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Abstract: Quickly detecting and accurately diagnosing early bearing faults is the key to ensuring
the stable operation of high-precision equipment. In actual industrial applications, it is common to
face the issues of big data and poor fault identification accuracy. To accurately and automatically
realize the diagnostics of rolling bearings, a convolutional neural network algorithm and fault feature
enhancement method is proposed. A two-dimensional space feature extraction method based on
the Cyclostationary theory and wavelet transform shows good results in noise suppression. Firstly,
the cyclic demodulation of wavelet transform coefficients is performed on bearing vibration signals
to convert one-dimensional vibration data into a two-dimensional spectrogram for enhancing the
weak fault feature. Secondly, the image segmentation theory is introduced, which can obtain more
data and improve the calculation accuracy and efficiency on the basis of data dimension reduction.
Finally, the augmented 2D spectrograms are inputted into a convolutional neural network. Through
the analysis of the actual planetary gearbox bearing data, and compared with other mainstream
intelligence algorithms, the effectiveness and superiority of this method are verified.

Keywords: planetary bearing; weak fault identification; feature enhancement mechanism; image
segmentation; convolutional neural network

1. Introduction

The planetary gearbox is widely used in wind turbines, modern vehicles, ships and
warships, helicopters, and many other applications. As such gearboxes are fundamental
for power transfer, they are often mission critical and safety critical, so ensuring stable and
safe operation is vitally important for their production and life. As a crucial component of
the gearbox, the planetary bearing is more subject to the external environment, coupling
between structures, loads, and working conditions than other structural components. Thus,
the vibration signal patterns related to the bearings are more complicated, which makes
its health monitoring and diagnostics more difficult. Early damage detection is a key
diagnostics requirement for ensuring safe high-precision equipment operation, eventually
enabling predictive maintenance. However, the features that characterize early damage
are relatively weak and hidden by large external interference. In addition, big amounts
of data will be generated during industrial operation, so a great challenge is to propose
novel diagnostics tools to substitute the traditional signal processing-based methods which
may be impractical for the planetary gearbox bearing fault diagnostics. In fact, there is an
urgent need for a high-efficiency and high-precision algorithm for batch data processing
robust to external interference.

Artificial neural networks [1], support vector machines [2], and deep learning [3] are
three of the most representative intelligent fault diagnosis methods which were used by
many scholars to realize batch processing of vibration data. It is found that the traditional
neural network algorithm underperformed in terms of structural robustness, adaptability,
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and accuracy for weak signals. A support Vector Machine (SVM) is limited in processing
high-dimensional multi-class data. The deep learning method has become a popular
algorithm with its excellent performance, which has won the favor of researchers.

The greatest advantage of deep learning is that there is no need to manually select
features during operation. Deep learning algorithms automatically learn how to extract the
target information of the original data layer by layer through multiple nonlinear connection
layers enabling the extraction of complex features. The existing deep learning network
structures include: the Convolutional Deep Neural Network (CNN) [4–6], Deep Belief
Network (DBN) [7], Recurrent Neural Network (RNN) [8], Sparse Autoencoder (SAE) [9],
etc. It is widely applied in image processing and pattern recognition.

Among the deep learning algorithms, CNN was the first deep learning network
structure to be proposed. It has attracted the attention of researchers in many fields and has
achieved remarkable results, such as bearing fault diagnosis. Fu et al. [10] proposed a new
convolution theory based on feature fusion which can improve the adaptive ability of the
algorithm in different feature scale-spaces. Wang et al. [11] proposed a method to optimize
the parameters of the deep CNN model using a particle group algorithm, which can remove
the influence of prior knowledge on fault diagnosis results. Jia et al. [12] normalized the
data and gave different weights to the loss function with different distribution ratios to
weaken the class shift of the sample recognition results in the case of data imbalance.
Wang et al. [13] applied a multi-head attention to optimize the CNN structure, which
improved the accuracy of identification. Although these methods led to good diagnostics
results, issues related to poor diagnostic performance for weak fault signals with low
signal-to-noise ratios and small relative amplitudes remain unresolved.

The fault diagnosis method based on deep learning requires massive learning datasets
to accurately reveal the internal structure and characteristic behavior of the analyzed signals.
However, direct analysis of the observed weak fault signals will inevitably underperform, as
the raw signals contain a large amount of noise and strong contributions from rotating shafts
and gears unrelated to bearing faults. Therefore, to improve the accuracy of the diagnostics,
it is key to use an appropriate algorithm for fault characteristic signal enhancement so as
to highlight the relevant information. For example, Islam [14] proposed wavelet packet
transform as a 2D visualization tool and applied CNN to recognize bearing conditions.
Wavelet packet transform time-frequency feature fusion is also an effective method for
enhancing fault characteristics [15]. The sub-components of the decomposed signal can be
input to CNN for extracting more fault-sensitive information to improve the results of the
degradation assessment. Xu et al. [16] used Variational Mode Decomposition (VMD) as a
preprocessing algorithm to decompose the original signal into Intrinsic Mode Functions
(IMFs), and then input them into the CNN network to extract the characteristics of each IMF.
The validity of the algorithm is verified by experiment data under different environments
and operating states. Shao et al. [17] proposed multi-sensor information fusion technology,
which can provide more accurate information for weak fault classification. However, most
of the condition monitoring data collected in the actual service environment are non-faulty
state data, and the amount of vibration data in the faulty state is relatively small. Even if
the vibration data in the fault state are collected, the unique structure of planetary bearings
leads to complex peculiar vibration patterns which are not easily highlightable.

The attenuation characteristic of the signal transmission path is the main factor leading
to the weak fault characteristic of the planetary bearing measuring point signal. The
operating environment of mechanical equipment is harsh, and the external interference is
large. Early fault patterns are often flooded by external information unrelated to the fault.
In addition, the coupled movement between the different planetary gearbox parts leads to
complex non-stationary, modulated signals due to variable transmission paths and variable
loads. Finally, a certain fault characteristic may be covered by other fault characteristics,
resulting in multiple fault signal characteristics cross coverage, which is another critical
characteristic of fault characteristic signals.
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Taking into account the above factors, it has been found that Cyclostationary analysis
can be applied to the non-stationary fault signal analysis of planetary bearings. In fact,
even if the time-domain fault-characteristic waveform is not cyclical, its statistics generally
change with time and show period or multi-period changes [18]. Cyclostationary analysis
tools such as the spectral correlation density [19,20], cyclic modulation spectrum [21], FFT
cumulative method [22], cycle energy indicators [23], and the rapid spectral estimation
algorithm [24,25] have been proven to be effective in the field of weak fault diagnostics.
In order to improve the recognition accuracy of the CNN algorithm, in the preprocessing
step, wavelet transform coefficients cyclic demodulation (WSC) is proposed to obtain a 2D
spectrometography able to enhance the planetary gearbox bearing fault characteristics.

In order to properly test the here proposed algorithm, a high-quality, labeled training
dataset was used, containing acquisitions from a damaged condition. The novel proposed
algorithm is described in Section 3, based on the notions about Cyclostationary (Section 2.1)
and CNN (Section 2.2). WSC is adopted to eliminate the fault irrelevant information, isolate
the fault source, and extract the fault-related feature quantity. Then, a 2D feature space
data argumentation strategy based on image segmentation is proposed to compensate
for the influence of the wavelet scale analysis range on the results. Afterward, the fault
classification problem is realized by constructing a CNN analysis model and setting the
parameters of each layer. Finally, the damage detection effectiveness of the proposed
algorithm is assessed in Section 4.

2. Theoretical Background
2.1. Cyclostationary Spectrometography

Rotating machinery equipment will produce periodic transient information in the
event of a failure. Even if this information presents characteristics such as small amplitude,
low energy, or high noise, it is a useful component for health diagnosis. The focus is on how
to extract these characteristics from the measured signal. According to the Cyclostationary
theory, the characteristic of interest can be obtained by calculating its statistics. Suppose
x(n)(n = 1, 2, 3 . . . N) is the original signal to be processed. N is the size of x. The following
expressions show the characteristic of a Cyclostationary signal [18]:

C1x(t) = E{x(t)} = C1x(t + T) (1)

where E is the averaging operator and t is time. C1x is the first-order cyclic statistics, which
is periodic, and T is the Period of C1x. It is obtained by averaging the first-order cycle
smooth signal, as described in Equation (1). After the non-stationary signal x is processed
by Equation (1), it can be transformed into a periodic signal with period T. A similar result
can be obtained on a second-order cyclostationary signal. Given a time offset τ, Equation (2)
introduces second-order cyclic statistics [18]:

C2x(t, τ) = E{x(t)x∗(t− τ)} = C2x(t + τ, T) (2)

where C2x is the second-order cyclic statistic and x* is the conjugate of x.
In addition to the two conversion methods shown in Equations (1) and (2), there

are also multi-order cyclostationary analysis methods, which can reveal more complex
periodic information hidden in the signal. Since the cyclic statistical quantity in the signal
can present periodic components, a Fourier transform can be used to directly reflect its
distribution regularity with frequency value, leading to the so-called cyclic autocorrelation
function spectrum, as described in Equation (3) [19].

Sx( f ) =
1
T

∫ ∞

−∞

N

∑
n=−N

lim
N→∞

1
2N + 1

∫ T
2

− T
2

x(t + nT)x∗(t + nT− τ)e−i2π f te−i2π f τdtdτ (3)

wherein, Sx(f ) is cyclic autocorrelation function spectrum, the calculated f is also called
cyclic frequency.
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According to analysis, most of the bearing vibration signals observed under fault
conditions will cause some form of cyclostationary characteristics. However, the cyclo-
stationary method based on the first-order and second-order statistics is less robust and
the effect is not good for the early weak fault diagnosis. In view of this problem, some
researchers put forward the calculation of the periodic spectrum. The principle is to trans-
form the signal by two Fourier transforms, applying Fourier transform coefficients instead
of statistics to acquire a cyclic spectrum. It can be expressed as Equations (4) and (5):

C(h)
L,N,P[m, k, f ] =

∆t

‖h(n∆t)‖2

N−1

∑
n=0

(h[n]x[k, n + mP])e−2π j f n
N (4)

CMSx[k, f ] =
2

M∆t

M−1

∑
m=0

C(h)
L,N,P[m, k, f ]e−2π j k f P

N (5)

wherein, h[n] is window function;∆t is the sampling period; L is the size of h[n]; f is spectral
frequency points, and f = 0, · · · , L

2 − 1; M is the number of sub-segment window function
scanned; m is cyclic frequency points, and m = 0, · · · , M

2 − 1; the overlap length of h[n]
is N-P; it can be seen from Equations (4) and (5) that the whole calculation process of the
periodic spectrum can be regarded as a down-sampling process. At the same time, the
accuracy of the results is affected by the type and size of h[n]. It can only extract valid
period information, which is not a good match for the impact component.

2.2. Fault Classification Model

CNN is the first proposed deep learning model, which is highly applied in image
processing, voice translation, state classification, and other fields. The CNN model realizes
sample identification and classification by sensing the information in the local range of
samples and realizing the information interaction between network layers through param-
eter sharing. In general, the CNN model mainly consists of an input layer, convolution
layer, pooling layer, full connection layer, and output layer, including a softmax activation
function. Among them, the input layer is mainly to preprocess the raw data and images of
the input. The functions and structures of the other layers are as follows:

2.2.1. Convolution Layer

The convolutional layer is meant to extract the features of the input samples, and it
also has the effect of dimensionality reduction.

2.2.2. Pooling Layer

The pooling layer is a feature enhancement layer based on the down-sampling princi-
ple. It is mainly achieved by modularizing the feature mapping image and calculation of
its average or maximum value.

2.2.3. Fully Connected Layer

The fully connected layer first integrates multi-dimensional data into one-dimensional
data. There may be more than one fully connected layer, and the layers are usually
connected by weights, as shown in Figure 1.

Assume that the neurons of the one-dimensional input layer after high-dimensional
data integration are p1, p2, and p3. The nodes in the middle layer are a(l)i , which represents

the activation values of the i-th neuron in layer l. w(l)
i,j represents the weight values of the

connection parameter between the j-th neuron of layer L and the i-th neuron of the next
layer. b(l)i is bias item of the i neuron of layer l. It can be seen from Figure 1 that the output
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of layer L neurons is the input of layer L + 1 neurons. According to Figure 1, the following
expression can be obtained:

al
i =

n

∑
j=1

w(l−1)
i,j al−1

j + bl−1
j (6)
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Figure 1. The fully connected layer.

The above process is also called the coding process, which reflects the internal charac-
teristic information of the original signal. The last hidden layer outputs the most advanced
features of the input signal. The classification result of the whole network is related to the
selection of parameters in the model. In order to further improve the robustness of the
model, the feature quantity with large inter-layer correlation is extracted as the subsequent
processing object to eliminate the influence of interference factors on the results, as shown
in Equation (7).

al
i =

{
0 al

i ≤ 0
al

i al
i > 0

(7)

2.2.4. Output Layer

In order to realize the classification of input samples, an activation function is usually
set after the full connection layer. Suppose the input is x, and the probability of predicting
that its category belongs to y is P. The sum of the probabilities that x belongs to all possible
types is 1. The type corresponding to the maximum probability value is selected as the
output of the network. The expression is:

P(x = yi) =
ea(l)i

S
∑

i=1
e

a(l)i

(8)

where S is the number of categories and a(l)i is the output of layer l, that is, the input node
of the softmax layer.

3. The Proposed Method
3.1. Construction of Two-Dimensional Feature Space

The fault signal of the rolling bearing presents cyclostationary characteristics, so the
fault source information can be highlighted by extracting its cyclostationary quantity. There-
fore, based on the idea of the cyclic spectrum, this paper constructs a two-dimensional fea-
ture space to realize the feature enhancement of weak signals. As mentioned in Section 2.1,



Appl. Sci. 2022, 12, 8414 6 of 15

the calculation efficiency of high-order cyclostationary quantities is low, and the cyclic
periodic spectrum is affected by the window function, which is not suitable for the pre-
processing process of model data. However, compared with the Fourier transform, the
wavelet function has stronger adaptability in some cases and performs well in fault diagno-
sis. To improve adaptability, wavelet transformation coefficients are proposed to replace
the Fourier transform coefficients. As described in Equation (9):

WTx(a, b) = 1√
a

∫ ∞
−∞

∫ ∞
−∞ x(t)Ψ∗( t−b

a )e−j2π f tdadt
=
∫ ∞
−∞

〈
x(t), Ψa,b(t)

〉
e−j2π f tdt

(9)

where Ψ is the waveform basis function; Ψ∗ is the conjugate of Ψ; Ψa,b(t) is obtained
by performing time direction translation and scale direction scaling on the basic wavelet
function; a is the scale factor; and b is the time factor.

Through the study of the fault mechanism of rolling bearings, as described in pa-
per [26], the fault signal characteristics of rolling bearings are close to the Morlet wavelet.
Therefore, Morlet is used as a wavelet basis for analysis when constructing two-dimensional
feature space based on WSC.

3.2. Data Augmentation Based on WSC Image Segmentation

Planetary gearboxes are designed for large loading capacity, high transmission effi-
ciency, strong shock resistance, and vibration resistance. It is also because of its unique
performance that its operating environment is worse and the collected vibration signal
is more complex. The transmission path of the fault excitation signal, the contact force
between components, and the attenuation characteristics caused by load fluctuations will
add modulation components to the vibration signal of the planetary bearing. In addition,
the planetary gearbox bearing fault signal often contains complex noise components due to
the harsh operating environment of mechanical equipment and large external interference.
In this case, traditional time-frequency analysis methods fail to reveal fault-related feature
information. Most of the planetary bearings’ vibration signals in the fault state will cause
some form of Cyclostationarity, which leads to the discrete peak of the envelope spectrum
in the fault characteristic frequency.

In this paper, aiming at the problems existing in the research of current fault diagnosis
theory and methods, considering the characteristics of the vibration signal collected under
actual working conditions, such as small amplitude, low energy, and large noise, the pur-
pose is to explore the fault source information enhancement mechanism of label data based
on a CNN deep classification network. In order to further optimize the weight coefficient, a
parameter self-adjusting (PSA) method based on multiple error back propagation is applied
in this paper.

It is undoubtedly more representative data that can improve the classification effect
of the model. However, it is difficult to meet this requirement in practical application.
Small disturbances will bring bias to the diagnostic results based on the data-driven model,
which requires the analysis samples to be representative and have relatively clear target
characteristics. In this paper, a mechanism for enhancing fault source information based
on the cyclic wavelet spectrum is proposed, aiming at the characteristics of the small
amplitude, low energy, and strong noise of the planetary bearing vibration signal. The
wavelet transform coefficients are regarded as a special cyclic statistic to calculate the cyclic
spectrum so that the non-stationary fault-characteristic signal of the planetary gearbox
bearing is transformed into a periodic stationary signal, which can reduce the interference of
irrelevant information and enhance the impact characteristics. However, it will increase the
computational burden of the algorithm. In order to improve the computational efficiency
of the algorithm, this paper proposes to further segment the cyclic spectrum to use local
features of samples as the matching object. On the one hand, it can reduce the size of a
single sample; on the other hand, it can enhance the number of samples.



Appl. Sci. 2022, 12, 8414 7 of 15

Image local feature extraction is realized by overlapping and blocking the image.
When dividing the spectrum into blocks, a local overlapping is performed. Suppose the
length of the overlapping area is q, it defines the small block as a square with an edge
length of s. The visualized graphics are shown in Figure 2.
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3.3. Model Operation Process

Assuming that the input image is a multi-dimensional matrix X, the size is I × J and
the number of convolution kernels is C. The convolution operation process is expressed by
the formula as:

B(c1, c2) =
∫ I

i=1

∫ J

j=1
K ∗ X(i− c1r1, j− c2r1)didj (10)

where K is the convolution kernel; B is the output feature map; r1 is the size of sliding
convolution window; ∗ denotes the convolution operation.

For an input feature map image B(c1, c2), calculating its average value and the output
feature map P(u1, u2) is obtained:

P(u1, u2) =
∫ C

c1=1

∫ C

c2=1

1
r2 × r2

B(c1 + (u1 − 1)× r2, c2 + (u2 − 1)× r2)dc1dc2 (11)

where r2 is the size of filter and the step length of each movement. The operation process
of other parts of the model shall refer to the relevant explanation in Section 2.2.

3.4. Fault Diagnosis Based on WSC-CNNs

According to the analysis in Sections 2 and 3, the procedure of the proposed method
WSC-CNNs is described as follows:

Step 1: Set the wavelet scale analysis range, perform WSC analysis on the original
acceleration data, and transform the one-dimensional time domain signal into a two-
dimensional feature space map.

Step 2: Divide the WSC into several sub-areas, and each sub-area is used as the training
sample set of the CNN model.

Step 3: According to the optimal classification results, select the appropriate number of
iteration updates and learning factors. The parameters of each layer are shown in Table 1.

Step 4: The algorithm proposed in this paper is performed to analyze the experimental
data. Additionally, it is then used to obtain the classification results and the visualized
spatial distribution map. The use of other algorithms as a comparison to analyze the data
to verify the superiority of the algorithm is proposed in this paper.
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Table 1. Parameters set of each layer.

Layer Operation Number of Filters Filter Size Activation Function Output Size

Input / / / / (100, 100)
Conv Kernels 20 3 × 3 ReLu (98, 98, 20)

Pooling Pooling size / 2 × 2 Ave (49, 49, 20)
Conv Kernels 20 2 × 2 ReLu (48, 48, 20)

Pooling Pooling size / 2 × 2 Ave (24, 24, 20)
FC / 120 / ReLu (120, 1)
FC / C / Softmax (C, 1)

The overall flowchart of the algorithm is shown in Figure 3.
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4. Experimental Validation
4.1. Experimental Setup and Data Description

The experimental data were acquired on the test bench in Figure 4, which features a
two-stage planetary gearbox. In addition, a parallel shaft gearbox supported by bearings, a
variable speed drive motor, and a magnetic powder brake can be found. The driving power
of the whole experimental bench is provided by a variable speed motor, and its maximum
speed can reach 5000 rpm. Then, the torque output by the motor is connected to the input
shaft of the first-stage planetary gearbox through the torque sensor and the encoder. The
components are connected to each other so that the whole system can work smoothly. At
the end of the test, the programmable magnetic brake provides resistance to the system
and gradually stops the entire system.

In order to verify the ability of the proposed method to identify data from different
health conditions, vibration signals of the first-stage planetary gearbox were collected
under four conditions: normal condition, planetary gearbox bearing outer-race fault,
planetary gearbox bearing inner-race fault, and planetary gearbox bearing roller fault. The
acquisitions were performed at a sampling frequency of 15,360 Hz and a motor speed of
2100 rpm.
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4.2. Analysis of Wavelet Cyclic Spectrum

The most effective standard for distinguishing fault signals induced by different
positions on the same equipment is the characteristic frequency components generated by
the rolling elements passing the fault position in each fault condition. For early fault signals
or weak fault signals with large external interference, the fault characteristic frequency is
often overwhelmed by the rotation frequency or noise components. In order to strengthen
the target information representation and expression ability of each signal in the data
set, this paper proposed a pre-processing method of wavelet cycle frequency feature
extraction to enhance the fault feature frequency. The wavelet cycle spectrums for different
conditions are shown in Figure 5. It can be observed that fault-related information is
mainly concentrated in the low frequency region. In order to clearly illustrate the target
information enhancement ability of the proposed algorithm, the low frequency region
spectrum is amplified locally, shown in Figure 6. In Figure 6a, there are only rotation
frequency and harmonic components of the planet carrier and sun gear, corresponding to
the normal condition. In Figure 6b–d, the components related to the fault of the inner race
outer race and rolling elements of the planetary bearing are highlighted.

It can be concluded that the wavelet cycle spectrum is very effective in enhancing
fault characteristic information. The cyclic characteristic information spectrum is input into
a CNN model as an analysis data set, which can eliminate the interference of irrelevant
information to a certain extent and improve the representation ability of the model for
target information.
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Figure 6. Partial enlarged view of wavelet cycle frequency spectrogram; (a) Normal condition; fr is the
rotation frequency of planet carrier, fs is the rotation frequency of sun gear; (b) Inner-race Fault; fib is

the planetary bearing inner race fault characteristic frequency; f (o)p is the absolute rotation frequency
of planetary gear; (c) Outer-race Fault; fob is the planetary bearing outer race fault characteristic
frequency; (d) Ball Fault; frb is the planetary bearing rolling element fault characteristic frequency.
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4.3. Fault Diagnosis Based on Data Feature Argumentation and CNN Model

In order to further verify the fault diagnosis effect of the proposed algorithm, the
time domain signal is first collected for analysis. In total, 400 groups of data under each
condition were collected as the training sample set, and then cyclic spectrum analysis was
performed on it. At the same time, each set of conditions collected 70 sets of data as a test
data set, shown as Table 2. Subsequently, test data set is input into the model for analysis.

Table 2. Test condition description.

Fault Type Number Fault Location Training Sample Size Testing Sample Size

1 Normal 400 70
2 Inner-race Fault 400 70
3 Outer-race Fault 400 70
4 Ball Fault 400 70

During the analysis, the model parameters are first determined. The Gaussian kernel
function is used to initialize the convolutional layer connection coefficients. During the
weight update phase, the learning rate η and weight update coefficient β have a great
influence on the identification results. Based on the experience accumulated in the pre-
vious research process, to prevent overfitting, set η and β to 0.001 and 0.95, respectively.
In addition, the weight update times are studied; increase the number of update times
of connection weights and calculate the recognition accuracy rate corresponding to each
update number. Perform three times continuously and the results are shown in the his-
togram of the three colors in Figure 7. Among them, the red curve represents the average
recognition accuracy. It can be seen from the figure, by increasing the number of iterations,
the matching degree of the system and the stability of the results can be improved, but it
will bring a computational disaster. To balance the calculation efficiency and classification
results, the number of weight updates is set to 49. Using the algorithm proposed in this
paper, the final classification accuracy is 97.86%.
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Figure 7. Weight iteration update times and classification accuracy graph; The blue, orange, and gray
bars represent the results of executing the program three times at different iterations.

To further improve the visualization of classification results, the spatial representation
feature analysis diagram obtained by t-SNE is shown in Figure 8. It displayed that the plan-
etary bearing condition monitoring data after two-dimensional spatial feature extraction
can enhance intra-class aggregation and class-to-class differentiation.
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4.4. Comparison with Other Methods

To further verify the effectiveness of the methods proposed in this paper, other bench-
mark algorithms are used as a reference for comparison. Including the results of analyzing
the original data and multi-parameter (mean value, root mean square value, variance,
kurtosis value, minimum value, maximum value, and peak-to-peak value) sample set by
using the DAE algorithm. It also includes results obtained by inputting raw data as well as
un-enhanced, WSC pre-processed 2D images into the CNN model. The results are shown
in Figure 9. The original time-domain data are directly inputted into the deep autoencod-
ing model, and the classification accuracy rate is about 83.54%. Further extract multiple
feature parameters of the time domain signal and input them into the deep auto-encoding
model; although the classification accuracy has been improved, the average accuracy of the
multiple classification results is only 88.29%. If the time domain signal is directly input to
the one-dimensional CNN model, only 71% of the recognition accuracy can be obtained.
Applying the method proposed in this paper, the one-dimensional time-domain signal is
converted into two-dimensional data by calculating the WSC and then inputted into the
two-dimensional CNN model for analysis, which can accurately identify 93.18% of the fault
types. Further using the method of image segmentation to augment the data can improve
the recognition accuracy to 97.86%.

Use t-SNE to visualize the characteristic manifolds obtained by the one-dimensional
CNN model, as shown in Figure 10. The monitored vibration data under the healthy
condition can be gathered together well, and it is more distinguishable from other fault
types. Compared with Figure 8, the other three types of fault data have relatively small intra-
class aggregation and inter-class differences. This is attributable to the fact that in the case
of large external interference, the early fault features are weak and easy to be overwhelmed
by random noise components, which affects the matching of target information. After the
pre-processing of the feature enhancement, the characteristic information related to the
fault is clarified. The difference of different fault feature information is used to improve the
recognition ability of the model for different types of faults.
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5. Conclusions

Planetary gearbox bearings diagnostics is not an easy task. In most of the industrial
applications, in fact, the data quality is low, as it is very likely to find large amount of
external noise, strong rotation frequency, and other information irrelevant to the fault in
the training data. In these cases, traditional diagnostic tools cannot give a high-confidence
output, and the recognition accuracy will be low. To solve this problem, a novel WSC-CNNs
model with data argumentation in enhanced 2D feature space is established to address the
weak fault diagnosis of planetary bearings. WSC is used as for pre-processing to extract the
characteristic information of one-dimensional data, expanding it to a two-dimensional time-
frequency map. Different fault types will show different spatial distribution characteristics
in WSC, which increases the distance between healthy and damaged features. Subsequently,
a 2D feature space data argumentation strategy based on image segmentation is proposed,
and the fault feature concentration area is divided into sub-regions, which can improve the
efficiency of the algorithm and enrich the sample set. Additionally, then, the augmented
2D WSC image is fed into a CNN, which can be very efficient for planetary bearing
classification. Compared with other traditional benchmark algorithms, the proposed
algorithm can improve the recognition ability of the weak fault signal of the planetary
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bearing. Compared with the DAE algorithm, the recognition accuracy of the proposed
algorithm is improved by 9.57%. Compared with the direct analysis of the original data by
the CNN model, the accuracy rate obtained by using WSC pre-processing as the sample set
is increased by 19.92%. Further performing 2D image enhancement, the accuracy can be
improved by about 4.86%.
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Nomenclature
Notation Decipher
x(n) The original signal
N The size of x(n)
C1x First-order cyclic statistics
E Averaging operator
t Time
T The period of cyclic statistics
τ Time offset
C2x Second-order cyclic statistic
x* The conjugate of x
Sx(f ) Cyclic autocorrelation function spectrum
f Cyclic frequency
h[n] Window function
∆t Sampling period
L The size of h[n]
m Spectral frequency points
M The number of sub-segment window function scanned
c Cyclic frequency points
N-P Overlap length

a(l)i Activation values of the i-th neuron in layer l
b(l)i Bias item

w(l)
i,j Connection matrix

S The number of categories
Ψa,b(t) Wavelet basis function
a Scale factor
b Time factor
K Convolution kernel
B Convolution layer output feature map
r1 The size of sliding convolution window
P Pooling layer output feature
r2 The size of filter and the step length of each movement
fr Planetary carrier rotation frequency
fs Sun gear rotation frequency
fib Planetary bearing inner race fault characteristic frequency
fob Planetary bearing outer race fault characteristic frequency
frb Planetary bearing rolling elements fault characteristic frequency
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