
Citation: Yin, X.; Liu, F.; Cai, R.; Yang,

X.; Zhang, X.; Ning, M.; Shen, S.

Research on Seismic Signal Analysis

Based on Machine Learning. Appl.

Sci. 2022, 12, 8389. https://doi.org/

10.3390/app12168389

Academic Editors: Feng Gao,

Jin Zheng and Qizhi Xu

Received: 20 July 2022

Accepted: 12 August 2022

Published: 22 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Research on Seismic Signal Analysis Based on
Machine Learning
Xinxin Yin 1,2,†, Feng Liu 3,4,5,*,† , Run Cai 6, Xiulong Yang 7 , Xiaoyue Zhang 5, Meiling Ning 5

and Siyuan Shen 4

1 Lanzhou Geophysics National Observation and Research Station, Lanzhou 730000, China
2 Institute of Geophysics, China Earthquake Administration, Beijing 100081, China
3 Institute of AI for Education, East China Normal University, Shanghai 200062, China
4 School of Computer Science and Technology, East China Normal University, Shanghai 200062, China
5 Institute of Artificial Intelligence and Change Management, Shanghai University of International Business

and Economics, Shanghai 200062, China
6 Chengdu Surveying Geotechnical Research Institute Co., Ltd. of MCC, Chengdu 610063, China
7 Department of Computer Science, Georgia State University, Atlanta, GA 30314, USA
* Correspondence: lsttoy@163.com
† These authors contributed equally to this work.

Abstract: In this paper, the time series classification frontier method MiniRocket was used to classify
earthquakes, blasts, and background noise. From supervised to unsupervised classification, a
comprehensive analysis was carried out, and finally, the supervised method achieved excellent
results. The relatively simple model, MiniRocket, is only a one-dimensional convolutional neural
network structure which has achieved the best comprehensive results, and its computational efficiency
is far stronger than other supervised classification methods. Through our experimental results, we
found that the MiniRocket model could well-extract the decisive features of the seismic sensing signal.
In order to try to eliminate the tedious work of making data labels, we proposed a novel lightweight
collaborative learning for seismic sensing signals (LCL-SSS) based on the method of feature extraction
in MiniRocket combined with unsupervised classification. The new method gives new vitality to the
unsupervised classification method that could not be used originally and opens up a new path for
the unsupervised classification of seismic sensing signals.

Keywords: machine learning; seismic sensing signals classification; non-natural earthquake;
convolutional neural network (CNN); time series classification

1. Introduction

In addition to natural earthquakes, the seismic sensing signals observed by the seismic
observation also includes waveform information of artificial blasts, collapses, and other
events (collectively referred to as non-natural earthquakes). If not handled properly, these
waveform records mixed with unnatural seismic events can affect the research work of
seismology [1]. The inclusion of artificial blast information in the regional earthquake
catalogue leads to inaccurate seismic risk assessment [2]. Furthermore, the blast source
is shallow and mainly occurs in the personnel activity area, so it has the characteristics
of high intensity, which has a significant impact on the local production and life of local
people [3].

In the recording of seismic sensing signals, non-natural seismic events such as blasts
and collapses have certain commonalities with natural earthquakes. Especially in recent
years, the emergence of various combined blast and mining area collapse events including
multiple small collapses has made the waveforms recorded by seismometers extremely
complex. It is difficult for seismic analysts to discriminate the specific types of seismic events
only through the intuitive characteristics of signals exhibited in waveforms. Analysts may
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have different judgments about the types of given seismic event, which makes it difficult to
identify non-natural seismic events such as blasts and collapses in a timely and effective
manner [4].

Since the 1950s, the identification of natural earthquakes and artificial blast events has
been widely and deeply studied. A variety of identification criteria have been proposed,
including body wave magnitude: surface wave magnitude (mb:Ms) [5–7], complexity [8],
cepstrum analysis [9], maximum ratio of S to P waves (S/P) [10–13], time–frequency
analysis [14], the criteria extracted from the frequency domain, etc. [15]. These single
eigenvectors are usually used alone at first. However, when the blast equivalent is small,
the recognition effect is not good. What is more, the feature extraction methods used in
these studies have been complicated, and developing an analytical solution of the overall
relationship of these features proved to be difficult [16]. It is worth noting that seismic
waveform data carry all the source information of seismic sensing signals and can be
directly used to classify different types of earthquakes [17].

With the improvement of computer hardware level, a large amount of research on
earthquake classification based on machine learning methods directly using a large number
of waveform data has sprung up in the field of seismology. In recent years, however, as
a multilayer neural network learning algorithm, machine learning has been widely used
in the field of seismology because of its powerful ability to automatically extract features
from input sample data [18–21]. In fact, the application of machine learning based methods
in other fields can also provide us with reference, so that we can better carry out seismic
signal research. EvoGAN extracts expression features through evolutionary algorithm(EA),
and then inputs the features into GAN to accurately learn expression information [22].
GHNN based on graph signal processing theory uses two-channel filter bank to construct
convolutional layers to process the characteristics of graph signals, and achieves better
performances on the task of semi-supervised node classification [23]. In the practical
application of natural earthquake and artificial blast classification and recognition, machine
learning organically integrates the functions of feature extraction, feature selection, and
feature classification and realizes the overall optimization of performance and efficiency.
A convolutional neural network in a machine learning model effectively overcomes the
problem of overfitting and has low training difficulty, so it has been widely applied in the
field of seismic event research in recent years [18–21].

In this paper, we applied several powerful machine learning techniques to automati-
cally classify noise, earthquake, and blast events, including a variety of classical convolu-
tional neural networks and unsupervised learning methods. In particular, we advocated a
two-step approach where feature learning is decoupled from classification or clustering.
By adopting the efficient unsupervised method MiniRocket [24] for time series feature
extraction, we could utilize the obtained features as prior for the consequent task, such as
supervised classification and unsupervised clustering. Finally, we comprehensively evalu-
ated the advantages of various models in terms of accuracy and computational efficiency.
The main contributions of this study are as follows:

(1) The main goals of the paper were to provide a novel unsupervised classification
method with high accuracy for real-time earthquake catalog elimination, such as blasting
interference events, that expands the technical framework for real-time earthquake predic-
tion, enriches the purification means of the earthquake catalog, and can also be reversed to
provide an induced earthquake catalog for industrial production, such as coal mine and
shale gas mining, filtering natural earthquakes and only retaining artificial earthquakes.
Then, the risk of earthquake induced by industrial mining was analyzed to protect the
safe mining.

(2) This paper proposed a two-step approach of pre-training feature learning and target
task learning which can be either supervised or unsupervised—a lightweight collaborative
learning model for seismic sensing signal classification (LCL-SSS). This method only uses a
simple one-dimensional convolutional neural network structure to replace the multilayer
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convolutional neural network, which greatly improves the computational efficiency while
the accuracy is consistent with other multilayer convolutional neural networks.

(3) Classical unsupervised methods, such as K-means, perform poorly in seismic
sensing signal classification due to the complex time domain. In this paper, we used a one-
dimensional convolutional neural network combined with an unsupervised classification
method to extract the features of the seismic waveform, and a good classification effect was
achieved. This provides a new reference for the study of seismic waveform classification in
the future.

2. Application of Machine Learning Method in Seismology
2.1. Background

The advantage of machine learning techniques is that the main features of different
types of data can be extracted directly from the data to be classified. By using this technique,
we can come up with solutions without prior statistical distribution of features of different
types of data, thus identifying some human experience to distinguish missing features in
earthquake classes [18,25].

Feature extraction is a commonly used dimensionality reduction technique. Some
of the most representative features are selected from the original feature space to express
the dataset according to a certain evaluation criterion [26]. In the practical application of
classification and recognition of natural earthquakes and other signals such as artificial
blasts, machine learning organically unifies the functions of feature extraction, feature
selection, and feature classification and realizes the overall optimization of performance
and efficiency. Petrol et al. [25] first distinguished the seismic waveform and noise signal
through a multilayer convolutional neural network (CNN). Zhao et al. [27] found that the
CNN network had a good generalization ability for different types of earthquake and noise
samples. Linville et al. [28] used convolution and recursive neural networks to classify local
blasts and natural earthquakes and finally obtained 99% accuracy by taking the spectrum
of seismic sensors as input. Wei et al. [3] converted the seismic waveform into a frequency
spectrum as input. They used the ResNet network to classify seismic and blast events,
and it worked very well. Kong et al. [29] combined convolutional neural networks and
traditional physical features to distinguish blast events and also visualized neural networks.
Tian et al. [30] used the input information, including the seismic waveform of multiple
stations and the seismic time–frequency data of a single station, to classify the observation
data of natural earthquakes and quarry blast recorded in Utah in 2012.

2.2. Machine Learning Methods

Machine learning methods can be divided into supervised (full label) and unsuper-
vised methods (no label) according to the use of prior information, that is, the amount
of existing labels of the data. Different data may have different effects on data feature
extraction and classification [31]. The advantage of machine learning technology lies in
that it can directly extract the main features of different types of data and apply them to
data classification, and it can obtain different types of data without prior knowledge of the
statistical distribution features of the solution. Therefore, some human experience could be
recognized as a priori information to distinguish the characteristics of seismic waveform
signals [18,29].

2.2.1. Supervised Learning Methods

Supervised learning is a method that uses an algorithm to map input feature vectors
to output label vectors. These algorithms use known training samples (pairs; the number
of samples) to optimize the model. Seismic waves are precisely a set of time series data
arranged in chronological order, so they can be treated in this way. Convolution is a
powerful tool for feature extraction in data mining. Since the establishment of AlexNet, the
champion model of ILSVRC challenge in 2012, convolutional networks have developed
rapidly. There are AlexNet [32], VGG [33], Inception [34], and ResNet [35]. The above
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network models all have a multilayer network structure. Although they have a good
classification effect, the computational efficiency decreases with the deepening of the
network. In addition, these models can only be used for supervised learning tasks, not
large unlabeled datasets. The random convolution kernel transformation Rocket, however,
uses a large number of random convolution kernels combined with linear classifiers (ridge
regression or logistic regression). This method confirms that for relatively simple time series
classification, better classification performance can be achieved without the establishment
of a deep neural network [36]. Rocket is divided into two parts: the feature extraction
part and the linear classification part. From the resulting feature map, Rocket returns the
maximum value and a new feature, the proportion of positive values (PPV). Yet, MiniRocket
is an improved method based on the Rocket method [36], with further improvements in
computational efficiency [24].

MiniRocket is characterized by using only one-dimensional convolution, which has a
good trade-off between classification accuracy and model complexity, and is currently the
state-of-the-art for univariate time series, which can compute all kernels at once [37]. Like
Rocket, MiniRocket is a transformation that produces some features, which are then used
to train a linear classifier [24]. Instead of using both PPV and max (the maximum value of
the resulting feature maps), MiniRocket only uses the PPV. So the dimension of the vector
is reduced by half (about 10,000 dimensions instead of 20,000). MicroRocket is 75 times
faster than Rocket when processing large datasets. To classify feature vectors, both Rocket
and MiniRocket use simple ridge regression. In general, MiniRocket uses fewer feature
dimensions, and it has significant improvements in reducing the amount of parameters,
shortening training time, and improving classification accuracy [37].

2.2.2. Unsupervised Learning Methods

Unsupervised learning methods can directly learn patterns in datasets based on the
similarity between samples without relying on known examples [20]. K-means algorithm
is one of the most commonly used unsupervised classification methods in data mining.
The K-means algorithm is a partition-based clustering algorithm, which uses distance as
a measure of similarity between data objects. In other words, the smaller the distance
between data objects, the higher their similarity, and the more likely they are to be in the
same cluster. There are many ways to calculate the distance between data objects. The
K-means algorithm usually uses Euclidean distance to calculate the distance between data
objects [38].

Improving clustering performance usually can be done by reducing the dimensionality
of the data and performing the clustering in the feature space instead of the data space [19].
In this paper, on the basis of predecessors, we propose a collaborative learning model
suitable for the task of seismic sensing signal classification, that is, a two-step model of
a pre-trained knowledge base based on supervised learning labels and an unsupervised
learning method. This paper showed that this method can predict and obtain better
recognition accuracy. Specifically, we used the MiniRocket method to directly extract
the important features in the seismic sensing signals, and then used the K-means and
cluster head methods for classification operations. The results showed that compared
with the direct use of the unsupervised classification method, our method of MiniRocket
feature extraction in MiniRocket combined with unsupervised classification proposed
in this paper achieved great improvements and improved the classification accuracy of
earthquake events.

3. Methodology
3.1. Description of the Dataset

Fujian Province has a large number of historical and modern earthquakes due to
its proximity to the Taiwan subduction zone. There are four NE trending fault zones
nearly parallel to the coastline and several NW trending faults almost perpendicular to the
coastline. The continuous activity of these faults leads to frequent natural earthquakes in
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this area [39]. In addition, because Fujian is adjacent to the Taiwan Strait, it is a research
area attracting many scholars to study the crust and upper mantle structure on both sides
of the Taiwan Strait and adjacent areas by artificial blasting [39]. These blast data have
caused great interference for the Fujian seismological network to accurately identify natural
earthquake events. These abundant blasting data in this area provide a solid data basis for
our work in this paper. The earthquakes and blast data recorded by XYSC, DSXP, FDQY,
FZCM, and YXBM stations of the Fujian earthquake monitoring network from 2012 to 2019
were selected as the research object, as shown in Figure 1 and Table 1. These stations all use
broadband recorders, which can save the frequency information of different earthquake
types well.
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Table 1. Number of waveforms recorded at each station.

Station Name Number of
Earthquakes Number of Blasts Total

XYSC 3296 1674 4970
DSXP 3297 207 3504
FDQY 632 749 1381
FZCM 795 810 1605
YXBM 1774 1804 3578

Sum of waves 9794 5244 15,038

The seismic waveforms containing the main information of event records with high
recording quality and not submerged by noise were selected as input data of model training
and testing for deep learning training. Each input seismic signal is 20 s of data, and the three
channels (E-W, N-S, and Z) of the same station were combined into one vector data, that is,
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6000 sampling point waveforms. The time series data recording of the seismic waveform
started 2 s before the arrival of the nearest P wave and ended at least at the beginning and
end attenuation of the S wave so as to ensure complete waveform recording in the time
window. If the epicenter distance is too large, the complete S wave cannot be recorded
within the 20 s time window. Therefore, we only kept stations with complete records to
ensure that the selected stations were free of interruptions and interference within the 20 s
time window. Each piece of waveform vector data was stored in the folder corresponding
to the event type as a data unit processed by the neural network. A total of 9794 natural
earthquakes, 5244 artificial blasts, and 7000 background noises were intercepted in this
paper. In terms of label making, label 0 was set to earthquake events, label 1 was blast
events, label 2 was background noise, and Figure 1 is the time–frequency diagram of the
three types of data. From the time–frequency analysis, the frequency range of noise data
was less than 5 Hz, the frequency range of blasts was about 0–20 Hz, and the frequency
range of earthquakes was about 0–40 Hz (Figure 1).

We directly input the seismic event waveform into the deep learning network structure
and then output its recognition results. Our network adopts many ‘convolution’ and
‘sampling’ operations, and then uses the fully connected layer to realize the mapping
between the input data and the output target.

3.2. A Lightweight Collaborative Learning Model for Seismic Sensing Signal Classification
(LCL-SSS)

Referring to the methods of Gansbeke et.al. [26], this paper proposes a collaborative
learning classification based on a supervised learning based model, MiniRocket, and un-
supervised learning-based clustering model. In the first step, feature representations of
seismic waves are extracted by MiniRocket, where the random convolution kernel transfor-
mations are applied to the data. Adopting a relatively fixed set of kernels, MiniRocket is
more deterministic, and then PPV features are computed for the next step. In the second
step, seismic waves are classified by the unsupervised clustering algorithm. In the selection
of the clustering algorithm, the simple application of K-means clustering, however, usually
leads to cluster degradation. That is to say, a single cluster controls the trend of prediction or
cluster disappearance, leading to the dominance of a single cluster over other clusters [26].
Therefore, we integrated the SCAN loss to the clustering methods to improve the unifor-
mity of cluster distribution. Then, we took the collaborative learning classification method
of MiniRocket + cluster head as an example to introduce the algorithm. The algorithm is
introduced as follows.
Step1: MiniRocket: Extracting features of seismic waves

MiniRocket uses convolution kernel and transformed features to handle input seismic
wave data and then uses the obtained features as input to train the clustering model.
MiniRocket remove almost all randomness from Rocket.

As shown in Algorithm 1, Minirocket fixed the convolution kernel length, the value
range of the kernel weight vector, and padding and only used PPV to obtain features.
Therefore, the number of features extracted is about 10 K. The fixed length of kernel is
9, with weights restricted to two values, α = −1 and β = 2, maintaining the balance
between the accuracy and the computational complexity by using a small number of
kernels. Dilations are in range of

[[
20], [222·max/m

]
, · · · ,

[
2m·max/m

] ]
, where m is the max

dilations per kernel, limited to 32. The exponents are uniformly spaced between 0 and

max = log2
linput data length−1

lkernel length−1 = log2
linput data length−1

9−1 . Bias values are calculated based on the
convolution output, which is also used to compute features. In particular, when the fixed
kernel and dilation are combined, the bias is extracted from the quantile of the convolution
output of a randomly selected training sample. The process of one convolution operation
for one training example is provided in Figure 2.
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Algorithm 1: MiniRocket + Cluster head.

Step1: MiniRocket: Extracting features of seismic waves
Input: dataset X; neighbor numbers for each sample k
Output: features, F; cluster function Φη(F)
Set kernel weight W, each W has 6 α and 3 β

For Xi ∈ X do
For each dilation do

Precompute possible convolution output Cα, Ĉγ

For each kernel do
Compute Cγ based on Ĉγ and W
For each channel do

Cper channel = Cα + Cγ

C = sum (C_(per channel))
End for
bias B = quantiles(C, quantiles)

F = PPV(C, B)
End for

End for
End for
Return features F

Step2: Cluster head: Train clustering function Φη(F)
Integrate features to form tagged dataset F
For Xi ∈ F do

Use Features to mine the top k nearest neighbors: NXi

Update NF = NF ∪ NXi

End for
While SCAN_LOSS decreases do

Update Φη with SCAN_LOSS
End while
Return Φη(F)
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First, we input our seismic wave data, X = [X0, X1, · · · , Xn−1], and precompute some
outputs for each dilation of each sample data. For a given dilation and a given kernel, the
kernel weight, W = [w0, w1, · · · , wm−1], is fixed so that the convolution operation can be
formulated as:

X ∗Wd =
m−1

∑
j=0

xi −
(⌊m

2

⌋
· d
)
+ (j · d) · wj, ∀i ∈ {0, 1 . . . , n− 1} (1)

where xi is the value of each sampling point of the seismic waveform and m is the max
dilations per kernel. d is dilation, and j (j = 0,1,2, . . . ,m−1) is the element number in W of
each given dilation and kernel. We record this formula as C = X ∗Wd. Having C, we can
compute multiple features for multiple different bias values. Based on the fixed weights of
the kernels, we can calculate the multiplications by precomputing A = αX and B = βX,
and then complete the convolution operation. For example, if W = [α,β,α, · · · ,α], C can
be completed by the summation of A = [a0, a1, · · · , an−1] and B = [b0, b1, · · · , bn−1]. This
step has the effect that multiple features are computed with the computational cost of a
single convolution operation.

As MiniRocket uses kernels with six weights of α and three weights of β, we can
only calculate 2/3 of the computation for all 84 kernels for a given dilation more precisely.
Therefore, we precompute them for each dilation and then combine them under per kernel.
For the convenience of calculation, we set γ = 3, then β = α+ γ. We can precompute
Cα under per dilation and calculate Cγ under per kernel and then combine them to get
C = Cα+ Cγ. Thus, there are three channels for our input data, so the convolutions of the
three channels in each individual kernel are summed to obtain the convolutions of a single
division and a single kernel. Given C, bias can be calculated and features, F, based on PPV
can be obtained by the following formula:

F = PPV(C) =
1
n ∑[C > b] (2)

After finding out the features and merging the corresponding label data, we can obtain
the waveform feature dataset so as to enter the next step.
Step2: Cluster head: Learn cluster function Φη

Cluster head is used here to build a classifier for our seismic sensing signal data. The
top priority of the cluster head method is to mine the nearest neighbors of each sample by
using the feature similarity of the waveform features of seismic waves mined by MiniRocket
and then integrating them. Here, we use Euclidean distance to find k nearest neighbors for
each sample. In the classification stage, the main task is to learn a clustering function Φη

parameterized by a neural network with a weight of η, which combines the samples and
their nearest neighbors as input data. Clustering function Φη also performs soft assignment
on the output category C = {1, . . . , C} through the softmax function, with Φη(Xi) ∈ [0, 1]c.
The probability that the sample is assigned to cluster C is recorded as Φc

η(Xi). The cluster
head model minimizes the loss function, SCAN_LOSS, by constantly learning and updating
its weights to achieve the purpose of model training. SCAN_LOSS is composed of two
terms, i.e., Consistency loss and entropy loss, which is defined as follows:

SCAN_LOSS = − 1
|F| ∑xεF

∑
kεNx

log[Φη(X), Φη(k)] + λ ∑
xεF

Φ′cη log Φ′cη (3)

with Φ′cη =
1
|F| ∑xεF

Φ′cη(X)

Consistency loss (the first term in Equation (3)) measures consistency and makes
consistency prediction for samples and their neighbors by introducing Φη . When a sample
and its nearest neighbors are all accurately predicted to the same category, the dot product
is maximized. In this way, consistency loss reaches the minimum.
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In order to avoid assigning all samples to a single cluster, the entropy term (the
second term in Equation (3) is introduced and the weight coefficient λ is used to adjust its
importance. This encourages the prediction results to be evenly distributed on all class sets
C, which can realize excessive forced uniform clustering of a large number of classes and
can to a certain extent make up for the shortcomings of k-means. This process is realized
by dividing the data into different epochs and simulating the cosine annealing curve to
adjust the learning rate so that the cluster function of cluster head can iteratively update.

So far, the collaborative learning model has been established, and then the cluster
accuracy of the model needs to be evaluated. The schematic diagram is as follows.

3.3. Evaluation Indicators

In order to evaluate the clustering accuracy of our collaborative learning models in
detail, this paper adopted standard neural network evaluation indexes to display and
calculated the recall rate, accuracy rate, and F1 score. TP is the positive sample result
of the prediction pair, FP is the positive sample result of the prediction error, TN is the
negative sample result of the prediction pair, and FN is the negative sample result of the
prediction error.

The recall rate refers to the proportion of positive samples predicted to be positive
among actual positive samples:

Recall =
TP

TP + FN
(4)

In addition to the recall rate, the precision rate of the two methods was also calculated
(the proportion of positive samples predicted as positive samples, that is, the proportion
of positive samples predicted correctly) as well as the F1 score (a measure of classification
problems, which considers both accuracy and recall rate and is the harmonic mean of the
two), and the calculation formulas are as follows:

Precision =
TP

TP + FP
(5)

F1 =
2× TP

2× TP + FP + FN
(6)

Based on the characteristics of small data in this paper, leave-one-out cross-validation
was used to verify the accuracy and stability of the model. Since each test (sub-test) has
only one event in the retention cross-validation test, the event-based recognition rate
is given only after all sub-tests are completed, so only the final recognition rate can be
calculated, not the average recognition rate, the highest recognition rate, and the lowest
recognition rate.

In view of the inconsistency of the number of different types of events in the data used
in this article, the weighted calculation indicator in sklearn.metrics was used in the final
output of the above three parameters. Considering the imbalance of data in each category,
the weight of each category when calculating each indicator was no longer the reciprocal of
the number of categories but the proportion of each category in the real label.

4. Results

In this paper, we proposed a novel model “LCL-SSS” which uses supervised and
unsupervised machine learning methods to deal with the automatic classification of noise,
natural earthquake events, and blast events. To facilitate the comparison of the compu-
tational efficiency of each model, all our experiments were performed in a Titan rtx gpu
environment with 30 iterations. From the training results (Table 2), the overall effect of
supervised learning was much better than that of the unsupervised method(Figure 3).
Different training models have certain differences in recognition effect and calculation
time. With the increase in training time, the generalization ability of different models to



Appl. Sci. 2022, 12, 8389 10 of 16

data roughly converged. From the average value of 30 times, ResNet-18 had the highest
accuracy rate, reaching 0.9560, and the MiniRocket method had the second accuracy rate
of 0.9499. In addition, recall and F1 indexes were the highest in MiniRocket, which were
0.9496 and 0.9493, respectively. With excellent classification accuracy, MiniRocket took the
least time to calculate among all supervised models. With 30 iterations of all supervised
models, the calculation speed of the MiniRocket method was 2.5–3.7 times that of the
other three methods. Without relying on the label, the accuracy of using the K-means
method directly was only 0.3953. It is noteworthy that the performance of our MiniRocket
with unsupervised clustering methods was comparable to the supervised methods and
surpassed the vanilla K-means method by a large margin, suggesting the effectiveness of
our collaborative learning. The collaborative learning methods MiniRocket + K-means
and MiniRocket + cluster head proposed in this paper achieved accuracy rates of 0.7643
and 0.8458, respectively. From the calculation efficiency of the unsupervised method, the
calculation time of LCL-SSS method was 246 s, and the calculation time was too long.

Table 2. Experimental results of different methods.

Model Category Accuracy Recall F1 Label De-
pendency

Calculation
Time (s)

Inception10 Supervised 0.9441 0.9487 0.9457 Yes 155
VGG16 Supervised 0.9214 0.9149 0.9039 Yes 228

ResNet-18 Supervised 0.9560 0.9425 0.9377 Yes 211
MiniRocket Supervised 0.9499 0.9496 0.9493 Yes 62
K-means Unsupervised 0.3953 0.4108 0.3908 No 43

MiniRocket
+ K-means

Collaborative
learning 0.7643 0.6791 0.6591 No 100

LCL-SSS
(ours)

Collaborative
learning 0.8458 0.8140 0.8143 No 246

In order to check the stability of various methods, we calculated the classification
stability of various methods. The specific method was to calculate the difference between
the three indexes of each iteration and their respective median values. The standard
deviation of these differences (referred to as deviation in this paper) was used to measure
the stability of the method. The final results are shown in Figure 4 and Table 3. Among
the supervised classification methods, MiniRocket achieved the best results in all three
indicators. The accuracy variances of the ResNet-18 and the MiniRocket models were
0.0592 and 0.0207, respectively. In addition, the deviation of the MiniRocket method in
recall and F1 was much smaller than ResNet-18, only about 1/6 of it. In unsupervised
methods, K-means had the smallest classification deviation, but its accuracy was too low.
The method proposed in this paper achieved 0.0097, 0.0181, and 0.0187, respectively, in the
three indicators, ranking the second in all methods, second only to k-means. The above
results show that the three methods based on MiniRocket achieved good stability.
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Table 3. Standard deviation of accuracy, recall, and F1 values.

Model Category
Standard

Deviation of
Accuracy

Standard
Deviation of

Recall

Standard
Deviation of F1

Inception10 Supervised 0.0762 0.0487 0.0644
VGG16 Supervised 0.1114 0.1107 0.1370

ResNet-18 Supervised 0.0592 0.1162 0.1386
MiniRocket Supervised 0.0207 0.0203 0.0207

K-means Unsupervised 0.0021 0.0023 0.0023
MiniRocket +

K-means
Collaborative

learning 0.0514 0.0407 0.0427

LCL-SSS (ours) Collaborative
learning 0.0097 0.0181 0.0187

5. Discussion

All the methods used in this paper underwent 30 epochs, and the average value of
30 iterations was taken as the basis for identifying the ability of the method. Finally, in
terms of the robustness of the model, ResNet-18 and MiniRocket had the highest robustness.
Except that the accuracy of the MiniRocket method was slightly lower than ResNet-18,
it was better than ResNet-18 in recall, F1, and variance. Considering the classification
accuracy and calculation time of the model, the MiniRocket model, as a neural network
with both depth and width, had a better effect. It showed that the model can overcome the
complexity of seismic waveform characteristics while calculating efficiently and has a good
application prospect in the study of seismic waveform classification.

The accuracy of the unsupervised classification method K-means was lower than
0.4, so it cannot be used in practical research, although it was the most efficient in label-
independent methods. The main reason for the poor performance of K-means calculation is
that the key features in different event waveforms were not fully extracted. The MiniRocket
method can also be used to extract the characteristics of seismic waveforms and then
combined with other clustering methods, such as K-means and cluster head. In order
to directly extract the decisive features in waveforms, we tried the method of collabora-
tive learning between MiniRocket and unsupervised classification. Firstly, we tried the
MiniRocket + K-means method, which directly improved the accuracy to 0.7643, but the
values of recall and F1 were relatively low. Since the simple application of K-means cluster-
ing leads to the decline in clustering performance, this paper also proposed the MiniRocket
+ cluster head method. This combined method greatly improved the accuracy of unsu-
pervised classification. The accuracy of the MiniRocket + cluster head method was 84.5%,
which was more than two times higher than that of the pure K-means method. Therefore,
through this study, a new idea is given for the classification of different earthquake types,
and the proposed unsupervised classification method also has a certain application prospect
in the identification of unnatural earthquakes in other regions. The classification effect of
collaborative learning was further improved, and the variance was minimal, indicating
that the model has a certain robustness.

Since MiniRocket has the function of feature extraction, this allowed us to visualize
the distance in the feature space of different types of seismic events. For this purpose, we
used the t-sne method to reduce the dimension of data to two dimensions for visualization.
In Figure 5, there are three types of data ground truth labels; visualization results of the
feature interval of the supervised MiniRocket method; visualization results of the feature
interval of the MiniRocket + K-means method; visualization results of the feature interval
of the MiniRocket + cluster head method. The characteristic distance of noise events is far
from that of blast and seismic events, while the characteristic distance of blast and seismic
events is very close, so it is difficult to distinguish. Although the MiniRocket + cluster head
method has some disadvantages in noise identification, it has greater advantages over the
MiniRocket + K-means method in distinguishing difficult blast and seismic events.



Appl. Sci. 2022, 12, 8389 13 of 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 16 
 

which was more than two times higher than that of the pure K-means method. Therefore, 
through this study, a new idea is given for the classification of different earthquake types, 
and the proposed unsupervised classification method also has a certain application pro-
spect in the identification of unnatural earthquakes in other regions. The classification ef-
fect of collaborative learning was further improved, and the variance was minimal, indi-
cating that the model has a certain robustness. 

Since MiniRocket has the function of feature extraction, this allowed us to visualize 
the distance in the feature space of different types of seismic events. For this purpose, we 
used the t-sne method to reduce the dimension of data to two dimensions for visualiza-
tion. In Figure 5, there are three types of data ground truth labels; visualization results of 
the feature interval of the supervised MiniRocket method; visualization results of the fea-
ture interval of the MiniRocket + K-means method; visualization results of the feature in-
terval of the MiniRocket + cluster head method. The characteristic distance of noise events 
is far from that of blast and seismic events, while the characteristic distance of blast and 
seismic events is very close, so it is difficult to distinguish. Although the MiniRocket + 
cluster head method has some disadvantages in noise identification, it has greater ad-
vantages over the MiniRocket + K-means method in distinguishing difficult blast and seis-
mic events. 

 
Figure 5. Visualization of feature extraction of three classification models based on MiniRocket. 

The results of this paper showed that the supervised classification method was sig-
nificantly better than the unsupervised method. Theoretically, the objective function of 
supervised classification task optimization is E(୶,୷)~ୈ[log p(y|x)], and the optimization 
process is the process of extracting label-related information from data, while the unsu-
pervised task is mainly used for maximum likelihood estimation E୶~ୈ[log p(x)]. The lack 
of category information makes it difficult to correctly estimate the distribution based on 
category, which may be the reason why unsupervised classification methods are rarely 
used in the current research on identifying earthquake types based on seismic full wave-
form. Compared with the unsupervised clustering method, supervised classification can 
find the event discrimination threshold more accurately, thus yielding better perfor-
mance. 

Figure 5. Visualization of feature extraction of three classification models based on MiniRocket.

The results of this paper showed that the supervised classification method was sig-
nificantly better than the unsupervised method. Theoretically, the objective function of
supervised classification task optimization is E(x,y)∼D[log pθ(y|x)], and the optimization
process is the process of extracting label-related information from data, while the unsuper-
vised task is mainly used for maximum likelihood estimation Ex∼D[log pθ(x)]. The lack
of category information makes it difficult to correctly estimate the distribution based on
category, which may be the reason why unsupervised classification methods are rarely used
in the current research on identifying earthquake types based on seismic full waveform.
Compared with the unsupervised clustering method, supervised classification can find the
event discrimination threshold more accurately, thus yielding better performance.

6. Conclusions

Through qualitative analysis of signal and data waveform characteristics, the event
type can be directly determined. Combined with long-term experience accumulation in
daily practical work, blast and natural earthquakes can be identified simply and efficiently
to a certain extent. However, earthquake monitoring is long-term and real-time. It is a waste
of a lot of manpower to rely on human experience to continuously judge the earthquake cat-
egory. Moreover, there are certain differences in the personal experience level of earthquake
analysis experts, resulting in different discrimination results caused by personnel changes
in earthquake classification. If you want to find an efficient recognition criterion that can be
directly applied to computer automatic recognition, it must be based on the quantitative
determination of the characteristics of the event type (establishing the effective threshold of
various criteria), and because the waveform record is a comprehensive reflection of a series
of influences such as the source type, propagation path, and recording instruments and
equipment, the determination of the final event type should be a comprehensive classifica-
tion problem with multiple characteristics. All the information on the characteristics of the
earthquake source is recorded in the seismic sensing signal waveform. The depth character-
istics of natural earthquakes, explosions, and other waveforms were extracted by using the
depth learning model, and a neural network model that can identify non-natural seismic
events was established. When applied to the fields of earthquake monitoring, earthquake
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disaster prevention, and public services, it can further improve work efficiency, be used to
respond to social concerns in time, and reduce disaster losses. In order to explore the effect
of different depth learning models in the classification of earthquake, blast, and background
noise, this paper used a variety of neural network structures to establish a classifier to
identify the types of natural earthquake, earthquake, blast, and background noise. These
classifiers were tested by using a single seismic waveform as a unit to comprehensively
evaluate the actual effect of a convolutional neural network in the identification of seismic
event types so as to provide a reference for the automatic identification of seismic event
types. The final results are as follows:

(1) Among the supervised learning methods used in seismic classification, this paper
attempted to use MiniRocket, a one-dimensional convolution model. It is relatively
simple, does not need a complex and deep network structure, and can also achieve
classification results close to or even surpassing those of the other three mainstream
classification methods, with the highest computational efficiency.

(2) The feature extraction of seismic waves was carried out through MiniRocket, and
then the t-sne visualization method was used to compare the feature distances of
three types of data: earthquake, blast, and background noise. It was found that the
feature distances of earthquake and blast blend with each other and are difficult
to distinguish.

(3) In supervised learning, it is inevitable to make labels manually, which is heavy work,
while unsupervised learning can classify sample data without prior information,
that is, label making is not required. Our LCL-SSS combined two unsupervised
classification methods, K-means and cluster head, and finally achieved an accuracy
of nearly 80%. The method proposed in this paper provides a feasible reference
scheme for the automatic classification of earthquake types and points out a new
classification for the classification of seismic events in future seismic big data. Once
the unsupervised method is established, the application of all algorithms in practice is
very simple. Compared with the supervised method, there is no need to make labels,
so the calculation cost is very low.

Due to the small number of samples of blast seismic events and insufficient training
data, there is an overfitting problem. For non-natural seismic events such as blast, it is
difficult to establish a large dataset with sufficient samples. It is necessary to continuously
collect samples of real non-natural seismic events from different regions and structures so
as to make the convolutional neural network model have a stronger generalization ability
and higher classification and recognition accuracy. Although our LCL-SSS far exceeded
traditional methods such as K-means in the classification of earthquake and blasting events,
its accuracy still needs to be improved. In addition, the new method is slightly decadent in
terms of calculation efficiency. With the further improvement of machine learning methods,
there is still great room for improvement in seismic signal feature extraction and event
clustering. In future research, we will continue to improve the classification accuracy and
improve the calculation speed to make the real-time seismic event classification research
more rapid and accurate.
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