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Abstract: In the power transmission of doubly-fed induction generators (DFIGs), sub-synchronous
oscillation (SSO) can occur due to the influence of series compensation capacitance and long-distance
transmission. SSO not only affects the output of the DFIG but also leads to oscillation diffusion. In
order to solve the problem of disturbance in the control of the DFIG rotor side converter (RSC) under
SSO, an adaptive quasi-resonant controller is proposed for the suppression of SSO. This strategy
focuses on the propagation path of and frequency change in the SSO in the RSC control system and
suppresses the SSO current in the wideband through the cooperative control of the back-stepping
controller and the adaptive quasi-resonant controller. In this way, the stator-side output of the DFIG
will not be affected by SSO, thus avoiding the amplification of the sub-synchronous power of the line
by the DFIG. A simulation model and experimental platform were built to verify the suppression
effect of this control strategy on the DFIG stator sub-synchronous current at different SSO frequencies.
The results show that the proposed strategy has a good suppression effect on broadband SSO.

Keywords: doubly-fed induction generator; frequency of the sub-synchronous oscillation changes;
rotor side converter; DFIG decoupling model; back-stepping controller; adaptive quasi-resonant controller

1. Introduction

With the development of modern power systems, the proportion of wind energy
and other new energies in power systems is increasing. Doubly-fed induction generators
(DFIGs), as the most commonly used wind turbine type, often need to transmit over
long distances during power transmission [1]. In the process of long-distance power
transmission, in order to reduce the energy loss in the line and improve the transmission
efficiency, a scheme for connecting compensation capacitors in series in the transmission
line is often adopted [2]. However, due to the fact that the DFIG converter contains a large
number of power electronic components, the interaction between the converters and the
series compensation capacitors may cause sub-synchronous oscillations (SSO) in the wind
power system [3,4]. Mild SSOs can cause the output power of wind-driven generators
to oscillate, which can affect the lower line; if it is serious, it can cause the wind-driven
generator to be disconnected from the grid, and the thermal power and other generator sets
will be cut off [5–7]. In 2009, the power system of the US state of Texas experienced high
line series compensation, causing sub-synchronous oscillation resulting in wind generator
failures [8]. Since 2012, due to the high degree of series compensation in transmission lines,
a number of synchronous oscillation accidents have occurred in doubly-fed wind farms
in Guyuan district, Hebei Province, China, resulting in the waste of wind energy and the
off-gridding of a large number of wind turbines [9]. Therefore, research on the suppression
of SSO in DFIG grid-connected systems has important significance.

In order to suppress the accidents caused by the SSO of DFIG grid-connected systems,
scholars from various countries have proposed many methods. Among them, adding
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an SSO damper and improving the control strategy for the converter are the most com-
mon [10,11]. Shair introduced an SSO damper on the dq axis of the RSC current control to
alleviate the influence of SSO by improving the damping of the RSC control system [12].
Leon proposed to add a double-damping compensation filter to the RSC to improve the sys-
tem damping and increase the flexibility of the control system, reducing the oscillation and
overshoot of the rotor voltage and thereby mitigating the SSO phenomenon in DFIG wind
farms [13]. The abovementioned suppression measures involving addition of dampers are
relatively traditional, and the difficulty of implementation is low. However, the applica-
bility of these strategies is not strong, and the suppression effect on the SSO is not flexible
enough; furthermore, they can generally only eliminate oscillations at specific frequencies.
Improving the converter control strategy is also a common way of suppressing SSOs in
DFIG systems. Zhang et al. designed a notch filter on the power feedback branch and
current feedback branch of an RSC in accordance with the impedance scanning method [14].
This scheme has excellent inhibitory effects on low-frequency oscillations but no obvious
inhibitory effects on oscillations at 15 Hz and above. Meng et al. utilized a quasi-resonant
controller’s static-free adjustment capability for AC signals. The quasi-resonant controller
was used on the rotor side to suppress the stator sub-synchronous current and also on the
grid side to suppress the sub-synchronous oscillation of the DC side voltage and reactive
power, but the case of SSO frequency variation was not considered [15].

Aiming at the SSO problem in DFIG systems, this paper proposes an RSC back-
stepping SSO suppression strategy based on an adaptive quasi-resonant controller. First,
the mechanism of SSO generation was analyzed and the mathematical model for the RSC
under the SSO state was established. By analyzing the process of the interference of grid
SSO on RSC control, it was determined that there are three propagation paths for the SSO
in the RSC control system, and the influence of SSO frequency changes on the generator
stator current was also analyzed. Drawing on the Lyapunov stability theorem, an RSC
current back-stepping controller based on the DFIG decoupling model was designed to
replace the traditional PI controller that made it possible simplify the control of the RSC
and reduce the SSO input into the RSC system path. At the same time, in order to suppress
the variable frequency SSO, an adaptive quasi-resonant controller was designed to track
the stator current in the SSO state, and its output was input to the RSC control system as a
compensation amount to compensate the output voltage command of the RSC controller,
finally eliminating the SSO component in the stator current and achieving a stable output
state. Through simulation and experimental verification, the proposed back-stepping SSO
suppression strategy based on an adaptive quasi-resonant controller was found to be able
to stabilize the generator stator current output at different SSO frequencies and had a good
suppression effect on the SSO of the DFIG system.

2. Analysis of Influence of SSO on DFIG System Operation
2.1. The Establishment of the Mathematical Model for an RSC with SSO

The DFIG control model adopted in this study is shown in Figure 1. This double-
closed-loop vector control (VC) model is one of the most widely used DFIG control models.
The VC control model has the advantages of utilizing mature regulation technology and
showing good steady-state performance and strong robustness [16]. The grid-side converter
in the figure is represented by the term “GSC”, while the SSO component of the power grid
is marked with red arrows.
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Figure 1. Schematic diagram of SSO propagation in RSC control system. 
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subscript “sub”, and “*” represents the reference value for the input signal.  
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In Equation (1), urd and urq are the d and q components of the rotor voltage, respec-

tively; Rr is the rotor winding resistance; rd
~i  and rq

~i
 are the d and q components of the 

rotor current; Ls is the self-inductance of the stator winding; Lr is the rotor winding 
self-inductance; Lm is the mutual inductance between the equivalent windings of the 

stator and rotor; rs
2
m /1 LLL−=σ  is the leakage flux coefficient of the motor; sω  is the 

slip angle frequency, and r1s ωωω −= ; ω1 is the synchronization angular frequency; and 
ωr is the rotor angular frequency. 

According to Figure 1, when the grid produces SSO, the sub-synchronous current in 
the grid is fed into the stator side of the DFIG. Through the electromagnetic induction 
effect, the stator sub-synchronous current induces the corresponding sub-synchronous 
current on the generator rotor side. At the same time, the oscillation of the stator current 
also causes the DFIG power oscillation, resulting in an RSC power outer-ring output in-
struction oscillation. The waveform distortion and phase shift of the stator and rotor side 
currents make the oscillating components affect the RSC control circuit, causing the con-
trol command signal generated by the RSC to oscillate, which further affects the actual 
current in the rotor and causes the DFIG output power to oscillate. 

In conclusion, when the grid SSO is generated, since the RSC control is disturbed by 
the oscillation in the stator current, the DFIG stator current produces the corresponding 
sub-synchronous component. The stator three-phase sub-synchronous current generated 
by the DFIG is calculated as follows: 

sa _sub n n in

sb _sub n n in

sc _sub n n in

Δ 2 cos( )

Δ 2 cos( 5 / 3 )

Δ 2 cos( / 3 )

i h I t

i h I t

i h I t

ω φ π φ

ω φ π φ

ω φ π φ

 = + + −
 = + + −


= + + −  

(2)

Figure 1. Schematic diagram of SSO propagation in RSC control system.

As can be seen from Figure 1, the SSO is input into the RSC control system through
three paths successively. These three paths are the power outer loop, the current inner
loop and the feedforward decoupling compensation. All oscillations are indicated by the
subscript “sub”, and “*” represents the reference value for the input signal.

Utilizing the voltage equation, the flux linkage equation and the power calculation for
the DFIG system, the mathematical model for the RSC current control under SSO can be
obtained through coordinate transformation [17,18]: urd = Rr ĩrd + σLr

dĩrd
dt −ωs[− Lm

ω1Ls
Us + σLr ĩrd]

urq = Rr ĩrq + σLr
dĩrq
dt + ωsσLr ĩrq

(1)

In Equation (1), urd and urq are the d and q components of the rotor voltage, respec-
tively; Rr is the rotor winding resistance; ĩrd and ĩrq are the d and q components of the
rotor current; Ls is the self-inductance of the stator winding; Lr is the rotor winding self-
inductance; Lm is the mutual inductance between the equivalent windings of the stator
and rotor; σ = 1− L2

m/LsLr is the leakage flux coefficient of the motor; ωs is the slip angle
frequency, and ωs = ω1 −ωr; ω1 is the synchronization angular frequency; and ωr is the
rotor angular frequency.

According to Figure 1, when the grid produces SSO, the sub-synchronous current in
the grid is fed into the stator side of the DFIG. Through the electromagnetic induction effect,
the stator sub-synchronous current induces the corresponding sub-synchronous current on
the generator rotor side. At the same time, the oscillation of the stator current also causes the
DFIG power oscillation, resulting in an RSC power outer-ring output instruction oscillation.
The waveform distortion and phase shift of the stator and rotor side currents make the
oscillating components affect the RSC control circuit, causing the control command signal
generated by the RSC to oscillate, which further affects the actual current in the rotor and
causes the DFIG output power to oscillate.

In conclusion, when the grid SSO is generated, since the RSC control is disturbed by
the oscillation in the stator current, the DFIG stator current produces the corresponding
sub-synchronous component. The stator three-phase sub-synchronous current generated
by the DFIG is calculated as follows:

∆isa_sub =
√

2|h|In cos(ωnt + φin + π − φ)

∆isb_sub =
√

2|h|In cos(ωnt + φin + 5π/3− φ)

∆isc_sub =
√

2|h|In cos(ωnt + φin + π/3− φ)

(2)

In Equation (2), φ represents the phase difference between the sub-synchronous current
component generated by the RSC control and the sub-synchronous current component
in the original stator and h is the amplitude amplification ratio between the two; In is
the RMS value of the original stator sub-synchronous current component; ωn is the angle
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frequency of the grid sub-synchronous oscillation; and ϕin is the initial phase angle of the
stator sub-synchronous current in the d-q coordinate system.

Superimposing the sub-synchronous current output from the DFIG results in its
superimposition with the original sub-synchronous current in the stator. When they satisfy
a certain phase relation, the amplitude of the sub-synchronous current with frequency
ωn is increased. At this time, the line with higher series compensation in the power grid
interacts with the RSC, and a positive feedback link is formed between them to generate
the sub-synchronous current of the stator, resulting in the divergence of oscillation.

2.2. Analysis of Influence of SSO Frequency Variation on DFIG System

By analyzing the mathematical model of the RSC under SSO, we can understand the
divergence process in the sub-synchronous current in the DFIG system. However, the
establishment of the corresponding mathematical model in Section 2.1 was based on the
assumption that the oscillation frequency within the input DFIG system is a fixed value. The
change in the oscillation frequency may have an impact on the output of the DFIG system
and the control effect of the SSO suppression strategy. In order to verify the influence of
the SSO frequency variation on the designed oscillation suppression strategy for the DFIG
system, as done in [15], simulation and analysis of an SSO suppression strategy for a DFIG
system based on a quasi-resonant controller were carried out.

Firstly, the output of the DFIG with the grid SSO was observed, and the simulation
results are shown in Figure 2.
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Figure 2. The stator current waveform output by the DFIG.

Figure 2 shows a comparison of the DFIG output stator current waves before and
after the generation of the power grid SSO. The simulated condition was that, at 0.5 s,
the grid frequency was 10 Hz and the oscillation amplitude was 20% of the grid base
wave voltage. It can be seen from Figure 2 that the DFIG output stator current was a
three-phase sinusoidal alternating current before 0.5 s. After 0.5 s, due to the influence of
the SSO of the power grid, an oscillating current with a frequency of 10 Hz was generated
in the three-phase current of the DFIG stator, which is consistent with the aforementioned
oscillation mechanism.

Next, the influence of the SSO frequency change on the corresponding oscillation
suppression strategy was analyzed. In this study, the effects of the SSO suppression
strategy on a DFIG based on a quasi-resonant controller were investigated with different
frequency oscillations. The simulation results are shown in Figure 3.

Figure 3 shows the waveforms of the DFIG stator A-phase output current with oscilla-
tion frequencies of 10 Hz and 15 Hz, respectively. Suppose that the oscillation suppression
frequency of the resonant controller is 10 Hz, and a quasi-resonant suppression link is
added to the RSC control system at 0.7 s. According to Figure 3a, when the grid SSO
frequency is 10 Hz, an oscillation component with a frequency of 10 Hz appears in the
DFIG stator current. When the simulation was run 0.7 s, a quasi-resonant suppression
ring was added into the RSC control system to suppress the internal oscillation of the
DFIG system. At this point, the oscillation component of the DFIG output stator current
was greatly weakened, and the quasi-resonant controller had a significant effect on SSO
suppression. In Figure 3b, the SSO frequency has been changed to 15 Hz, and the oscillation
suppression frequency of the quasi-resonant controller is still 10 Hz. In this simulation, an
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oscillation component with a frequency of 15 Hz is generated in the DFIG output stator
current, and the quasi-resonant controller is also used to suppress the SSO at the same
time. As the SSO frequency is beyond the control range of the quasi-resonant controller,
the oscillation component of the DFIG stator current is basically not controlled, and the
quasi-resonant controller’s suppression effect on the SSO is obviously reduced.
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In conclusion, the generation of a stator sub-synchronous current can disturb the
output of the DFIG system, while the change in the oscillation frequency may cause the
failure of the SSO suppression strategy within the DFIG system, such that suppression of
the SSO at different frequencies is required during SSO suppression.

3. Analysis of SSO Inhibition Mechanism in the DFIG System

After establishing the mathematical model for the RSC under SSO, it is apparent
that the stator oscillating current is input into the RSC control system through multiple
paths, which increases the difficulty of SSO suppression. Therefore, we used the back-
stepping control method to improve the RSC control strategy and reduce the number of SSO
propagation paths. In view of the influence of the frequency change in the sub-synchronous
current on the SSO suppression strategy, an adaptive quasi-resonant controller was used to
suppress the sub-synchronous current component in the RSC system.

3.1. Introduction to the Principle of Back-Stepping Control

At present, the control methods commonly used for nonlinear systems are back-
stepping control and sliding mode control. Sliding mode control provides excellent immu-
nity to external random excitation, system parameter variations and unconsidered external
disturbances. However, sliding mode control needs to consider the chattering effect of the
sliding mode structure, and the greater the amplitude of the control switching, the more
obvious the chattering problem is. Most research on wind turbine sliding mode control
focuses on improvements to power generation efficiency, often ignoring the system stability
problem caused by the change in control strategy during the power tracking process, which
easily increases the fatigue load on the system during the control process and reduces the
operating life of the wind turbine [19].

In the process of reducing the order of the nonlinear system, the back-stepping method
can also reduce errors. Controlling the system through the back-stepping method entails
decomposing the more complex high-order system to obtain subsystems with less order
compared to the system order. If the back-stepping method is combined with other control
algorithms, dynamic control over the controlled system can be achieved despite the inter-
ference of unknown disturbance factors [20–22]. Compared with sliding mode control, the
design process for a back-stepping controller strictly follows the system stability function
and does not consider stability problems such as chattering. The structure of back-stepping
controllers is clear, and the dynamic response speed is fast.
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Set up the following system:
.
xj = gj(xj)xj+1 + fj(xj).

xn = gn(x)u + fn(x), 1 ≤ j ≤ n− 1
y = x1

(3)

In Equation (3), xj represents the state variable, and xj = (x1, x2, · · · , xj)
T ; gj and f j

represent continuous functions; u represents the input control variable of the system; and y
represents the system output variable.

When using the back-stepping method, it is necessary to design a virtual control
variable (e.g., x2d) for the control of the subsystem. Then, the error is set to e1 and a
Lyapunov function is designed: {

e1 = x1 − xd
V1 = 1

2 e2
1

(4)

where x1 is the system output, xd is the output target value, and V1 is the Lyapunov
function used to determine the stability of the system.

It is necessary to determine the dummy control variables that make the derivative of
the Lyapunov function less than zero, as follows:{ .

V1 = e1 ·
.
e1 = e1 · [g1(x1)x2d + f1(x1)−

.
xd]

x2d = [
.
xd − f1(x1)− k1e1]g1(x1)

−1 (5)

x2d can make x1 approach and stabilize at xd, and the virtual control variables x3d, x4d,
· · ·, u of other subsystems can be calculated with the same method, so that x2, x3, · · ·, xn
are gradually stabilized at x2d, x3d, . . . , xnd. Finally, all state variables in the system are
eventually tracked smoothly. The above process is recursive across the whole system, so
that all subsystems can achieve stable tracking and, finally, all the virtual control variables
can be integrated to realize the design of the complete control rate.

3.2. Back-Stepping Control Design Based on DFIG Decoupling Model

Traditional RSC controls use PI controllers, but the control performance of PI con-
trollers is poor when a grid oscillates, so they cannot track the command value. Moreover,
when an RSC current loop uses a PI controller, it is necessary to calculate the amount of
decoupling compensation in order to eliminate the coupling relationship between the d-
and q-axis components of the rotor current and realize independent control over active
and reactive power. When the grid sub-synchronous current is input into the DFIG system,
the amount of decoupling compensation in the inner loop of the RSC current is disturbed,
resulting in the failure of decoupling. Therefore, it is necessary to decouple the RSC control
model, which can not only eliminate the influence of the disturbance of the decoupling
compensation in the case of oscillation, reducing the number of SSO propagation paths, but
also facilitate the design of a back-stepping controller that can improve the system stability.

The DFIG control model decoupling process is shown in Appendix A. The back-
stepping method is adopted to control the decoupled DFIG system. Assume that− npLmUs

Jω1Ls
= γ,

σLrLmUs
ω1Ls

= µ, D
J = F, TL

J = T and σLr = g. Equation (A8) in Appendix A can then be
rewritten as: 

.
ĩrd = −µωs + gu∗rd.

ĩrq = gu∗rq
.

ωr = γĩrd − Fωr + T

(6)
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Let i∗rd and i∗rq be the instruction values of the d and q components of the rotor current,
respectively. According to the form of Equation (4), the error relationship between the
actual value and the expected value can be obtained as shown in Equation (7):{

e1 = ĩrd − i∗rd
e2 = ĩrq − i∗rq

(7)

Taking the derivation of Equation (7), we get:
.
e1 =

.
ĩrd −

.
i
∗
rd = −µωs + gu∗rd

.
e2 =

.
ĩrq −

.
i
∗
rq = gu∗rq

(8)

For the e1 construction states of Equations (7) and (18):

.
e1 = −k1e1 + k1e1 + gu∗rd − µωs

= −k1e1 + gu∗rd − µωs + k1 ĩrd − k1i∗rd
(9)

Constructing the u∗rd control rate:

gu∗rq = k1i∗rd − k1 ĩrd + µωs (10)

and therefore: u∗rq = k1
g (i
∗
rd − ĩrd) +

µωs
g , k1 > 0.

In the above equation, k1 is the control gain, and the Lyapunov function is constructed
according to Equation (4).

λ1 =
1
2

e2
1 (11)

In accordance with Equation (5), we can take the derivative of Equation (11) and insert
Equations (9) and (10) into Equation (11) to obtain the following formula:

.
λ1 = −k1e2

1 ≤ 0 (12)

It can be seen that λ1 ≥ 0 and
.
λ1 ≤ 0; the subsystem is stable and can control the rotor

d-axis current ĩrd.
The same process is used for the e2 construction states in Equations (7) and (8):

.
e2 = −k2e2 + k2e2 + gu∗rq = −k2e2 + gu∗rq + k2 ĩqr − k2i∗qr (13)

Constructing u∗rq control rate:

gu∗rq = k1i∗qr − k1 ĩqr (14)

and therefore: u∗rq = k2
g (i
∗
qr − ĩqr), k2 > 0.

In the above equation, k2 is the control gain, and the Lyapunov function is constructed
according to Equation (4).

λ2 =
1
2

e2
2 (15)

In accordance with Equation (8), we can take the derivative of Equation (15), and
substitute Equations (13) and (14) into it:

.
λ2 = −k2e2

2 ≤ 0 (16)

It can be seen that λ2 ≥ 0 and
.
λ2 ≤ 0; the subsystem is stable and can control the rotor

q-axis current ĩrq.
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Under the control rate described by Equations (10) and (14), the following equation
can be obtained using Equations (9) and (13):{ .

e1 = −k1e1.
e2 = −k2e2

(17)

The Lyapunov function is constructed from Equations (4) and (17):

λ =
1
2

e2
1 +

1
2

e2
2 (18)

In accordance with Equation (5), the derivation of Equation (18) can be obtained:

.
λ = −k1e2

1 − k2e2
2 ≤ 0 (19)

It can be seen from Equations (18) and (19) that, under the control of the control rate
described by Equations (10) and (14), the RSC control system is stable. Therefore, the
controller designed according to Equations (10) and (14) can meet the stability requirements
for the DFIG system under oscillation. At the same time, the design of the control rate
simplifies the control strategy for traditional RSC systems and reduces the number of
paths of the oscillation input into the RSC control system. The SSO is only input into
the RSC system through the power outer loop and the current inner loop and the sub-
synchronous component does not need to be considered in the feedforward decoupling
compensation amount.

3.3. Quasi-Resonant Controller

In this study, an RSC back-stepping controller was designed based on the DFIG
decoupling model, simplifying the RSC control strategy. Although the back-stepping
controller design could meet the system stability requirements, it did not completely
suppress the sub-synchronous disturbance in the RSC system, so it was difficult make
the output of the DFIG system converge to the expected value. In order to realize the
suppression of the stator sub-synchronous current by the DFIG system, an adaptive quasi-
resonant controller was used to track the stator sub-synchronous current, and the control
voltage output by the quasi-resonant controller was input into the RSC control system.

The transfer function of the quasi-resonant controller is shown in Equation (20) [23,24]:

G(s) =
2KRωcs

s2 + 2ωcs + ω2
0

(20)

In Equation (20), KR is the gain coefficient, ωc is the cutoff frequency and ω0 is the
signal frequency that the quasi-resonant controller needs to control.

A Bode diagram was used to analyze the performance of the resonant controller
described by Equation (20), with ω0 set to 50 Hz, and the result is shown in Figure 4.
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It can be seen from Figure 4 that, when ωc is a fixed value, the amplitude gain in
the quasi-resonant controller is positively correlated with the magnitude of KR. When
KR is a fixed value, the amplitude and phase of the quasi-resonant controller tend to be
flat with the increase of ωc; that is, the magnitude of ωc is negatively correlated with the
influence of G(s), which is affected by the frequency change. However, no matter how ωc
and KR change, when ω0 is determined, the quasi-resonant observation control has the best
tracking effect on this frequency signal. Therefore, it is feasible to use the quasi-resonant
controller to control the SSO component in the DFIG system.

Traditional quasi-resonant controllers only control AC signals of specific frequencies.
However, when the input signal frequency deviates greatly from the control frequency
ω0, the gain provided by the quasi-resonant controller is greatly reduced. An adaptive
algorithm is required for sub-synchronous current frequency changes.

A simplified transformation of Equation (20) can be obtained as follows:

G(s) =
Hs

s2 + HKs + MH
(21)

In the equation, H = 2KRωc, K = 1
KR

and M =
ω2

0
2KRωc

.
It can be seen from Equation (21) that the value of the parameter M is directly related to

the frequency of the control target signal; that is, M directly determines the tracking of the
input signal frequency by the quasi-resonant controller. Therefore, the key link in designing
a frequency-adaptive quasi-resonant controller is realizing the real-time adjustment of
M when the frequency of the input signal changes through an adaptive design. At this
time, the adaptive quasi-resonant controller outputs a control signal that changes with the
frequency of the input signal in order to achieve control over the input signal.

4. SSO Suppression Strategy for DFIG System
4.1. Design of SSO Suppression Strategy for DFIG System

From the mathematical model of the RSC control with SSO, it can be deduced that the
voltage command value output by the RSC controller under the oscillation condition can
be expressed as: {

u∗rd = u∗rd0 + u∗rd_sub
u∗rq = u∗rq0 + u∗rq_sub

(22)

When the SSO is input into the DFIG system, the sub-synchronous current component
in the stator current has the most serious impact on the RSC control system. To suppress
the sub-synchronous component in the DFIG stator current, the output voltage command
value of the RSC controller in the d-q coordinate system should be divided into two parts.
One part comprises the fundamental wave components u∗rd0 and u∗rq0 and the other part
comprises the secondary synchronous components u∗rd0_sub and u∗rq0_sub. The fundamental
wave component is the DC component, and the secondary synchronous component is
the AC component. u∗rd0 and u∗rq0 can control the active and reactive power output by the
DFIG, and u∗rd0_sub and u∗rq0_sub need to achieve the suppression of the sub-synchronous
component in the DFIG stator current.

In the previous analysis, the back-stepping controller could control the fundamental
components u∗rd0 and u∗rq0. The AC components u∗rd0_sub and u∗rq0_sub were controlled by
a quasi-resonant controller. In order to suppress the frequency-varying sub-synchronous
current, an adaptive quasi-resonant controller can be used to track it. By optimizing the
RSC control strategy, a back-stepping SSO suppression strategy can be designed for the
adaptive quasi-resonant controller. The control block diagram is shown in Figure 5.
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The synergistic process of the RSC controller and quasi-resonant controller with SSO
occurs as follows: when oscillation occurs, the rotor d-axis current ĩrd and q-axis current ĩrq
containing oscillation components are input into the back-stepping controller and, at the
same time, the collected synchronous angular frequency ω1 and rotor angular frequency
ωr are input into the back-stepping controller. The rotor voltage control commands u∗rd and
u∗rq are obtained through the calculations of the back-stepping controller. u∗rd and u∗rq can
realize decoupling control over the DFIG output active and reactive power.

Due to the existence of the oscillating current, it is difficult for the back-stepping
controller to make the DFIG output converge to the desired value. In order to suppress the
stator sub-synchronous current, a direct resonant control was adopted in this study [25].
The stator current d and q components are input into the adaptive quasi-resonant controller,
and the resonant controller controls the oscillating current. Since the resonance controller
has no adjustment effect on the DC component, the final output resonance control voltages
u∗d and u∗q can only control the corresponding stator oscillation current. Through the RSC
current control, u∗d and u∗q interact with the sub-synchronous resonant electromotive force
induced on the rotor side of the DFIG to generate a sub-synchronous harmonic current,
thereby suppressing the sub-synchronous current in the DFIG stator and realizing the
sinusoidal output of the stator current. The synergy of the RSC current controller and the
adaptive quasi-resonant controller ensures that the RSC is not disturbed by the oscillation
and can still maintain the normal operation of the DFIG when grid SSO occurs.

4.2. Improved Controller Performance Analysis

The basic principle of the control strategy proposed in this paper is explained in the
analysis in Section 4.1. This section analyzes the control performance of the strategy for
sub-synchronous oscillation of a power grid.

When the grid voltage is oriented along the d-axis, Equations (23) and (24) can be
obtained from the model of the DFIG:{

usd = |us| = Us ≈ −ω1ψsq
usq = 0 ≈ ω1ψsd

(23)

Isdq =
1
Ls

ψsdq −
Lm

Ls
Irdq (24)
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where usd is the d-axis component of the grid voltage vector; usq is the grid voltage of the q-
axis component; us is the grid voltage vector; Us is the grid voltage vector magnitude;ω1 is
the rotational angular velocity of the grid voltage vector; ψsq is the q-axis component of the
flux linkage vector; ψsd is the d-axis component of the flux linkage vector; Isdq is the dq-axis
component of the stator current; Ls is the stator inductance; Lm is the mutual inductance
between the stator and rotor; and Irdq is the dq-axis component of the rotor current.

The block diagram for the RSC current vector control embedded in the adaptive
quasi-resonant (R) and back-stepping controller is shown in Figure 6.
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and back-stepping controller.

In the case of grid voltage orientation, utilizing Figure 6 and Equations (23) and
(24), the equivalent transfer function of an RSC based on adaptive quasi-resonance and
back-stepping control strategies can be written as:

Isdq = F1(s)Usdq + H1(s)I∗rdq (25)

In the vector control of the d-axis grid voltage, we only consider the characteristics for
the protection of the DFIG wind power system against sub-synchronous harmonic voltage
disturbance along the d-axis. In the block diagram for the current vector control embedded
in the adaptive quasi-resonant and back-stepping controller, F1(s) is used to measure the
disturbance on the forward channel of the DFIG; that is, the anti-disturbance capability of
the sub-synchronous harmonic voltage. H1(s) is used to represent the dynamic response
capability of the current loop. From Figure 6, the following equation can be deduced:

F1(s) =
G1(s)/Ls + G1(s)Gback(s)GP(s)/Ls + G1(s)G2(s)GP(s)Lm/Ls

1 + Gback(s)GP(s) + GR(s)GP(s)Lm/Ls
(26)

H1(s) =
Gback(s)GP(s)Lm/Ls

1 + Gback(s)GP(s) + GR(s)GP(s)Lm/Ls
(27)

We can substitute F1(s) and H1(s) into the parameters of Table 1 to draw the Bode
diagrams of F1(s) and H1(s), as shown in Figures 7 and 8.

Table 1. DFIG experimental platform-related parameters.

Parameter Value Parameter Value

Rated power 15 kW Rotor leakage reactance Lrσ 0.0022 H
Stator voltage 200 V Moment of inertia of the motor J 0.39 Kg·m2

Mutual inductance resistance Lm 0.0427 H Pole logarithm of motor np 3
Stator resistance Rs 0.379 Ω DC side voltage Vdc 400 V

Stator leakage reactance Lsσ 0.0011 H Inductance into the line Lg 0.005 H
Rotor resistance Rr 0.314 Ω Motor magnetic flux leakage coefficient σ 0.07288

Rated frequency 50 Hz DC bus capacitance C 2200 µF
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For the dynamic response of the current, it can be seen from Figure 8 that, when KR 
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Figure 7 shows the Bode diagram of the frequency response of F1(s). For the DFIG
wind power system, the amplitude gain of F1(s) at the sub-synchronous resonance fre-
quency should be as small as possible; this allows the anti-disturbance ability of the
sub-synchronous voltage component in the power grid to be improved. It is not difficult
to see from Equation (25) that the influence of the sub-synchronous voltage Usdq_sub on
the stator current Isdq is affected by F1(s): the smaller the amplitude of F1(s) is, the smaller
the interference of the sub-synchronous harmonic voltage with the DFIG system and the
greater the robustness of the system. As can be seen from Figure 7, the amplitude gain in the
improved controller at the resonant frequency is significantly smaller than the amplitude
gain at other frequencies of the curve and, compared with when a resonant controller is not
used, the amplitude gain at the resonance point is reduced by about 14 dB, which confirms
that, in the case of sub-synchronous oscillation, a resonant controller can effectively reduce
the effect of the sub-synchronous harmonic voltage on the influence of the generator stator
current. Therefore, the proposed strategy based on adaptive quasi-resonant RSC back-
stepping control has a strong anti-disturbance capability with regard to sub-synchronous
voltages, which can significantly enhance the robustness of the system.

For the dynamic response of the current, it can be seen from Figure 8 that, when KR
or ωc increases, the amplitude of the rotor current of the DFIG control system decreases,
resulting in a slower dynamic response speed in the current loop. As can be further seen in
Figure 8, the rotor current may oscillate due to the appearance of a resonant peak and even
cause the system to become unstable. Therefore, the choice of the resonance proportional
coefficient KR and the bandwidth ωc should be considered as a compromise.

5. Simulation and Experiment
5.1. Simulation Analysis

In this paper, a back-stepping SSO suppression strategy based on an adaptive quasi-
resonant controller is proposed. The performance of the RSC current controller had to be
simulated and analyzed. Assuming that the initial speed of the DFIG is 900 r/min, the
expected value of DFIG output active power will be 4000 W at this time, while the expected
value of the DFIG output reactive power will always be 0 Var. The values of the power
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output of the DFIG with the improved controller and the PI controller were compared
through a simulation. The simulation results are shown in Figure 9.
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30 Hz. Figure 11 shows that, with an oscillation frequency of 10 Hz, since the control 
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controller no longer exerted a suppression effect on the sub-synchronous current. When 
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Figure 9. DFIG output power using different controllers.

In order to simulate the unpredictable noise signal during the motor control, a set of
random numbers were added to the rotor d and q currents, respectively, and the amplitude
was limited to within 5% of the actual current component. It can be seen from Figure 9 that
both the improved controller and the PI controller could control the DFIG output power
and make it reach the desired value. However, due to the interference of the noise signal,
the DFIG power controlled by the PI controller exhibited an overshoot and oscillation
phenomenon, and it took a period of time to stabilize the DFIG output at the desired value.
However, there was no integral link in the back-stepping controller, so it was not necessary
to consider the problem of integral saturation. The outputs of the DFIG controlled by the
two controllers were smooth; less affected by small disturbances, such as noise signals; and
could converge to the target value quickly.

Figure 10 shows the improved controller’s tracking of changes in power. The simula-
tion condition is that, at 0.5 s, the expected value of the DFIG output active power changed
from 4000 W to 4500 W. It can be seen from the simulation results that, when the expected
value of the active power changed suddenly, the DFIG active power controlled by the
back-stepping controller changed to the expected value, which was reached after 0.1 s~0.2 s.
In this process, the output reactive power of the DFIG is still 0 VAR, which verifies that
the RSC controlled by the improved controller could realize power decoupling control of
the DFIG.
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Next, the oscillation suppression effect of the back-stepping SSO suppression strategy
based on the adaptive quasi-resonant controller was verified at different SSO frequencies.

Figure 11 compares the adaptive quasi-resonant controller with the quasi-resonant
controller, verifying that the adaptive quasi-resonant controller could still achieve the
control target when the SSO frequency changed. The adaptive quasi-resonant controller was
used with an oscillation frequency of 10 Hz, while that of the resonant controller was 30 Hz.
Figure 11 shows that, with an oscillation frequency of 10 Hz, since the control frequency
of the quasi-resonant controller was fixed at 30 Hz, the oscillation frequency deviated
significantly from the control range of the controller, so the quasi-resonant controller no
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longer exerted a suppression effect on the sub-synchronous current. When the adaptive
quasi-resonant controller was used, the control frequency of the controller changed with
the oscillation frequency, so the frequency change in the sub-synchronous current did not
affect the performance of the adaptive quasi-resonant controller.
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Figure 11. Comparison of inhibition effects between two resonant controllers with SSO frequency
of 10 Hz: (a) quasi-resonant controller; (b) stator current single phase magnification; (c) adaptive
quasi-resonant controller; (d) stator current single phase magnification.

Finally, the DFIG stator power and capacitance voltage waveforms before and after
SSO inhibition were observed. The expected values for the stator active power and reactive
power were 4000 W and 0 Var, and the capacitance voltage was maintained at 400 V.

As shown in Figure 12, when the power grid SSO was generated, both the DFIG stator
side output power and the capacitance voltage oscillated, with the power oscillation being
the most severe. When the oscillatory inhibition strategy proposed here was adopted,
the DFIG stator-side reactive power oscillation was basically suppressed and, while the
active power still oscillated, the amplitude of the oscillation was reduced by nearly 60%
compared with before the inhibition. After being subjected to the control of the adaptive
quasi-resonant controller, the sub-synchronous component in the DC bus voltage was
also reduced. As the DFIG grid side was still affected by the SSO, the oscillation was still
generated in the DC bus voltage, but the impact of the DC bus voltage fluctuation on the
RSC control was weaker.

In summary, the simulation analysis verified the effectiveness of the control strategy
proposed in this paper. In the case of uncertain perturbations in the system, the response
speed controlled by the improved controller was faster than that of a traditional PI control,
and the DFIG output power could be adjusted quickly and smoothly. The adaptive quasi-
resonant controller showed a good inhibition effect on the SSO component in the DFIG
stator current, and when the SSO frequency of the grid changed, the SSO frequency could
be tracked and the variable frequency SSO component could be suppressed.



Appl. Sci. 2022, 12, 8344 15 of 23

Appl. Sci. 2022, 12, 8344 15 of 24 
 

changed with the oscillation frequency, so the frequency change in the sub-synchronous 
current did not affect the performance of the adaptive quasi-resonant controller. 

0.9 1 1.1 1.2 1.3 1.4

−30
−20
−10

0
10
20
30
40
50

t(s)

Ia
/Ib

/Ic
(A

)

1.5 1.6 1 1.1 1.2 1.3 1.4

0
10
20
30
40
50

Ia
(A

)

t(s)
1.5

Oscillation link Quasi-resonant control

−50
−40

−30
−20
−10

−50
−40

 
(a)                       (b) 

0.9 1 1.1 1.2 1.3 1.4
t(s)

Ia
/Ib

/Ic
(A

)

1.5 1.6 1 1.1 1.2 1.3 1.4

Ia
(A

)

t(s)
1.5

Oscillation link Adaptive Quasi-
Resonant Control

−30
−20
−10

0
10
20
30
40
50

−50
−40

−30
−20
−10

0
10
20
30
40
50

−50
−40

 
                (c)                       (d) 

Figure 11. Comparison of inhibition effects between two resonant controllers with SSO frequency 
of 10 Hz: (a) quasi-resonant controller; (b) stator current single phase magnification; (c) adaptive 
quasi-resonant controller; (d) stator current single phase magnification. 

Finally, the DFIG stator power and capacitance voltage waveforms before and after 
SSO inhibition were observed. The expected values for the stator active power and reac-
tive power were 4000 W and 0 Var, and the capacitance voltage was maintained at 400 V. 

As shown in Figure 12, when the power grid SSO was generated, both the DFIG 
stator side output power and the capacitance voltage oscillated, with the power oscilla-
tion being the most severe. When the oscillatory inhibition strategy proposed here was 
adopted, the DFIG stator-side reactive power oscillation was basically suppressed and, 
while the active power still oscillated, the amplitude of the oscillation was reduced by 
nearly 60% compared with before the inhibition. After being subjected to the control of 
the adaptive quasi-resonant controller, the sub-synchronous component in the DC bus 
voltage was also reduced. As the DFIG grid side was still affected by the SSO, the oscil-
lation was still generated in the DC bus voltage, but the impact of the DC bus voltage 
fluctuation on the RSC control was weaker. 

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

0

1000

2000

3000

4000

5000

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

0

1000

2000

3000

4000

5000

Power grid SSO 
appears

Adaptive quasi-
resonant control

Q
s (

V
ar

)
P s

 (W
)

Q
s (

V
ar

)
P s

 (W
)

−1000 −1000

 
                             (a)                        (b) 

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
0

100

200

300

400

500

600

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
0

100

200

300

400

500

600

Ca
pa

cit
iv

e v
ol

tag
e(

V
)

Ca
pa

cit
iv

e v
ol

tag
e(

V
)

Power grid SSO 
appears Adaptive quasi-

resonant control

 

Figure 12. Comparison of stator power and capacitance voltage waveforms before and after SSO
suppression: (a) power before the SSO inhibition; (b) power after the SSO inhibition; (c) Vdc before
the SSO inhibition; (d) Vdc after the SSO inhibition.

5.2. Experimental Verification

In order to verify the actual effect of the SSO suppression strategy, experimental
verification of the strategy proposed in this paper was carried out using a model platform
based on a 15 kVA doubly-fed wind power system. The layout of the experimental platform
is shown in Figure 13 and a detailed illustration of each part of the experimental platform
is shown in Figure 14.
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Figure 13. Layout diagram of experimental platform for a DFIG system. 
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Figure 14. Experimental platform for the oscillatory inhibition of the DFIG system: (a) GSC ex-
periment platform; (b) RSC experiment platform; (c) DFIG power generation device; (d) simulation 
power grid platform. 
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iment platform; (b) RSC experiment platform; (c) DFIG power generation device; (d) simulation
power grid platform.

The DFIG experimental platform was composed of a GSC, an RSC, a simulated
power grid and an SSO simulation system. The RSC and GSC control systems both
used DSPF28335 as the control chip. The permanent magnet synchronous motor was
driven by the prime mover to generate sub-synchronous voltage, which was merged into
the simulated power grid through the transformer, thereby simulating the experimental
environment for the grid SSO. The experimental parameters are shown in Table 1.

Before the experiment, it was necessary to check whether the DFIG met the grid
connection requirements. The DFIG stator A-phase voltage and the simulated grid A-phase
voltage waveforms before the grid connection are shown in Figure 15. As shown in the
figure, the DFIG stator voltage and the grid voltage basically had the same amplitude,
phase, frequency and phase sequence, so the DFIG system could be connected to the grid.
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Figure 16. The DFIG determining the rotor current at different speeds: (a) rotor speed of 900 r/min; 
(b) rotor speed of 1200 r/min. 

The results for the SSO suppression experiments are shown in Figures 17–19. In the 
experiments, the prime mover was selected to drive the PMSG to simulate the generation 
of the grid oscillation voltage. The amplitude of the sub-synchronous voltage was 10% of 
the simulated grid voltage, and the frequencies were 30 Hz, 20 Hz and 10 Hz, respec-
tively. The rotor speed was fixed at 900 r/min, and the motor was run in a 
sub-synchronous state. The motor speed, the simulated SSO voltage waveform, the sim-
ulated grid voltage waveform when the oscillation occurred and the DFIG stator and 
rotor current waveforms before and after the oscillation suppression were obtained by 
the sampling circuit. 

Figure 15. Output voltage waveforms for the grid and DFIG before grid connection.

Figure 16 shows the DFIG stator and rotor current waveforms at different speeds.
The rotor speeds were set to 900 r/min and 1200 r/min, respectively; that is, the motor
ran in sub-synchronous and super-synchronous states. By observing the rotor A-phase
current and stator A-phase current, it could be seen that, at different speeds, the rotor
current frequency of the DFIG also changed correspondingly, while the stator current was
always kept at 50 Hz. The experiment proved that the DFIG system controlled by the
back-stepping controller and the proportional controller could achieve constant-frequency
variable speed control.
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Figure 16. The DFIG determining the rotor current at different speeds: (a) rotor speed of 900 r/min;
(b) rotor speed of 1200 r/min.

The results for the SSO suppression experiments are shown in Figures 17–19. In the
experiments, the prime mover was selected to drive the PMSG to simulate the generation of
the grid oscillation voltage. The amplitude of the sub-synchronous voltage was 10% of the
simulated grid voltage, and the frequencies were 30 Hz, 20 Hz and 10 Hz, respectively. The
rotor speed was fixed at 900 r/min, and the motor was run in a sub-synchronous state. The
motor speed, the simulated SSO voltage waveform, the simulated grid voltage waveform
when the oscillation occurred and the DFIG stator and rotor current waveforms before and
after the oscillation suppression were obtained by the sampling circuit.
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Figure 17. The oscillation suppression suppressed-contrast waveforms at SSO frequency of 30 Hz: 
(a) DFIG rotor speed; (b) grid voltage oscillation waveform; (c) before oscillation suppression; (d) 
after oscillation suppression. 
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Figure 18. The oscillation suppression suppressed-contrast waveforms at SSO frequency of 20 Hz: 
(a) DFIG rotor speed; (b) grid voltage oscillation waveform; (c) before oscillation suppression; (d) 
after oscillation suppression. 
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Figure 17. The oscillation suppression suppressed-contrast waveforms at SSO frequency of 30 Hz:
(a) DFIG rotor speed; (b) grid voltage oscillation waveform; (c) before oscillation suppression; (d)
after oscillation suppression.

By comparing the experimental results for the grid SSO frequencies of 30 Hz, 20 Hz
and 10 Hz, it can be seen that, when the grid voltage SSO was generated, the stator and
rotor currents in the DFIG were disturbed accordingly, and the DFIG output also oscillated.
With the use of the adaptive quasi-resonant controller to control the SSO, the oscillatory
components in the stator and rotor currents were clearly suppressed, thus facilitating the
sinusoidal output of the stator current and maintaining the stable operation of the DFIG.

Next, a comparative analysis of the oscillation control effects of the adaptive quasi-
resonant controller and the quasi-resonant controller was carried out to verify the effective-
ness of the two resonant controllers in suppressing oscillation when the SSO frequency was
abruptly changed. The experimental results are shown in Figure 20.
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Figure 17. The oscillation suppression suppressed-contrast waveforms at SSO frequency of 30 Hz: 
(a) DFIG rotor speed; (b) grid voltage oscillation waveform; (c) before oscillation suppression; (d) 
after oscillation suppression. 
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Figure 18. The oscillation suppression suppressed-contrast waveforms at SSO frequency of 20 Hz: 
(a) DFIG rotor speed; (b) grid voltage oscillation waveform; (c) before oscillation suppression; (d) 
after oscillation suppression. 
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Figure 18. The oscillation suppression suppressed-contrast waveforms at SSO frequency of 20 Hz:
(a) DFIG rotor speed; (b) grid voltage oscillation waveform; (c) before oscillation suppression; (d)
after oscillation suppression.
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Figure 18. The oscillation suppression suppressed-contrast waveforms at SSO frequency of 20 Hz: 
(a) DFIG rotor speed; (b) grid voltage oscillation waveform; (c) before oscillation suppression; (d) 
after oscillation suppression. 
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Figure 19. The oscillation suppression suppressed-contrast waveforms at SSO frequency of 10 Hz:
(a) DFIG rotor speed; (b) grid voltage oscillation waveform; (c) before oscillation suppression;
(d) after oscillation suppression.
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Figure 19. The oscillation suppression suppressed-contrast waveforms at SSO frequency of 10 Hz: 
(a) DFIG rotor speed; (b) grid voltage oscillation waveform; (c) before oscillation suppression; (d) 
after oscillation suppression. 
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Figure 20. Comparison of the waveforms of the oscillation suppression effects of the two resonant 
controllers: (a) grid voltage oscillation waveform; (b) stator current waveform comparison. 

Finally, the inhibition effect of the proposed SSO inhibition strategy was verified. 
The rotor speed was increased from 800 r/min to 1200 r/min, and the SSO inhibition link 
performed RSC control at 840 r/min and 1060 r/min, respectively. The oscillatory com-
ponents in the stator current were observed, and the experimental results are shown in 
the following Figure 21. 

Figure 20. Comparison of the waveforms of the oscillation suppression effects of the two resonant
controllers: (a) grid voltage oscillation waveform; (b) stator current waveform comparison.

In Figure 20, the initial value of the simulated sub-synchronous voltage frequency
was 30 Hz, and the oscillation amplitude was the same as the experiment described above.
At time T1, the quasi-resonant controller and the adaptive quasi-resonant controller were
respectively put into control. By observing the stator current, it could be seen that, after
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the two resonant controllers were put into use, the oscillation component in the DFIG
stator current was significantly weakened, and both controllers could suppress the 30 Hz
sub-synchronous current. However, at T2, the SSO frequency suddenly changed to 10 Hz,
while the oscillation amplitude did not change. At this time, the control frequency of the
quasi-resonant controller was 30 Hz, but the frequency of the sub-synchronous current
suddenly exceeded its control range, and a corresponding 10 Hz oscillation component
appeared in the stator current after time T2. The adaptive quasi-resonant controller could
still control the sub-synchronous current after the oscillation frequency switched. After
the changed sub-synchronous voltage frequency was maintained for about 100 ms, the
oscillation component in the stator current was suppressed, and the DFIG stator current
returned to the sinusoidal output. This experiment confirmed that the adaptive quasi-
resonant controller could control the broadband DFIG stator sub-synchronous current,
which proves that the SSO suppression strategy proposed in this paper is effective.

Finally, the inhibition effect of the proposed SSO inhibition strategy was verified.
The rotor speed was increased from 800 r/min to 1200 r/min, and the SSO inhibition
link performed RSC control at 840 r/min and 1060 r/min, respectively. The oscillatory
components in the stator current were observed, and the experimental results are shown in
the following Figure 21.
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Figure 21. The SSO inhibition effect at different speeds: (a) sub-synchronous speed; (b) su-
per-synchronous speed. 
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of the DFIG. 

Furthermore, FFT spectrum analysis was carried out on the stator current when the 
SSO frequency changed, and the harmonic content in the stator current was observed 
when the quasi-resonant controller and adaptive quasi-resonant controller were used to 
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Figure 22. The results of the FFT spectrum analysis of the DFIG stator current. 

As can be seen from Figure 22, when the grid SSO frequencies were 10 Hz, 20 Hz 
and 30 Hz, respectively, the proportions of sub-synchronous harmonics in the DFIG sta-
tor current were 27.32%, 11.56% and 9.57%, respectively. At this time, the rejection fre-
quency of the quasi-resonant controller was 30 Hz, and the harmonics in the stator cur-
rent were suppressed by the quasi-resonant controller and the adaptive quasi-resonant 
controller, respectively. From Figure 22, it can be seen that the adaptive quasi-resonant 
controller could effectively suppress the oscillation component in the stator current at 
each frequency and reduce the harmonic content in the stator current to less than 5%. 
However, the quasi-resonant controller could only suppress the sub-synchronous com-
ponent of the stator current at 30 Hz, and the suppression effect of the quasi-resonant 
controller gradually weakened as the SSO frequency gradually deviated from the reso-
nant frequency of the quasi-resonant controller. This result confirms that the adaptive 
quasi-resonant controller could achieve the suppression of the wideband DFIG stator 
sub-synchronous current, thus confirming the effectiveness of the SSO suppression 
strategy proposed in this paper. 

6. Conclusions 

Figure 21. The SSO inhibition effect at different speeds: (a) sub-synchronous speed; (b) super-
synchronous speed.

It can be seen that, when the SSO inhibition of DFIG was run at sub-synchronous and
super-synchronous speeds, both the sub-synchronous components in the stator current
could be effectively suppressed, and the change in the rotor speed had no effect on the
control exerted by the adaptive quasi-resonant control. This experiment demonstrated that
the SSO inhibition strategy could satisfy the dynamic response requirements of the DFIG.

Furthermore, FFT spectrum analysis was carried out on the stator current when the
SSO frequency changed, and the harmonic content in the stator current was observed when
the quasi-resonant controller and adaptive quasi-resonant controller were used to suppress
the stator sub-synchronous current. The specific results are shown in Figure 22.
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Figure 22. The results of the FFT spectrum analysis of the DFIG stator current. 
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each frequency and reduce the harmonic content in the stator current to less than 5%. 
However, the quasi-resonant controller could only suppress the sub-synchronous com-
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controller gradually weakened as the SSO frequency gradually deviated from the reso-
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sub-synchronous current, thus confirming the effectiveness of the SSO suppression 
strategy proposed in this paper. 
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As can be seen from Figure 22, when the grid SSO frequencies were 10 Hz, 20 Hz
and 30 Hz, respectively, the proportions of sub-synchronous harmonics in the DFIG stator
current were 27.32%, 11.56% and 9.57%, respectively. At this time, the rejection frequency
of the quasi-resonant controller was 30 Hz, and the harmonics in the stator current were
suppressed by the quasi-resonant controller and the adaptive quasi-resonant controller,
respectively. From Figure 22, it can be seen that the adaptive quasi-resonant controller
could effectively suppress the oscillation component in the stator current at each frequency
and reduce the harmonic content in the stator current to less than 5%. However, the
quasi-resonant controller could only suppress the sub-synchronous component of the stator
current at 30 Hz, and the suppression effect of the quasi-resonant controller gradually
weakened as the SSO frequency gradually deviated from the resonant frequency of the
quasi-resonant controller. This result confirms that the adaptive quasi-resonant controller
could achieve the suppression of the wideband DFIG stator sub-synchronous current, thus
confirming the effectiveness of the SSO suppression strategy proposed in this paper.

6. Conclusions

Addressing the problem of grid SSO affecting the stable operation of DFIG systems,
and considering the influence of the oscillation frequency change on the SSO suppression
strategy, this paper proposed a back-step SSO suppression strategy based on an adaptive
quasi-resonant controller. The following conclusions can be drawn from the simulation and
experimental research:

(1) The application of the RSC current controller designed based on the back-stepping
method could simplify the RSC control strategy and reduce the number of transmission
paths in the grid SSO from three to two, and its control effect was better than that of the
traditional PI controller. In the case of unknown perturbations in the input signal, the
back-stepping controller could quickly achieve the control goal of the RSC and complete
the adjustment of the DFIG output power within 0.1 s;

(2) The adaptive quasi-resonant controller could suppress the sub-synchronous current
from the input DFIG and reduce the sub-synchronous current of the stator side to less than
5%. When the grid SSO frequency was abruptly changed from 30 Hz to 10 Hz, the adaptive
quasi-resonant controller could still respond quickly, maintaining the sinusoidal output
of the stator current. The experimental results showed that the adaptive quasi-resonant
controller could suppress the sub-synchronous components of different frequencies in the
DFIG system.

In summary, this study verified the effectiveness of the proposed SSO suppression
strategy through a simulation and experiments. Adopting this strategy can improve the
anti-interference ability of DFIG systems subject to the SSO of the power grid and provide
a guarantee for their stable operation, which has a certain engineering value.
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Appendix A. DFIG Control Model Decoupling

To date, various algorithms have been proposed to solve the problem of coupling
different channels in a converter control. One study [26] proposed a d-q current decoupling
control method for a single-phase grid-connected converter without a delay. This method
took a single-phase pulse width modulation (PWM) converter as its research object. By
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improving the orthogonal signal generator, the virtual orthogonal component of the β
axis corresponding to the grid current could be generated without a delay. In addition,
the reference current signal mutation could be tracked without a delay, improving the
dynamic response speed of the system. Another study [27] designed a two degrees of
freedom PI controller by analyzing the influence of the converter decoupling control
link on the stability of the control system. This method improved the equivalent motor
stator resistance, the robustness of the link between the current ring and the decoupling
parameters and the response characteristics of the current ring. The above methods can be
used to improve the response speed of a control system, but the feedforward decoupling
compensation still needs to be introduced into the current internal loop. When grid SSO
occurs, the sub-synchronous component is input into the RSC control system through the
feedforward decoupling. Therefore, in order to reduce the number of SSO propagation
paths, a back-stepping controller was designed, combining state feedback decoupling
and back-stepping control, to decouple the RSC current inner loop. The state feedback
decoupling can reduce the complexity of the control system, thus simplifying the system
equation of state, eliminating the coupling components and facilitating the design of
subsequent controllers. The design of the back-stepping controller had to satisfy the
stability equation of the system in order to improve the stability of the system. Considering
the decoupling control ability of the back-stepping controller for nonlinear systems and
that fact that it has no bandwidth limitations, the back-stepping controller can be applied
to situations of unknown disturbance in power grids. Therefore, a back-stepping controller
based on state feedback decoupling could not only improve the response speed and stability
of control systems but also simplify the control strategy of the RSC and reduce the number
of propagation paths of the SSO.

Equation (A1) can be obtained from Equation (1) and the equation of motion of the
DFIG system. In the equation, J is the moment of inertia of the generator; np is the number
of pole pairs; D is the damping coefficient; and TL is the input torque of the wind turbine.
ĩrd = ird0 + ird_sub, and ĩrq = irq0 + irq_sub.

dĩrd
dt = − Rr

σLr
ĩrd + ωs ĩrq +

1
σLr

urd − ωsLmUs
σLrLsω1

dĩrq
dt = −ωs ĩrd − Rr

σLr
ĩrq +

1
σLr

urq
.

ωr = −
npLmUs

Jω1Ls
ĩrd − D

J ωr +
TL
J

(A1)

Analysis of Equation (A1) shows that the state equation of the DFIG system is a third-
order equation, and there is a coupling relationship between the first-order differential
equations of ĩrd and ĩrq.

We can rewrite the two equations related to ĩrd and ĩrq in Equation (A1) into matrix
form and use ĩrd and ĩrq as the output, so that we have:{ .

I = AI + BU
Y = CI

(A2)

In Equation (A2), A is the system matrix, B is the control matrix, I is the state vector,

U is the input vector, Y is the output vector and C is the output matrix. B = 1
σLr

[
1 0
0 1

]
,

A =

[
− Rr

σLr
ωs

−ωs − Rr
σLr

]
, C =

[
1 0
0 1

]
, I =

[
ĩrd
ĩrq

]
and U =

[
urd − ωsLmUs

ω1Ls

urq

]
.

Equation (A1) can be decoupled with the state feedback method [28]:
(1) First, di (i = 1, 2) is calculated:

c1A0B =
[

1
σLr

0
]

(A3)
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The minimum l value that makes c1AlB 6= 0 is 0, so d1 = 0. In the same way, d2 = 0 can
be obtained.

(2) Then, we define the following matrix according to di:

D =

[
c1Ad1

c2Ad2

]
=

[
c1A0

c2A0

]
=

[
1 0
0 1

]
(A4)

E =

[
c1Ad1B
c2Ad2B

]
=

[
1

σLr
0

0 1
σLr

]
(A5)

L = DA =

[
−Rr/(σLr) ωs
−ωs −Rr/(σLr)

]
(A6)

Since the matrix E is a non-singular matrix, the above equation of state can be decoupled.
(3) Finally, we decouple the equation of state

.
X = (A + BK)X + BFU = σLr

[
urd − ωsLmUs

ω1Ls

urq

]
(A7)

In the equation, the matrix F is the input transformation matrix, and F = E−1; the
matrix K is the state feedback matrix, and K = −E−1L. The DFIG control model decoupling
can be obtained from Equation (A7), as shown in Figure 20. The dashed box in Figure 20 is
the target model that needs to be decoupled.
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where 
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Accordingly, Equation (A7) can be rewritten as:
.
ĩrd = (ωr −ω1)

σLrLmUs
ω1Ls

+ σLru∗rd.
ĩrq = σLru∗rq

.
ωr = −

npLmUs
Jω1Ls

ĩrd − D
J ωr +

TL
J

(A8)

where u∗rd, u∗rq represent the input quantity of the control decoupling model.
As can be seen from Equation (A8), the state equation of the DFIG system changes from

a third-order model to a model composed of a first-order and a second-order model after
decoupling through state feedback. In the case of S29SO, based on the decoupling model,
the control ratios u∗rd and u∗rq of the rotor current were designed with the back-stepping
control method.
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