A Data-Driven Model of Cable Insulation Defect Based on Convolutional Neural Networks
Abstract
:1. Introduction
2. Finite Element Modeling Method of Cable
3. Modeling Method of Data-Driven Model
3.1. Data Set Construction of Data-Driven Model
3.2. Data-Driven Model Implementation Based on CNN
3.3. Data-Driven Model Implementation Based on CNN
4. Results and Discussion
4.1. Accuracy Analysis of Data-Driven Models
4.2. Predicted Electric Field Strength of the Cable
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
electric field strength | |
potential shift vector | |
current density | |
electric potential | |
charge density | |
relative electric permittivity | |
electrical conductivity | |
A-phase voltage | |
B-phase voltage | |
C-phase voltage | |
reference voltage | |
input matrix | |
output matrix | |
three dimensions of the output matrix | |
convolution kernel | |
length of the convolution kernel | |
width of the convolution kernel | |
depth of the convolution kernel | |
threshold of the th convolution kernel | |
number of samples | |
expected outputs of the model | |
actual outputs of the model | |
sum of the squares of the actual and predicted values | |
true value | |
predicted value | |
Kilovolt |
References
- Qunmin, Y.; Huan, L.; Zi, S.; Libin, H.; Chen, J. Effect of thermal aging at different temperatures on the surface trap parameters of cross-linked polyethylene cable insulation in high-voltage distribution networks. Chin. J. Electr. Eng. 2020, 40, 692–701. [Google Scholar]
- Winkelmann, E.; Shevchenko, I.; Steiner, C.; Kleiner, C.; Kaltenborn, U.; Birkholz, P.; Schwarz, H.; Steiner, T. Monitoring of Partial Discharges in HVDC Power Cables. IEEE Electr. Insul. Mag. 2022, 38, 7–18. [Google Scholar] [CrossRef]
- Xu, M.; Wang, Y.; Li, X.; Dong, X.; Zhang, H.; Zhao, H.; Shi, X. Analysis of the Influence of the Structural Parameters of Aircraft Braided-Shield Cable on Shielding Effectiveness. IEEE Trans. Electromagn. Compat. 2020, 62, 1028–1036. [Google Scholar] [CrossRef]
- Sihai, C.; Hong, Z.; Xuan, W. A method for high-resolution measurement of impurity particles in XLPE cable material. J. Electr. Mach. Control 2010, 14, 87–90+98. [Google Scholar]
- Wu, Q.X.; Takahashi, K.; Chen, B.C. Using cable finite elements to analyze parametric vibrations of stay cables in cable-stayed bridges. Struct. Eng. Mech. 2006, 23, 691–711. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhao, L.; Ni, H.; Wu, X.; He, N.; Ma, B.; Li, R. Diagnosis Method of Partial Discharge Fault Severity of XLPE Cable Based on Field Fault Data. Insul. Mater. 2020, 53, 90–96. [Google Scholar]
- Bolong, Y.S.; Bingni, Q.; Song, J.; Min, T. Influence of mining high-voltage shielded cable structure on electric field distribution. Insul. Mater. 2018, 51, 68–74. [Google Scholar]
- Yasha, L.; Huiyao, W.; Xu, Y.; Linxiang, S. Simulation of internal electric field of dc XLPE cable based on finite element analysis. Comput. Simul. 2020, 37, 53–57+296. [Google Scholar]
- Li, Y.; Dai, Y.; Hua, X.; Liu, Z.; Wang, C. Impurities of crosslinking polyethylene cable internal electric field and the space charge distribution influence. J. Electr. Eng. Technol. 2018, 33, 4365–4371. [Google Scholar]
- Enescu, D.; Colella, P.; Russo, A. Thermal Assessment of Power Cables and Impacts on Cable Current Rating: An Overview. Energies 2020, 13, 5319. [Google Scholar] [CrossRef]
- Catinean, A.; Dascalescu, L.; Lungu, M.; Dumitran, L.M.; Samuila, A. Improving the recovery of copper from electric cable waste derived from automotive industry by corona-electrostatic separation. Part. Sci. Technol. 2021, 39, 449–456. [Google Scholar] [CrossRef]
- Liu, F.Y.; Shen, C.H.; Lin, G.S.; Reid, I. Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2024–2039. [Google Scholar] [CrossRef] [Green Version]
- Li, G.Y.; Wang, X.H.; Li, X.; Yang, A.J.; Rong, M.Z. Partial Discharge Recognition with a Multi-Resolution Convolutional Neural Network. Sensors 2018, 18, 3512. [Google Scholar] [CrossRef] [Green Version]
- Chi, P.; Zhang, Z.; Liang, R.; Cheng, C.; Chen, S. A CNN recognition method for early stage of 10 kV single core cable based on sheath current. Electr. Power Syst. Res. 2020, 184, 106292. [Google Scholar] [CrossRef]
- Arroyo, J.M.R.; Beddoes, A.J.; Alinson, N.M. Insulation condition assessment of 11 kv paper cables using neural networks. IEE Symp. Pulsed Power 2001, 22. [Google Scholar] [CrossRef]
- Khan, M.Y.A. Partial Discharge defects recognition using different Neural Network Model in XLPE cable under the DC stress. Tech. J. 2017, 22, 4. [Google Scholar]
- Biryulin, V.I.; Kudelina, D.V.; Larin, O.M. Use of a Fuzzy Neural Network to Evaluate the Cable Lines Insulation State. In Proceedings of the 2020 International Ural Conference on Electrical Power Engineering (UralCon), Chelyabinsk, Russia, 22–24 September 2020; pp. 50–56. [Google Scholar]
- Pan, W.; Chen, X.; Zhao, K. Cable-Partial-Discharge Recognition Based on a Data-Driven Approach with Optical-Fiber Vibration-Monitoring Signals. Energies 2022, 15, 5686. [Google Scholar] [CrossRef]
- Cholachue, C.; Ravelo, B.; Simoens, A.; Fathallah, A.; Veronneau, M.; Maurice, O. Braid Shielding Effectiveness Kron’s Model via Coupled Cables Configuration. IEEE Trans. Circuits Syst. II-Express Briefs 2020, 67, 1389–1393. [Google Scholar] [CrossRef]
- Lv, W.J.; Fang, Y.F.; Cheng, Z. Research on forecasting PV output based on fuzzy C-mean clustering and sample-weighted convolutional neural network. Power Grid Technol. 2022, 46, 231–238. [Google Scholar]
- Liu, S.J.; Wang, Y.; Tian, F.Q. Prognosis of Underground Cable via Online Data-Driven Method with Field Data. IEEE Trans. Ind. Electron. 2015, 62, 7795–7803. [Google Scholar] [CrossRef]
- Long, H.; Chen, C.; Gu, W.; Xie, J.H.; Wang, Z.; Li, G.D. A Data-Driven Combined Algorithm for Abnormal Power Loss Detection in the Distribution Network. IEEE Access 2020, 8, 24675–24686. [Google Scholar] [CrossRef]
- Elfwing, S.; Uchibe, E.; Doya, K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Netw. 2018, 107, 3–11. [Google Scholar] [CrossRef] [PubMed]
Structure | Materials | Inner Diameter/mm | Outer Diameter/mm |
---|---|---|---|
Cable cores | Copper | 11.9 | 11.9 |
Conductor shielding | Semiconductor Materials | 11.9 | 12.7 |
Insulation layer | XLPE | 12.7 | 17.2 |
Shielding layer | Copper | 17.2 | 17.3 |
Cable three-phase filler | Polypropylene | 41.1 | 41.1 |
Armor layer | Aluminum | 41.1 | 41.11 |
Outer sheath | Polyethylene | 41.11 | 43.11 |
Number | Input Feature Quantity |
---|---|
1 | Cable core radius |
2 | Thickness of insulation layer |
3 | Cable operating voltage |
4 | Number of impurities |
5 | Relative electric permittivity of impurities |
6 | Electrical conductivity of impurities |
7 | Relative electric permittivity of the insulation layer |
8 | Electrical conductivity of the insulation layer |
9 | X coordinate of the fetching point |
10 | Y coordinate of the fetching point |
11 | Cable operating frequency |
Number of Network Layers | Accuracy/% |
---|---|
1 | 89.3 |
2 | 93.2 |
3 | 95.8 |
4 | 93.2 |
5 | 91.3 |
Cable Operating Parameters | Accuracy/% | |
---|---|---|
CNN | BPNN | |
Cable core voltage | 95.8 | 94.6 |
Impurity conductivity | 94.6 | 94.2 |
Operating frequency | 92.6 | 92.6 |
Overall accuracy | 94.3 | 93.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, W.; Yang, G.; Hao, C.; Wang, Z.; Kong, D.; Dong, Y. A Data-Driven Model of Cable Insulation Defect Based on Convolutional Neural Networks. Appl. Sci. 2022, 12, 8374. https://doi.org/10.3390/app12168374
Han W, Yang G, Hao C, Wang Z, Kong D, Dong Y. A Data-Driven Model of Cable Insulation Defect Based on Convolutional Neural Networks. Applied Sciences. 2022; 12(16):8374. https://doi.org/10.3390/app12168374
Chicago/Turabian StyleHan, Weixing, Guang Yang, Chunsheng Hao, Zhengqi Wang, Dejing Kong, and Yu Dong. 2022. "A Data-Driven Model of Cable Insulation Defect Based on Convolutional Neural Networks" Applied Sciences 12, no. 16: 8374. https://doi.org/10.3390/app12168374
APA StyleHan, W., Yang, G., Hao, C., Wang, Z., Kong, D., & Dong, Y. (2022). A Data-Driven Model of Cable Insulation Defect Based on Convolutional Neural Networks. Applied Sciences, 12(16), 8374. https://doi.org/10.3390/app12168374