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Abstract: Uniaxial compressive strength (UCS) is one of the most important parameters to character-
ize the rock mass in geotechnical engineering design and construction. In this study, a novel kernel
extreme learning machine-grey wolf optimizer (KELM-GWO) model was proposed to predict the
UCS of 271 rock samples. Four parameters namely the porosity (Pn, %), Schmidt hardness rebound
number (SHR), P-wave velocity (Vp, km/s), and point load strength (PLS, MPa) were considered as
the input variables, and the UCS is the output variable. To verify the effectiveness and accuracy of
the KELM-GWO model, extreme learning machine (ELM), KELM, deep extreme learning machine
(DELM) back-propagation neural network (BPNN), and one empirical model were established and
compared with the KELM-GWO model to predict the UCS. The root mean square error (RMSE),
determination coefficient (R2), mean absolute error (MAE), prediction accuracy (U1), prediction
quality (U2), and variance accounted for (VAF) were adopted to evaluate all models in this study.
The results demonstrate that the proposed KELM-GWO model was the best model for predicting
UCS with the best performance indices. Additionally, the identified most important parameter for
predicting UCS is the porosity by using the mean impact value (MIV) technique.

Keywords: uniaxial compressive strength (UCS); grey wolf optimizer (GWO); kernel extreme learning
machine (KELM); mean impact value (MIV)

1. Introduction

Uniaxial compressive strength (UCS) is one of the most important parameters for
determining the behavior of intact rocks, both in geotechnical and mining engineering [1–6].
Initially, the UCS was obtained mainly through laboratory uniaxial compression tests using
the standards proposed by the American Society for Testing and Materials (ASTM) or
the International Society for Rock Mechanics (ISRM) [7–10]. Nevertheless, the laboratory
experiments of UCS have been controversial for three reasons, including time-consuming,
cost-ineffective, and rock sample quality-dependent [2,11–13]. Therefore, it is practically
meaningful and scientifically significant to develop economical and effective but robust
methods to obtain UCS to meet the needs of engineering practices and research.

Several scholars used parameters to establish single regression formulas to predict
UCS, e.g., the Schmidt hammer rebound number (SHR), P-wave velocity (Vp), and point
load strength (PLS) [11,14–19]. Nevertheless, these empirical relationships between a single
parameter and UCS are not satisfactory in rock engineering [20,21]. To tackle this problem,
multiple regression analysis (MR) has been developed to predict UCS considering at least
two parameters related to the rock properties (Table 1). It is found that the prediction
accuracy for most of the multiple regression equations is not sufficient. Furthermore, some
research proved that the prediction performance of artificial intelligent models is better
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than that of traditional statistical methods [22]. Therefore, an increasing number of research
seeks to predict UCS using artificial intelligence (AI) technologies, including artificial
neural network (ANN) [20,23–26], fuzzy inference system (FIS) [27–30], support vector
machine (SVM) [31–34], random forest (RF) [35,36], adaptive neuro-fuzzy inference system
(ANFIS) [12,37–39], multi-layer perceptron (MLP) [32,40], gene expression programming
or gene programming (GEP or GP) [13,21,41,42], and genetic algorithms (GA) [43].

Compared to other AI methods, the extreme learning machine (ELM) was rarely
reported to predict UCS of rock samples [44]. On the contrary, ELM has been widely
used to solve a variety of engineering prediction problems such as backbreak, flyrock,
and penetration rate [45–50]. ELM was firstly developed by [51] based on a special neural
network architecture, namely the single-layer feed-forward neural network (SLFN). To
improve the prediction accuracy of ELM, Huang et al. [52] developed a kernel-based ELM
(KELM) model which is less affected by collinearity. Nevertheless, the single AI model
sometimes falls into a local minimum and results in poor prediction performance [53–55].
The meta-heuristic algorithm based on biological behavior was used as an effective method
to solve optimization problems [19,56–64].

Table 1. Multiple regression analysis (MR) for predicting UCS.

References Equation Rock Type Performance

[2] UCS = 0.0065Vp + 1.468BPI + 4.094PLS + 2.418TS − 225 WE, FR, THR RMSE = 15.62
[12] UCS = −6.479 + 3.425BPI + 0.639CPI + 7.889PLS MU R2 = 0.87

[20]
UCS = −595.303 − 442.363Vp + 45.338Vp

2 − 6.1 Pn + 0.52 Pn
2 +

28.314 (PLS − 4.06PLS)2 + 115.822SH − 2.007SH2 TR R2 = 0.64

[21] UCS = 0.386EH + 39.268r − 1.307 Pn − 246.804 SA, LI, DO, GR, GRA RMSE = 2.91
[23] UCS = 0.88r2.24SH0.22CI0.89 IG, SR R = 0.55
[25] UCS = 0.48SH + 1.863PLS + 248WC + 7.972Vp − 23.859 GY RMSE = 7.332
[29] UCS = exp (0.011BPI + 0.065PLS + 0.029SH + 0.000012Vp + 2.157) CL, MU R2 = 0.91
[33] UCS = 15.14UW + 2.88SHR − 446.3 MA, DO, LI, TR R2 = 0.79
[35] UCS = −120.912 − 2.036Vp + 31.064PLS TR RMSE = 9.43
[65] UCS = 0.25EH + 18.14r − 0.75 Pn − 15.47GS − 21.55RT SA, LI, DO, GR, GRA R2 = 0.90
[66] UCS = 0.89SH + 131.PLS − 1.68Vp − 35.9 MA, LI, DA RMSE = 11.38
[67] UCS = 5.734Vp + 10.876TS − 2.408PLS − 10.029 TR, LI, DI R = 0.90

[68] UCS = −2.572 Pn + 23.665PLS + 41.654PR + 12.197r
− 0.001Vp − 11.813 PYR RMSE = 11.40

[69] UCS = −153.61 Pn + 0.010Vp + 7.111PLS GR RMSE = 13.81
[70] UCS = 1.277SH + 2.186BPI + 16.41PLS + 0.011Vp − 82.436 GS, WS, BS, GY, SM RMSE = 10.80
[71] UCS = −350.784 − 1.825 Pn + 82.749r + 5.708SHR GRA, GA R2 = 0.89
[72] UCS = −22.1 + 0.4SHR + 0.0093Vp + 3.9PLS GR R2 = 0.79

[73]
UCS = 2.411u + 0.004Vp + 4.322TS + 2.583E − 49.700
UCS = 0.0003u3.099Vp

0.172TS0.206E0.393 WCJR R2
MLRA = 0.853

R2
MNRA = 0.855

Note: EH: Equotip hardness; u: unit weight; r: density; Pn: porosity; GS: grain size; RT: rock type; Vp: P-
wave velocity; BPI: block punch index; PLS: point load strength; TS: tensile strength; SH: Schmidt hammer
number; CI: cone indenter hardness; WC: water content; PR: Poisson’s ratio; CPI: cylinder punch index; UW:
unit weight; SHR: Schmidt hardness rebound number; E: elastic modulus; SA: sandstone; LI: limestone; DO:
dolomite; GR: granite; GA: gabbro; GRA: granodiorite; WE: weak; FR: fractured rock; THR: thin-bedded rocks;
MA: marble; DA: dacite; IG: igneous; SR: sedimentary rocks; GY: gypsum; TR: travertine; DI: dolomitic limestone;
CL: claystone; MU: mudstone; PYR: pyroclastic rocks; GS: grainstone; WS: wackstone/mudstone; BS: boundstone;
SM: silty marl; WCJR: weakly cemented Jurassic rocks; R2: coefficient of determination; RMSE: root mean square
error; R: Pearson correlation coefficient; MLRA: multiple linear regression analysis; MNRA: multiple nonlinear
regression analysis.

A novel model consisting of KELM and the grey wolf optimizer (GWO) was developed
to predict UCS in this study. Besides, the other five models were also implemented to
predict UCS of rock samples and compared their results with the prediction performance
of the KELM-GWO model. These five models included four AI models and one empirical
model, i.e., ELM, KELM (initial), deep extreme learning machine (DELM), back-propagation
neural network (BPNN), and an empirical formula.
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2. The Novel KELM-GWO Model for Estimating the Uniaxial Compressive Strength
2.1. Kernel Extreme Learning Machine (KELM)

The kernel extreme learning machine (KELM) was modified by Huang et al. [52] based
on the ELM. The conventional ELM model has a single-hidden-layer feed-forward neural
network (SLFN) architecture, which can be written as follows:

F(xi) =
m

∑
i=1

βig(wi·xi + bi) = oi i = 1, 2, 3, . . . , N (1)

where F(xi) represents the ith output of the ELM. βi and wi represent the output weight
vector and the input weight vector of the ith neuron in the hidden and input layer, respec-
tively. bi shows the bias of the ith neuron in the hidden layer. N represents the number of
samples and m represents the number of neurons in the hidden layer. On the basis of the
activation function a(x), Equation (1) can be described by the following mapping matrix:

T = H·B =

tT
1
...

tT
n


N×m

H(

h(x1)
...

h(xN)

) =

 a(w1·x1 + b1) · · · a(wm·x1 + bm)
... · · ·

...
a(w1·xN + b1) · · · a(wm·xN + bm)


N×m

B ==

βT
1
...

βT
m


m×n

(2)

where T, H, and B represent the target output matrix, the feature mapping matrix, and
the output weight matrix, respectively. ti represents the ith output vector, h(x) represents
the feature mapping in the hidden layer, and n shows the number of neurons in the
output layer.

To obtain the best ELM in the training phase, the least square solution of the linear
equation must be estimated as follows:∥∥H(w1, . . . , wm, b1, . . . , bm)B̂− T

∥∥ = min
βi
‖H(w1, . . . , wm, b1, . . . , bm)B− T‖ (3)

To avoid ELM collinear problems, a penalty term C and a unit matrix I were proposed
by Huang et al. [52] to optimize Equation (3) based on the ridge regression method and the
Tikhonov regularization idea. Therefore, the least square solution of the output weight can
be rewritten as:

B̂ = HT(HHT +
C
I
)
−1

T (4)

Then, the kernel function K () was introduced to replace the unknown of the feature
mapping function h(x) in the initial ELM:

ΩE = h(xi)h
(
xj
)
= K

(
xi, xj

)
(5)

Hence, Equation (1) can be changed to by combining Equations (4) and (5):

F(x) = h(x)HT(
C
I
+ HHT)

−1
T =

K(x, x1)
...

K(x, xN)

·(C
I
+ ΩE)

−1
T (6)

The kernel functions have important influence on the KELM model performance.
Therefore, choosing the right kernel function is the first step to solve a particular problem.
Wang et al. [74] reported seven kernel functions for the KELM, such as the Gauss kernel
function, the linear kernel function, the polynomial kernel function, the Fourier kernel func-
tion, etc. In fact, the Gauss kernel function is one of the most popular kernel equations [75],
which is also called the radial basis function (RBF) and can be written as follows:

K(x, y) = exp(−υ‖x− y‖2) (7)

where υ is the kernel width of RBF.
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2.2. Grey Wolf Optimizer (GWO)

The grey wolf optimizer (GWO) is a meta-heuristic optimization algorithm developed
by Mirjalili et al. [76], which was inspired by the predation behavior of grey wolves.
GWO is characterized by a simple algorithm structure and an easy implementation, which
can be applied to solve the optimization problem by adjusting the population size [77].
Nevertheless, the hunting abilities of grey wolves depend on their hierarchical social
relationships. There are four classes of wolves from top to bottom in the group of grey
wolves, namely alpha, beta, delta, and omega. Alpha is responsible for the development
of the whole group, including hunting, resting, food distribution, etc. Beta is responsible
for conveying instructions given by the alpha to other wolves and reporting to the alpha
the feedback information of other wolves; who is second only to the alpha. Delta is mainly
responsible for the peripheral work of the group, such as detecting prey and protecting
the other wolves. If the behavior of the delta is not in the population interest, they can be
demoted to the lowest class, called omega. Based on the hierarchy and division of labor in
this strict social bond, the hunting behavior of grey wolves is meticulous and efficient. The
detailed description was introduced in [78].

In the hunting process, the grey wolves can recognize prey by searching and tracking
and surround the prey from different directions to prevent it from escape. This behavior is
called encircling, which can be expressed mathematically as follows:

Pw(t + 1) = Pp(t)− A·D D = |C·Pp(t)− Pw(t)| (8)

where Pw and Pp represent the positions of the grey wolf and the prey, respectively. t
describes the current iteration; D indicates the distance between a grey wolf and prey. A
and C represent coefficients, which can be calculated by the following formula:

A = 2a·r1 − a C = 2·r2 (9)

where a represents a convergence factor that decreases from 2 to 0 as the number of
iterations increases. r1 and r2 indicate two random numbers in the range of [0, 1].

The wolves begin to move towards prey after encircling. As shown in Figure 1a, this
behavior is carried out under the leadership of the alpha, with the beta and delta following
the alpha to participate in the hunting occasionally. Thus, the positions of different wolves
during the movement can be expressed by the following formulas:

Dα = |C1·Pα(t)− Pω |, Dβ =
∣∣C2·Pβ(t)− Pω

∣∣, Dδ = |C3·Pδ(t)− Pω | (10)

P1 = Pα(t)− A1·Dα, P2 = Pβ(t)− A2·Dβ, P3 = Pδ(t)− A3·Dδ, Pω(t + 1) =
1
3

P1 +
1
3

P2 +
1
3

P3 (11)

where Dα, Dβ, and Dδ represent the distance between the alpha (α), beta (β), delta (δ), and
omega (ω), respectively. P1, P2, and P3 describe the current positions of the alpha (α), beta
(β), and delta (δ), respectively. Pω and Pω(t + 1) show the current and final position of the
omega, respectively. Although the grey wolves have captured prey, they may give up and
move on to better ones. This behavior is called exploration or exploitation (see Figure 1b)
and can be controlled by A. If A > 1, the grey wolves choose to leave the prey. On the
contrary, the grey wolves attack the prey.
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2.3. Novel Hybrid KELM-GWO

In the development of the initial KELM model, choosing the right hyperparameters
combination of C and γ had a great impact on the model performance, especially being
that these parameters were not sensitive to data in the training phase [79]. Whereas, the
GWO algorithm was developed to optimize similar problems by considering the number
of wolves [77]. Therefore, the GWO algorithm was used to select the suitable kernel
parameters (C and γ) of the KELM model for the UCS prediction in this study. To this
end, 70% of the dataset was used for training the KELM-GWO model and the rest of
the data (30%) was regarded as a testing set to evaluate the prediction performance of
the trained model. Before running the training and testing processes, the dataset was
normalized to −1 and 1 by using the MinMax scaling method. Subsequently, the initial
KELM can be developed with random kernel parameters; then, the function of the GWO
algorithm was to find the optimal kernel parameters that met the target prediction accuracy
with different numbers of populations and iterations. The mean squared error (MSE)
was applied to evaluate the predictive power of the model. In other words, the kernel
parameters corresponding to the minimum value of MSE are the best for predicting UCS.
The framework of the proposed KELM-GWO model to estimate UCS of rock is illustrated
in Figure 2.

MSE =
1
n

n

∑
i=1

(yi − y∗i )
2 (12)

where n is the number of samples; yi and y∗i are the actual and predicted values.
In order to compare the performance of UCS predicted by the KELM-GWO model and

other AI models or empirical equations, such as ELM, initial KELM, DELM, BPNN, and an
empirical formula were developed in this study. The principle of DELM and BPNN can
found in the literature [26,48,80–85].
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3. Dataset

In this study, there are 271 pieces of data of UCS obtained from various rock samples
by Dehghan et al. [20], Armaghani et al. [69], and Mahmoodzadeh et al. [34], including
travertine, claystone, granite, schist, sandstone, travertine, limestone, slate, etc. On the basis
of previous works conducted on the UCS prediction as shown in Table 1, four parameters,
namely, the porosity (Pn, %), the Schmidt hardness rebound number (SHR), the P-wave
velocity (Vp, km/s), and the point load strength (PLS, MPa), were considered as input
variables for the UCS (MPa) of rock samples prediction in this study. The detailed violin
plots and correlation matrix of the dataset are illustrated in Figures 3 and 4. The violin
plots are used to show the data distributions and their probability densities. This is a type
of chart which combines the features of a box chart and a density chart. The thick black
bar in the middle indicates the interquartile range, while the white dot shows the median.
Figure 3 clearly shows the data details of the input and output parameters, such as the
minimum, minimax, and median. As can be seen in Figure 4, the relationships between
their variables are nonlinear, and the three variables except Pn are positively correlated
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with UCS. Observing the histograms, the distributions of all variables are skewed and are
bimodal skewed distributions. Accordingly, all variables need to be normalized before
being applied to the models.
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4. Performance Indices for the Assessment of Models

In this study, the root mean square error (RMSE), the determination coefficient (R2),
the mean absolute error (MAE), the prediction accuracy (U1), the prediction quality (U2),
and the variance accounted for (VAF) were used as performance indicators to evaluate the
reliability and accuracy of all AI models and empirical formula for predicting UCS. These
indicators are defined as follows [47,49,86–95]:

RMSE =

√
1
n

n

∑
i=1

(
UCSo,i −UCSp,i

)2 (13)

R2 = 1−

[
n
∑

i=1
(UCSo,i −UCSp,i)

]2

[
n
∑

i=1
(UCSo,i −UCSo)

]2 (14)

MAE =
1
n

n

∑
i=1
|UCSo,i −UCSp,i| (15)

U1 =
RMSE√

1
n ∑n

i=1 UCSo,i
2 +

√
1
n ∑n

i=1 UCSp,i
2

(16)

U2 =
∑n

i=1 (UCSo,i −UCSp,i)
2

∑n
i=1 UCSo,i

2 (17)

VAF =

[
1−

var(UCSo,i −UCSp,i)

var(UCSo,i)

]
× 100 (18)

where n represents the number of rock samples in the training or testing phase, UCSo,i and
UCSo are the observed values and mean observed values of UCS, respectively, UCSp,i and
UCSp are predicted values and mean predicted values of UCS, respectively.

5. Developing the Models for Predicting UCS

In this study, five AI models (i.e., ELM, KELM, KELM-GWO, DELM, and BPNN) and
one empirical model have been developed to predict UCS of rock samples. In what follows,
the development of the models is presented and discussed comprehensively.

5.1. ELM

To develop a suitable ELM model for UCS prediction, an SLFN architecture should
initially be created with a certain number of neurons in a single hidden layer. For this
purpose, the number of neurons was set in the range of 20–150 and 14 ELM models were
proposed in this study. RMSE and R2 were used to select the optimal number of hidden
layer neurons, which means that the number of neurons corresponding to the model with
the lowest value of RMSE and the highest values of R2 is the best model for predicting the
UCS. As can be seen in Table 2, in model number 5 with 60 neurons in the hidden layer,
the lowest RMSE and the highest R2 were obtained in the testing phase, even if it was
not optimal in the training phase. Therefore, an SLFN architecture with 60 neurons in the
hidden layer was considered for the ELM model to predict UCS in the following study.
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Table 2. Performance evaluation of ELM models with different number of neurons in the hidden layer.

Model No. Neurons of Hidden Layer
RMSE R2

Training Testing Training Testing

1 20 28.7283 27.4770 0.6786 0.7050
2 30 24.0466 21.9013 0.7480 0.8126
3 40 22.5454 21.5436 0.8021 0.8186
4 50 22.1986 21.7206 0.8081 0.8157
5 60 22.3844 21.3123 0.8049 0.8225
6 70 19.6458 22.7176 0.8497 0.7983
7 80 19.9072 25.3655 0.8457 0.7486
8 90 17.6883 31.2900 0.8782 0.7683
9 100 18.7275 25.3018 0.8634 0.7499
10 110 17.5671 23.6957 0.8798 0.7806
11 120 18.8266 27.1939 0.8620 0.7110
12 130 18.6357 34.9914 0.8648 0.5216
13 140 16.8519 34.6346 0.8894 0.5313
14 150 17.1542 34.7546 0.8714 0.5285

Note: Line in bold represents the better solution.

5.2. KELM

The KELM model is an improved version of the ELM model to predict UCS by using
kernel functions. Therefore, the numbers of neurons in the hidden layer no longer need to
be changed, but different kernel parameters were chosen to predict UCS. In particular, the
values range of the kernel parameters should depend on the specific problem, such as the
range of [2−20, 220] being used by Zhu et al. [79] and the range of [2−8, 28] being considered
by Baliarsingh et al. [96]. To determine these parameters, the C and γ were the same and
changed in the range [2−2, 29]. The performance of the KELM models with different kernel
parameters was evaluated in terms of RMSE and R2 in the training and testing phase, as
shown in Figure 5. As can be seen in this figure, the KELM model with the lowest RMSE
and the highest R2 is considered as the best model, which has the best kernel parameters of
C and γ being 20.
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5.3. KELM-GWO

Although the KELM model with the kernel parameters C and γ of 20 show a good
predictive performance, it is not practical to manually test every possible parameter com-
bination due to the large range of [2−2, 29]. Therefore, the modified KELM with the new
kernel parameters was obtained by using the GWO algorithm, and a reasonable comparison



Appl. Sci. 2022, 12, 8468 10 of 21

between the KELM and novel hybrid KELM-GWO could be conducted. It is interesting
to note that only the numbers of grey wolves should be tuned in the GWO algorithm to
optimize the other models [77]. To this purpose, the populations of grey wolves were con-
sidered to be equal to 25, 50, 75, 100, 150, and 200 for 600 iterations in this study. Meanwhile,
the MSE is used as the stopping condition to select the optimal population, as shown in
Figure 6. As can be seen in this figure, the numbers of populations have no effect on the
fitness values after 500 iterations. The ideal KELM-GWO model with the lowest MSE was
reached at the population of 75, where it has the best kernel parameters of C = 254.63 and
γ = 0.52, respectively. Therefore, the final KELM-GWO model considering C = 254.63 and
γ = 0.52 was used for predicting UCS of rock samples.
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5.4. DELM

Similar to other neural network models, the performance of the DELM model is also
controlled by the numbers of hidden layers and the corresponding number of neurons. For
this purpose, 3, 4, and 5 multi-hidden layers with different numbers of neurons (5, 10, and
15) were considered to predict UCS. To verify the performance of all DELM models, the
RMSE and R2 were also recorded in the training and testing phases, as shown in Table 3.
As can be seen in this table, in the DELM model with numbers of 10-10-10 neurons in
three hidden layers, the lowest value of RMSE and the highest value of R2 in the training
and testing phase were obtained and recorded, respectively. Therefore, the DELM model
considering the numbers of 10-10-10 neurons in three hidden layers was selected to predict
UCS in this study, as illustrated in Figure 7.

Table 3. Performance evaluation of DELM models with various numbers of hidden layers.

Model Multi-Hidden Layers
RMSE R2

Training Testing Training Testing

5-5-5 31.1924 30.0702 0.6211 0.6467
10-10-10 28.4753 27.6212 0.6843 0.7019
15-15-15 28.5459 27.6791 0.6827 0.7006
5-5-5-5 34.0340 32.3176 0.5490 0.5919
10-10-10-10 35.5967 33.8719 0.5066 0.5517
15-15-15-15 32.3059 30.5482 0.5936 0.6354
5-5-5-5-5 32.1756 30.6333 0.5969 0.6333
10-10-10-10-10 34.0784 33.2670 0.5478 0.5676
15-15-15-15-15 40.7977 39.3185 0.3519 0.3959

Note: Line in bold represents the better solution.
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5.5. BPNN

BPNN is a typically and widely used neural network model for prediction problems
in geotechnical engineering [80,81]. To develop an effective BPNN model for predicting
UCS of rock samples, the numbers of hidden layers and neurons should be determined
to prevent overfitting and reduce the computation time. Therefore, double hidden layers
with different neurons were developed; the RMSE and R2 were recorded as evaluation
indicators to compare the performance of all models. Table 4 shows a summary of the
obtained values of RMSE and R2 in the training and testing phases. As can be seen in this
table, model number 11, i.e., two hidden layers with 6 and 8 neurons, has shown the lowest
value of RMSE in both the training and testing phases; the highest value of R2 in the testing
phase. Therefore, model number 11 was considered as the final BPNN model to predict
UCS, as depicted in Figure 8.

Table 4. Performance evaluation of BPNN with various neurons of two hidden layers.

Model
Hidden Layers RMSE R2

1 2 Training Testing Training Testing

1 2 2 24.7580 20.6986 0.7613 0.8326
2 2 4 20.3518 17.7909 0.8387 0.8763
3 2 6 21.6890 24.4836 0.8168 0.7658
4 2 8 20.0367 17.5967 0.8437 0.8790
5 2 10 25.3568 21.7866 0.7496 0.8145
6 4 4 20.4635 18.0377 0.8369 0.8729
7 4 6 23.7747 21.6982 0.7799 0.8160
8 4 8 19.9445 17.2805 0.8602 0.8833
9 4 10 20.0098 17.9689 0.8441 0.8738
10 6 6 24.7290 20.3359 0.7619 0.8384
11 6 8 19.2109 17.1627 0.8563 0.8849
12 6 10 22.4402 18.1689 0.8039 0.8710
13 8 8 19.7370 17.5722 0.8633 0.8793
14 8 10 22.5188 19.8386 0.8025 0.8462
15 10 10 22.7941 19.1961 0.7941 0.8560

Note: Line in bold represents the better solution.
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5.6. Empirical Model

Multivariate regression analysis (MRA) is a useful tool to create an empirical model for
predicting UCS, as summarized in Table 1. MRA is made of various parameters to achieve
the best-fit equation through performing the least squares fit, which can be described as
a multivariate equation of first order by Armaghani et al. [97]. Therefore, an empirical
formula, Equation (19), was proposed to predict UCS based on the four input variables
considered in this study.

UCS = −128.37− 3.34× PLS− 0.776× Pn + 0.0212×Vp + 2.789× SHR (19)

6. Results and Discussion

The ELM, KELM, KELM-GWO, DELM, BPNN models, and the empirical equation
were run to predict UCS after ensuring that the optimal involving parameters and the per-
formance of all the six models were evaluated in terms of six statistical indices (i.e., RMSE,
R2, MAE, U1, U2, and VAF) previously mentioned in this study. The results of the perfor-
mance indices in the training and testing phases of all models were represented in Table 5.
As can be seen in this table, the KELM-GWO model was the best model for predicting UCS
with the best performance indices in both the training (RMSE: 17.2176; R2: 0.8846; MAE:
12.0577; U1: 0.0798; U2: 0.0259; VAF: 88.4566%) and testing phases (RMSE: 14.2176; R2:
0.9152; MAE: 11.4315; U1: 0.0706; U2: 0.0259; VAF: 91.5207%). Nevertheless, it is important
to note that not all AI models perform better than the empirical formulas. It should be
noted that the DELM model is worse than the empirical formula in both training and testing
phases with an RMSE of 28.4753–27.6213, R2 of 0.6843–0.7019, MAE of 22.4743–22.9152, U1
of 0.1306–0.1332, U2 of 0.0677–0.0730, and VAF of 69.1654–70.3401%. The reason for this
result is that the DELM lacks a reverse fine-tuning process compared with a traditional
deep learning algorithm. Although more hidden layers are added, excessive input weights
aggravate the training load and result in a low prediction performance. After the KELM-
GWO model, the BPNN, KELM, and ELM have a close competition in both the training
and testing phases.

Table 5. Comparison of the performances of all models (training phase).

Model
Performance (Training)

RMSE R2 MAE U1 U2 VAF (%)

ELM 22.3844 0.8049 15.9951 0.1041 0.0443 80.4891
KELM 22.2684 0.8069 15.9380 0.1038 0.0442 80.7237
KELM-GWO 17.2176 0.8846 12.0577 0.0798 0.0259 88.4566
DELM 28.4753 0.6843 22.4743 0.1306 0.0677 69.1651
BPNN 19.2109 0.8563 13.6784 0.0905 0.0344 85.9230
Empirical 26.3309 0.7300 19.8876 0.1223 0.0610 73.0331

Model
Performance (Testing)

RMSE R2 MAE U1 U2 VAF (%)

ELM 21.3123 0.8225 17.0308 0.1038 0.0452 82.4108
KELM 17.5050 0.8803 12.4699 0.0854 0.0308 88.1894
KELM-GWO 14.7327 0.9152 11.4315 0.0706 0.0259 91.5207
DELM 27.6213 0.7019 22.9152 0.1332 0.0730 70.3401
BPNN 17.1627 0.8849 11.9449 0.0945 0.0305 89.4529
Empirical 24.0864 0.7733 18.2310 0.1181 0.0595 77.6171

Note: Line in bold represents the better solution.

To further compare the predictive performance of the six models, the regression
diagrams of all the models in the training and testing phases are demonstrated in Figure 9.
As can be seen in this figure, the horizontal and vertical axes represent the observed values
of UCS measured in laboratory experiments and the predicted values proposed by AI
models and the empirical equation in this study, respectively. Particularly, the data point
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will appear on the black diagonal line in each diagram when the predicted value is equal to
the observed value. Meanwhile, other radial lines with 10% and 30% are second and third
criteria to indicate deviations from the predicted values. Accordingly, the more predicted
values appear within the 10% and 30% lines and the closer they are to the black diagonal
line, the better the prediction performance of the model. As can be realized, the KELM-
GWO model not only has the least predicted values outside the 30% line, but also has
the most predicted values close to the black diagonal line in both the training and testing
phases. After the KELM-GWO model, BPNN, KELM, and ELM have a similar prediction
performance. Nevertheless, there are more predicted values of UCS away from the black
diagonal in the empirical and DELM model.
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To clearly show the performance of the six models in the training and testing phases,
the error histograms were described in Figure 10. The horizontal axis and the vertical axis
represent the error between the predicted value and its total percentage (%), respectively.
That is to say, increasing the tall error bars close to the origin, increases the prediction
accuracy of the model. As can be seen in this figure, the percentage of the lowest error is
highest in the KELM-GWO model and the lowest in the DELM model.
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Figure 10. Illustration of error histogram in the training and testing phases.

Figure 11 shows the error curves of the six models in the testing phase. There are two
types of curves in each diagram: the black curve represents observed values, and the other
colored curves represent predicted values for each model. Taken as a whole, the predictive
performance of each model in the testing phase is close. Nevertheless, magnified local
errors can indicate differences in the predictive performance of all the models. As can be
seen in these diagrams, there are smaller predicted errors from rock samples of No. 65
to No. 81 in the KELM-GWO model than the other five models, which means that the
KELM-GWO model is more suitable for predicting UCS than other models.

The graphical Taylor diagrams can be a concise tool for evaluating the performance of
the models more comprehensively, as shown in Figure 12. A complete Taylor diagram con-
sists of three parts: standard deviation (blue circles), RMSE (green circles), and correlation
coefficient (black dotted lines). The RMSE and correlation coefficient of the observed value
was 0 and 1; the standard deviation, RMSE, and correlation coefficient of all models can
be calculated based on their predicted values. Accordingly, the highest similarity to the
observed data corresponded to the best prediction model. As can be seen in the diagrams,
the KELM-GWO model was the best model with the closest position to the observed values
in both the training and testing phases. After this model, the ranking of the prediction
performance is BPNN, KELM, ELM, empirical, and DELM.

To compare and assess the prediction performance with the proposed model, the
current and previous works are listed in Table 6. As can be seen in this table, the KELM
model was almost never used to predict UCS and the KELM-GWO model proposed in this
study is better than most of the single AI models. Although the performance results of
several studies are better than this paper, the volume of data limits the difficulty of applying
these models to the UCS prediction of other rocks. In addition, different prediction results
can be obtained by using different input parameter combinations based on the same model.
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Therefore, it is necessary to obtain the importance of the different input parameters for the
UCS prediction in this study.

The mean impact value (MIV) has been reported to analyze the importance of input
variables in prediction problems [98–100]. The core of the MIV technique is enlarging and
reducing the input variable with the same ratio. Then, two new kinds of datasets were
used to train and test based on the proposed models. Accordingly, two new outputs were
obtained and the errors between them were named as impact values (IVs) of the input
variable. Finally, the mean of those IVs (MIV) can be calculated and the largest MIV of the
variable represents the highest importance for predicting UCS. The results of importance
analysis for input variables are illustrated in Figure 13. As can be seen in this figure, the
most important input variable is n with an MIV of 15.47; the remaining order of importance
for the others is PLS of 10.74, SHR of 9.50, and Vp of 8.47.
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Table 6. Comparison between the current and previous works by using AI algorithms for UCS of
rock prediction.

References AI Models Input Parameters No. of Dataset Performance

[20] ANN PLS, Vp, SHR, Pn 30 R2 = 0.93
[21] GP Pn, r, Vp 72 RMSE = 12.3
[24] ANN r, CC, QC 138 R2 = 0.76
[25] ANN Pn, SD, SH, PLS 39 R2 = 0.93
[28] FIS SDI2, SDI4, CLC 65 RMSE = 2.767
[29] FIS BPI, PLS, SHR, Vp, Pn, r 60 R2 = 0.98 RMSE = 8.21
[30] FIS SH, r, Pn 75 R2 = 0.9437
[31] SVM Pn, Vp, SD 47 R2 = 0.7712
[32] SVM Vp, Pn, SHR 85 R2 = 0.9516 RMSE = 2.14
[33] SVM Vp, SHR, CSS 90 R2 = 0.867
[34] SVM SH, Pn, Vp, PLS 170 R2 = 0.9363 RMSE = 1.097
[35] RF PLS, Pn, Vp, SHR 30 R2 = 0.93
[36] RF Vp, SH, Pn, PLS 93 R2 = 0.488 RMSE = 8.071
[40] MLP RC, r, Pn, Vp, WA, PLS 197 R2 = 0.90 RMSE = 0.289
[41] GEP UPV, WA, Dd, Sd, Bd 167 R2 = 0.877
[43] GA QC, r, Pn, CI, SSH 44 R2 = 0.63
[101] ANN WS, r, Pn 83 R2 = 0.96
[102] ANN Vp, r, Pn 105 R2 = 0.95

This study
ELM KELM

KELM-GWO DELM
BPNN

SH, Pn, Vp, PLS 271
R2

ELM = 0.8225 R2
KELM = 0.8803

R2
KELM-GWO = 0.9152 R2

DELM =
0.7019 R2

BPNN = 0.8849

Note: QC: quartz content; SH: shore hardness; SHR: Schmidt hardness rebound number; CI: cone indenter
hardness; CC: concavity/convexity; SD: slake durability; SDI: slake durability index; SDI2: two-cycle slake
durability index; SDI4: four-cycle slake durability index; CLC: clay content; CSS: cubic sample sizes; RC: rock
class; WA: water absorption; WS: water saturation; UPV: ultrasound pulse velocity; Dd: dry density; Sd: saturated
density; Bd: bulk density; SSH: shore scleroscope hardness; GWO: grey wolf optimizer.
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7. Conclusions and Summary

The UCS is a parameter of great importance for designing geotechnical and mining
works such as tunneling, underground excavation, rock slope stability, and dam construc-
tion. Therefore, five AI models (ELM, KELM, KELM-GWO, DELM, and BPNN) and an
empirical equation were proposed to predict UCS based on the 271 rock samples. The
results showed that the KELM-GWO model was the best model for predicting UCS with
the best performance indices in both the training (RMSE: 17.2176; R2: 0.8846; MAE: 12.0577;
U1: 0.0798; U2: 0.0259; VAF: 88.4566%) and testing phases (RMSE: 14.2176; R2: 0.9152; MAE:
11.4315; U1: 0.0706; U2: 0.0259; VAF: 91.5207%). It is also verified that GWO is an effective
algorithm to improve the prediction performance of the KELM model. The porosity is the
most important parameter for predicting UCS by using the MIV technique; the remaining
order of importance for the others is point load strength of 10.74, Schmidt hardness rebound
number of 9.50, and P-wave velocity of 8.47. This paper highlights the performance advan-
tages of hybrid algorithms and the use of integrated large databases, but the parameter
diversity considered in this paper limits the prediction performance to a certain extent.
We believe that on the premise of fusing more reference data, increasing effective input
parameters as much as possible is helpful to improve the predictive performance of the
hybrid model.
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