VOC-Net: A Deep Learning Model for the Automated Classification of Rotational THz Spectra of Volatile Organic Compounds
Abstract
:1. Introduction
2. Methodology
2.1. Training and Validation Data
2.2. Experimental Data
2.3. Data Analytics
2.4. Model Development
2.4.1. Model Architecture
2.4.2. Hyperparameter Tuning and Model Training
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ML | Machine Learning |
CNN | Convolutional Neural Network |
DNN | Deep Neural Network |
SVM | Support Vector Machines |
VOC | Volatile Organic Compounds |
Grad-CAM | Gradient-weighted Class Activation Mapping |
CAM | Class Activation Map |
References
- Zulkifli, M.F.H.; Hawari, N.S.S.L.; Latif, M.T.; Abd Hamid, H.H.; Mohtar, A.A.A.; Idris, W.M.R.W.; Mustaffa, N.I.H.; Juneng, L. Volatile organic compounds and their contribution to ground-level ozone formation in a tropical urban environment. Chemosphere 2022, 302, 134852. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Kong, S.; Chen, N.; Niu, Z.; Zhang, Y.; Jiang, S.; Yan, Y.; Qi, S. Source apportionment of volatile organic compounds: Implications to reactivity, ozone formation, and secondary organic aerosol potential. Atmos. Res. 2021, 249, 105344. [Google Scholar] [CrossRef]
- Hewitt, C.N. Reactive Hydrocarbons in the Atmosphere; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Paul, S.; Bari, M.A. Elucidating sources of VOCs in the Capital Region of New York State: Implications to secondary transformation and public health exposure. Chemosphere 2022, 299, 134407. [Google Scholar] [CrossRef] [PubMed]
- McDonald, B.C.; De Gouw, J.A.; Gilman, J.B.; Jathar, S.H.; Akherati, A.; Cappa, C.D.; Jimenez, J.L.; Lee-Taylor, J.; Hayes, P.L.; McKeen, S.A.; et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 2018, 359, 760–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmalz, K.; Rothbart, N.; Neumaier, P.F.X.; Borngräber, J.; Hübers, H.W.; Kissinger, D. Gas spectroscopy system for breath analysis at mm-wave/THz using SiGe BiCMOS circuits. IEEE Trans. Microw. Theory Tech. 2017, 65, 1807–1818. [Google Scholar] [CrossRef]
- Rothbart, N.; Stanley, V.; Koczulla, R.; Jarosch, I.; Holz, O.; Schmalz, K.; Huebers, H.W. Millimeter-wave gas spectroscopy for breath analysis of COPD patients in comparison to GC-MS. J. Breath Res. 2022, 16, 046001. [Google Scholar] [CrossRef]
- Chevalier, P.; Meister, T.; Heinemann, B.; Van Huylenbroeck, S.; Liebl, W.; Fox, A.; Sibaja-Hernandez, A.; Chantre, A. Towards thz sige hbts. In Proceedings of the 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Atlanta, GA, USA, 9–11 October 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 57–65. [Google Scholar]
- Mansha, M.W.; Wu, K.; Rice, T.E.; Oehlschlaeger, M.A.; Hella, M.M.; Wilke, I. Detection of volatile organic compounds using a single transistor terahertz detector implemented in standard BiCMOS technology. In Proceedings of the 2019 IEEE SENSORS, Montreal, QC, Canada, 27–30 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [Google Scholar]
- Wang, C.; Han, R. Dual-terahertz-comb spectrometer on CMOS for rapid, wide-range gas detection with absolute specificity. IEEE J. Solid-State Circuits 2017, 52, 3361–3372. [Google Scholar] [CrossRef]
- Wang, D.; Schmalz, K.; Eissa, M.H.; Borngräber, J.; Kucharski, M.; Elkhouly, M.; Ko, M.; Ng, H.J.; Kissinger, D. Integrated 240-GHz dielectric sensor with DC readout circuit in a 130-nm SiGe BiCMOS technology. IEEE Trans. Microw. Theory Tech. 2018, 66, 4232–4241. [Google Scholar] [CrossRef]
- Schmalz, K.; Rothbart, N.; Eissa, M.; Borngräber, J.; Kissinger, D.; Hübers, H.W. Transmitters and receivers in SiGe BiCMOS technology for sensitive gas spectroscopy at 222–270 GHz. AIP Adv. 2019, 9, 015213. [Google Scholar] [CrossRef] [Green Version]
- Neese, C.F.; Medvedev, I.R.; Plummer, G.M.; Frank, A.J.; Ball, C.D.; De Lucia, F.C. Compact submillimeter/terahertz gas sensor with efficient gas collection, preconcentration, and ppt sensitivity. IEEE Sens. J. 2012, 12, 2565–2574. [Google Scholar] [CrossRef]
- Naftaly, M.; Vieweg, N.; Deninger, A. Industrial applications of terahertz sensing: State of play. Sensors 2019, 19, 4203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galstyan, V.; D’Arco, A.; Di Fabrizio, M.; Poli, N.; Lupi, S.; Comini, E. Detection of volatile organic compounds: From chemical gas sensors to terahertz spectroscopy. Rev. Anal. Chem. 2021, 40, 33–57. [Google Scholar] [CrossRef]
- Medvedev, I.R.; Schueler, R.; Thomas, J.; Kenneth, O.; Nam, H.J.; Sharma, N.; Zhong, Q.; Lary, D.J.; Raskin, P. Analysis of exhaled human breath via terahertz molecular spectroscopy. In Proceedings of the 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–2. [Google Scholar]
- Chowdhury, M.; Rice, T.E.; Oehlschlaeger, M.A. Evaluation of machine learning methods for classification of rotational absorption spectra for gases in the 220–330 GHz range. Appl. Phys. B 2021, 127, 34. [Google Scholar] [CrossRef]
- Liu, Y.; Upadhyaya, B.R.; Naghedolfeizi, M. Chemometric data analysis using artificial neural networks. Appl. Spectrosc. 1993, 47, 12–23. [Google Scholar] [CrossRef]
- Lussier, F.; Thibault, V.; Charron, B.; Wallace, G.Q.; Masson, J.F. Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. TrAC Trends Anal. Chem. 2020, 124, 115796. [Google Scholar] [CrossRef]
- Ghosh, K.; Stuke, A.; Todorović, M.; Jørgensen, P.B.; Schmidt, M.N.; Vehtari, A.; Rinke, P. Deep learning spectroscopy: Neural networks for molecular excitation spectra. Adv. Sci. 2019, 6, 1801367. [Google Scholar] [CrossRef]
- Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 2018, 51, 93. [Google Scholar] [CrossRef] [Green Version]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 2021, 151, 107398. [Google Scholar] [CrossRef]
- Rawat, W.; Wang, Z. Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput. 2017, 29, 2352–2449. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar] [CrossRef] [Green Version]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Wang, C.Y.; Ko, T.S.; Hsu, C.C. Interpreting convolutional neural network for real-time volatile organic compounds detection and classification using optical emission spectroscopy of plasma. Anal. Chim. Acta 2021, 1179, 338822. [Google Scholar] [CrossRef] [PubMed]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.; et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Pickett, H.; Poynter, R.; Cohen, E.; Delitsky, M.; Pearson, J.; Müller, H. Submillimeter, millimeter, and microwave spectral line catalog. J. Quant. Spectrosc. Radiat. Transf. 1998, 60, 883–890. [Google Scholar] [CrossRef]
- Kochanov, R.V.; Gordon, I.; Rothman, L.; Wcisło, P.; Hill, C.; Wilzewski, J. HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data. J. Quant. Spectrosc. Radiat. Transf. 2016, 177, 15–30. [Google Scholar] [CrossRef]
- Rice, T.E.; Chowdhury, M.; Mansha, M.W.; Hella, M.M.; Wilke, I.; Oehlschlaeger, M.A. VOC gas sensing via microelectronics-based absorption spectroscopy at 220–330 GHz. Appl. Phys. B 2020, 126, 152. [Google Scholar] [CrossRef]
- Rice, T.E.; Mansha, M.W.; Chowdhury, A.; Hella, M.M.; Wilke, I.; Oehlschlaeger, M.A. All Electronic THz Wave Absorption Spectroscopy of Volatile Organic Compounds Between 220–330 GHz. In Proceedings of the 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Buffalo, NY, USA, 8–13 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–2. [Google Scholar]
- Rice, T.E.; Chowdhury, M.A.Z.; Mansha, M.W.; Hella, M.M.; Wilke, I.; Oehlschlaeger, M.A. Halogenated hydrocarbon gas sensing by rotational absorption spectroscopy in the 220–330 GHz frequency range. Appl. Phys. B 2021, 127, 123. [Google Scholar] [CrossRef]
- Rice, T.E.; Chowdhury, M.A.Z.; Powers, M.N.; Mansha, M.W.; Wilke, I.; Hella, M.M.; Oehlschlaeger, M.A. Gas Sensing for Industrial Relevant Nitrogen-Containing Compounds Using a Microelectronics-Based Absorption Spectrometer in the 220 to 330 GHz Frequency Range. Sens. Actuators B Chem. 2022, 367, 132030. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Van Rossum, G.; Drake, F.L., Jr. Python Reference Manual; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1995. [Google Scholar]
- O’Malley, T.; Bursztein, E.; Long, J.; Chollet, F.; Jin, H.; Invernizzi, L. KerasTuner. 2019. Available online: https://github.com/keras-team/keras-tuner (accessed on 20 July 2022).
Molecule | Molecular Formula | Training Counts | Validation Counts | Experiment Counts |
---|---|---|---|---|
Chloromethane | 115 | 49 | 6 | |
Methanol | 115 | 49 | 6 | |
Formic acid | 114 | 50 | 6 | |
Formaldehyde | 115 | 49 | - | |
Hydrogen sulfide | 115 | 49 | - | |
Sulfur dioxide | 115 | 49 | - | |
Carbonyl sulfide | 114 | 50 | - | |
Hydrogen cyanide | 115 | 49 | - | |
Acetonitrile | 115 | 49 | 6 | |
Nitric acid | 115 | 49 | - | |
Ethanol | 115 | 49 | 6 | |
Acetaldehyde | 114 | 50 | 6 | |
Totals | 1377 | 591 | 36 |
Model Name | Conv. Layers | Filters | Pooling | Dense Layers | Regularization | Remarks |
---|---|---|---|---|---|---|
C1f1k3_AP1_D12 (I) | 1 | 1 | 1, Average | (113,12) | - | initial model |
C1f1k3_MP1_D12 (II) | 1 | 1 | 1, Max | (113,12) | - | accuracy improves |
C2f1k3_AP1_D12 (III) | 2 | 1 | 1, Average | (111,12) | - | accuracy improves |
C2f1k3_AP1_D48_D12 (not plotted) | 2 | 1 | 1, Average | (111,48,12) | - | negligible improvement |
C2f1k3_AP2_D48_D12 (IV) | 2 | 1 | 2, Average | (55,48,12) | - | accuracy improves |
C2f3k3_AP1_D48_D12 (V) | 2 | 3 | 1, Average | (333,48,12) | - | accuracy improves |
C2f3k3_AP1_D6_D12 (VI) | 2 | 3 | 1, Average | (333,6,12) | - | accuracy worsens |
C1f1k3_AP1_RD50_D12 (VII) | 1 | 1 | 1, Average | (113,12) | dropout | accuracy improves |
C1f1k3_AP1_D48_RL1_D12 (VIII) | 1 | 1 | 1, Average | (113,48,12) | L2 | accuracy worsens |
C2f3k3_AP1_D48_RD50_D12 (IX) | 2 | 3 | 1, Average | (333,48,12) | dropout | best accuracy, VOC-Net |
C2f3k3_AP1_D48_RL1_D12 (X) | 2 | 3 | 1, Average | (333,48,12) | L2 | accuracy worsens |
C2f3k3_AP1_D48_RL1_R50_D12 (XI) | 2 | 3 | 1, Average | (333,48,12) | L2 + dropout | accuracy worsens |
Exp. Spectrum No. | Molecule | Pressure (Torr) | Exp. Spectrum No. | Molecule | Pressure (Torr) |
---|---|---|---|---|---|
1 | Ethanol | 2 | 19 | Chloromethane | 8 |
2 | Ethanol | 16 | 20 | Chloromethane | 1 |
3 | Ethanol | 8 | 21 | Chloromethane | 5 |
4 | Ethanol | 1 | 22 | Chloromethane | 0.5 |
5 | Ethanol | 4 | 23 | Chloromethane | 1 |
6 | Ethanol | 8 | 24 | Chloromethane | 10 |
7 | Formic acid | 1 | 25 | Acetonitrile | 4 |
8 | Formic acid | 2 | 26 | Acetonitrile | 16 |
9 | Formic acid | 16 | 27 | Acetonitrile | 0.5 |
10 | Formic acid | 1 | 28 | Acetonitrile | 2 |
11 | Formic acid | 4 | 29 | Acetonitrile | 8 |
12 | Formic acid | 4 | 30 | Acetonitrile | 1 |
13 | Methanol | 1 | 31 | Acetaldehyde | 2 |
14 | Methanol | 4 | 32 | Acetaldehyde | 8 |
15 | Methanol | 2 | 33 | Acetaldehyde | 1 |
16 | Methanol | 2 | 34 | Acetaldehyde | 0.5 |
17 | Methanol | 1 | 35 | Acetaldehyde | 1 |
18 | Methanol | 8 | 36 | Acetaldehyde | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, M.A.Z.; Rice, T.E.; Oehlschlaeger, M.A. VOC-Net: A Deep Learning Model for the Automated Classification of Rotational THz Spectra of Volatile Organic Compounds. Appl. Sci. 2022, 12, 8447. https://doi.org/10.3390/app12178447
Chowdhury MAZ, Rice TE, Oehlschlaeger MA. VOC-Net: A Deep Learning Model for the Automated Classification of Rotational THz Spectra of Volatile Organic Compounds. Applied Sciences. 2022; 12(17):8447. https://doi.org/10.3390/app12178447
Chicago/Turabian StyleChowdhury, M. Arshad Zahangir, Timothy E. Rice, and Matthew A. Oehlschlaeger. 2022. "VOC-Net: A Deep Learning Model for the Automated Classification of Rotational THz Spectra of Volatile Organic Compounds" Applied Sciences 12, no. 17: 8447. https://doi.org/10.3390/app12178447
APA StyleChowdhury, M. A. Z., Rice, T. E., & Oehlschlaeger, M. A. (2022). VOC-Net: A Deep Learning Model for the Automated Classification of Rotational THz Spectra of Volatile Organic Compounds. Applied Sciences, 12(17), 8447. https://doi.org/10.3390/app12178447