 306, 636–645. [CrossRef]

30. Mashayekhi, S.; Hussaini, M.Y.; Oates, W. A physical interpretation of fractional viscoelasticity based on the fractal structure of
media: Theory and experimental validation. J. Mech. Phys. Solids 2019, 128, 137–150. [CrossRef]

31. Su, X.L.; Chen, W.; Xu, W. Characterizing the rheological behaviors of non-Newtonian fluid via a viscoelastic component: Fractal
dashpot. Adv. Mech. Eng. 2017, 9, 968738. [CrossRef]

32. Wang, R.; Zhou, Z.; Zhou, H.W.; Liu, J.F. A fractal derivative constitutive model for three stages in granite creep. Results Phys.
2017, 7, 2632–2638. [CrossRef]

33. Yao, W.M.; Hu, B.; Zhan, H.B.; Ma, C.; Zhao, N.H. A novel unsteady fractal derivative creep model for soft interlayers with
varying water contents. KSCE J. Civ. Eng. 2019, 23, 5064–5075. [CrossRef]

34. Kabwe, E.; Karakus, M.; Chanda, E.K. Isotropic damage constitutive model for time-dependent behaviour of tunnels in squeezing
ground. Comput. Geotech. 2020, 127, 103738. [CrossRef]

35. Gao, L.C.; Dai, G.L.; Wan, Z.H.; Zhu, M.X.; Zhu, W.B. Prediction of triaxial drained creep behaviors of interactive marine-terrestrial
deposit soils by fractal derivative. Eur. J. Environ. Civ. Eng. 2022, 26, 3065–3078. [CrossRef]

36. GB 50021-2001; Code for Investigation of Geotechnical Engineering. China Architecture Publishing & Media Co., Ltd.: Beijing,
China, 2001.

37. GB/T 50123-2019; Standard for Soil Test Method. China Planning Press: Beijing, China, 2019.
38. Yuan, J.Y.; Xu, C.; Zhao, C.F.; He, Z.M.; Gao, Y.B.; Su, X.; Chen, B.; Wei, D.D. Geotechnical Test and In-Situ Test; Tongji University

Press: Shanghai, China, 2004.
39. Deng, H.Y.; Dai, G.L.; Qiu, G.Y.; Chen, Z.S.; Lin, X. Drained creep test and component creep model of soft silty clay in Hangzhou

Bay. J. Southeast Univ. Nat. Sci. Ed. 2021, 51, 318–324.
40. Kong, L.W.; Zhang, X.W.; Guo, A.G.; Cai, Y. Creep behavior of Zhanjiang strong structured clay by drained triaxial test. Chin. J.

Rock Mech. Eng. 2011, 30, 365–372.
41. Zhao, D.; Gao, Q.F.; Hattab, M.; Hicher, P.Y.; Yin, Z.Y. Microstructural evolution of remolded clay related to creep. Transp. Geotech.

2020, 24, 100367. [CrossRef]
42. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA; London, UK, 1999.
43. Zhou, H.W.; Wang, C.P.; Mishnaevsky, L.; Duan, Z.Q.; Ding, J.Y. A fractional derivative approach to full creep regions in salt rock.

Mech. Time-Depend. Mater. 2013, 17, 413–425. [CrossRef]
44. Bateman, H.; Erdelyi, A. Higher Transcendental Functions; McGraw-Hill Company: New York, NY, USA, 1953.
45. Zhang, C.C.; Zhu, H.H.; Shi, B.; Liu, L.C. Theoretical investigation of interaction between a rectangular plate and fractional

viscoelastic foundation. J. Rock Mech. Geotech. Eng. 2015, 45, 324–335. [CrossRef]
46. Yuan, Y.; Liu, R.; Qiu, C.L.; Tan, R.J. Establishment and Application of Creep Constitutive Model Related to Stress Level of Soft

Soil. J. Tianjin Univ. 2018, 51, 711–719.

http://doi.org/10.1016/j.cnsns.2016.04.006
http://doi.org/10.1016/j.jpowsour.2015.12.037
http://doi.org/10.1016/j.jmps.2019.04.005
http://doi.org/10.1177/1687814017699765
http://doi.org/10.1016/j.rinp.2017.07.051
http://doi.org/10.1007/s12205-019-1820-5
http://doi.org/10.1016/j.compgeo.2020.103738
http://doi.org/10.1080/19648189.2020.1791256
http://doi.org/10.1016/j.trgeo.2020.100367
http://doi.org/10.1007/s11043-012-9193-x
http://doi.org/10.1016/j.jrmge.2014.04.007

	Introduction 
	Test Procedure and Results 
	Soil Properties 
	Test Procedure 
	Test Results and Analysis 

	Fractal Creep Model 
	Basic Theory of the Fractal Derivative 
	Fractal Dashpot 
	Fractal Burgers Model 

	Model Verification and Parametric Sensitivity Analysis 
	Fractal Burgers Model Verification 
	Model Comparison 
	Fractal Burgers Model Parametric Sensitivity Analysis 

	Discussions 
	Conclusions 
	References

