Effect of Water Content Variation on the Tensile Characteristic of Clayey Loess in Ili Valley, China
Abstract
:1. Introduction
2. Test Apparatus
3. Materials and Methods
3.1. Basic Indices of Ili Loess
3.2. Tensile Test Procedure
3.3. Particle Image Velocimetry Analysis (PIV)
3.4. Nuclear Magnetic Resonance Test (NMR)
3.5. Scanning Electron Microscope Test (SEM)
4. Results
4.1. Tensile Failure Mode
4.2. Tensile Strength
4.3. Variation of Microstructure with Water Content
4.4. Identification of Water Distribution
5. Discussion
6. Conclusions
- (1)
- The tensile characteristics of the DM and WM specimens are different. The WM specimens, in general, had lower tensile strength than the DM specimens and the former presented a ductile tensile failure mode while the failure process for the latter shifted from brittleness to ductility as the water content increased. The PIV results revealed the correlation between the tensile stress–strain response, the distribution of strain field and the development of tensile cracks.
- (2)
- The tensile strength of the WM specimen initially increased with the water content and then decreased with a further increase in the water content, whereas the tensile strength of the DM specimens increased with the decrease in water content at two distinct rates. SEM observation and NMR tests indicated that the different trends for the tensile strength to vary according to the water content derived from the differences in the soil microstructure and the relative amount of capillary and adsorbed water, as well as the interaction between the clay and water.
- (3)
- The effect of the water content’s variation on the tensile strength of a remolded clayey loess is essentially linked to the evolutions of the clay’s hydration/cementation, the development of capillary and adsorption suction and the accompanied microstructure change. This complicated linkage can be depicted using the proposed conceptual model that is presented in Figure 15.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, D.; Xu, Q.; Qi, X.; Fan, X.; Dong, X.U.; Li, S.; Ju, Y. Study on Early Recognition of Loess Landslides Based on Field Investigation. Int. J. Geohazards Environ. 2016, 2, 35–52. [Google Scholar] [CrossRef]
- Li, Y. A review of shear and tensile strengths of the Malan Loess in China. Eng. Geol. 2018, 236, 4–10. [Google Scholar] [CrossRef]
- Zhuang, J.; Peng, J.; Wang, G.; Iqbal, J.; Wang, Y.; Li, W.; Xu, Q.; Zhu, X. Prediction of rainfall-induced shallow landslides in the Loess Plateau, Yan’an, China, using the TRIGRS model. Earth Surf. Proc. Land. 2017, 42, 915–927. [Google Scholar] [CrossRef]
- Juang, C.H.; Dijkstra, T.; Wasowski, J.; Meng, X. Loess geohazards research in China: Advances and challenges for mega engineering projects. Eng. Geol. 2019, 251, 1–10. [Google Scholar] [CrossRef]
- Peng, J.; Sun, P.; Igwe, O.; Li, X.A. Loess caves, a special kind of geo-hazard on loess plateau, northwestern China. Eng. Geol. 2018, 236, 79–88. [Google Scholar] [CrossRef]
- Sun, P.; Peng, J.; Chen, L.; Yin, Y.; Wu, S. Weak tensile characteristics of loess in China—An important reason for ground fissures. Eng. Geol. 2009, 108, 153–159. [Google Scholar] [CrossRef]
- Wen, B.; Yan, Y. Influence of structure on shear characteristics of the unsaturated loess in Lanzhou, China. Eng. Geol. 2014, 168, 46–58. [Google Scholar] [CrossRef]
- Li, P.; Vanapalli, S.; Li, T. Review of collapse triggering mechanism of collapsible soils due to wetting. J. Rock Mech. Geotech. Eng. 2016, 8, 256–274. [Google Scholar] [CrossRef]
- Wu, L.Z.; Zhou, Y.; Sun, P.; Shi, J.S.; Liu, G.G.; Bai, L.Y. Laboratory characterization of rainfall-induced loess slope failure. Catena 2017, 150, 1–8. [Google Scholar] [CrossRef]
- Zhang, P.; Xiao, P.; Yao, W.; Liu, G.; Sun, W. Profile distribution of soil moisture response to precipitation on the Pisha sandstone hillslopes of China. Sci. Rep. 2020, 10, 9136. [Google Scholar] [CrossRef]
- Ghosh, A.; Subbarao, C. Tensile Strength Bearing Ratio and Slake Durability of Class F Fly Ash Stabilized with Lime and Gypsum. J. Mater. Civil Eng. 2006, 18, 18–27. [Google Scholar] [CrossRef]
- Kim, T.H.; Kim, C.K.; Jung, S.J.; Lee, J.H. Tensile strength characteristics of contaminated and compacted sand-bentonite mixtures. Environ. Geol. 2007, 52, 653–661. [Google Scholar] [CrossRef]
- Lu, N.; Wu, B.; Tan, C.P. Tensile strength characteristics of unsaturated sands. J. Geotech. Geoenviron. 2007, 133, 144–154. [Google Scholar] [CrossRef]
- David Suits, L.; Sheahan, T.C.; Nahlawi, H.; Chakrabarti, S.; Kodikara, J. A Direct Tensile Strength Testing Method for Unsaturated Geomaterials. Geotech. Test. J. 2004, 27, 11767. [Google Scholar] [CrossRef]
- Narvaez, B.; Aubertin, M.; Saleh-Mbemba, F. Determination of the tensile strength of unsaturated tailings using bending tests. Can. Geotech. J. 2015, 52, 1874–1885. [Google Scholar] [CrossRef]
- Stirling, R.A.; Hughes, P.; Davie, C.T.; Glendinning, S. Tensile behaviour of unsaturated compacted clay soils—A direct assessment method. Appl. Clay Sci. 2015, 112–113, 123–133. [Google Scholar] [CrossRef]
- Pincus, H.J.; Dass, R.N.; Yen, S.C. Tensile Stress-Strain Characteristics of Lightly Cemented Sand. Geotech. Test. J. 1994, 17, 305–314. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Jiang, L.; Tang, Y. Determination of Tensile Strength of Compacted Loess by Double Punch Test. Adv. Mater. Res. 2011, 194–196, 1176–1179. [Google Scholar] [CrossRef]
- Ge, L.; Hwang, Y.W.; Sun, H.M.; He, G.D.; Chen, R.P.; Kang, X. Effective Tensile Strength of Lightly Cemented Sand. J. Mater. Civil Eng. 2019, 31, 04018350. [Google Scholar] [CrossRef]
- Kim, T.; Kim, T.; Kang, G.; Ge, L. Factors Influencing Crack-Induced Tensile Strength of Compacted Soil. J. Mater. Civil Eng. 2012, 24, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Divya, P.V.; Viswanadham, B.V.S.; Gourc, J.P. Evaluation of Tensile Strength-Strain Characteristics of Fiber-Reinforced Soil through Laboratory Tests. J. Mater. Civil Eng. 2014, 26, 14–23. [Google Scholar] [CrossRef]
- Ibarra, S.Y.; Mckyes, E.; Broughton, R.S. Measurement of tensile strength of unsaturated sandy loam soil. Soil Tillage Res. 2005, 81, 15–23. [Google Scholar] [CrossRef]
- Varsei, M.; Miller, G.A.; Hassanikhah, A. Novel Approach to Measuring Tensile Strength of Compacted Clayey Soil during Desiccation. Int. J. Geomech. 2016, 16, D4016011. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Li, Q.M.; Yuan, H.N.; Sun, X. Tensile Fracture Characteristics of Compacted Soils under Uniaxial Tension. J. Mater. Civil Eng. 2015, 27, 04014274. [Google Scholar] [CrossRef]
- Sun, W.Y.; Liang, Q.G.; Yan, S.H.; Er-Feng, O.U.; Shao, S.L. Experimental study on tensile strength of undisturbed Q2 loess from Yan’an, Shanxi, China. J. Geomech. 2022, 21, 386–392. [Google Scholar]
- Liang, Q.; Wu, X.; Li, C.; Wang, L. Mechanical analysis using the unconfined penetration test on the tensile strength of Q3 loess around Lanzhou City, China. Eng. Geol. 2014, 183, 324–329. [Google Scholar] [CrossRef]
- Sun, P.; Peng, J.; Chen, L.; Lu, Q.; Igwe, O. An experimental study of the mechanical characteristics of fractured loess in western China. B. Eng. Geol. Environ. 2016, 75, 1639–1647. [Google Scholar] [CrossRef]
- Wang, J.; Li, P.; Gu, Q.; Xu, Y.; Gu, T. Changes in tensile strength and microstructure of loess due to vibration. J. Asian Earth Sci. 2019, 169, 298–307. [Google Scholar] [CrossRef]
- Assadi-Langroudi, A.; Ng’Ambi, S.; Smalley, I. Loess as a collapsible soil: Some basic particle packing aspects. Quatern. Int. 2018, 469, 20–29. [Google Scholar] [CrossRef]
- Assallay, A.M. Structure and Hydrocollapse Behaviour of Loess; Loughborough University of Technology: Loughborough, UK, 1998. [Google Scholar]
- Zhou, B.; Wu, Y.; Chan, J.; Wang, S.; Qiao, Z.; Hu, S. Wetting-drying cycles enhance the release and transport of autochthonous colloidal particles in Chinese loess. Hum. Ecol. Risk Assess. 2019, 25, 335–353. [Google Scholar] [CrossRef]
- Li, H.; Tang, C.; Cheng, Q.; Li, S.; Gong, X.; Shi, B. Tensile strength of clayey soil and the strain analysis based on image processing techniques. Eng. Geol. 2019, 253, 137–148. [Google Scholar] [CrossRef]
- Vesga, L.F.; Vallejo, L.E. Direct and Indirect Tensile Tests for Measuring the Equivalent Effective Stress in a Kaolinite Clay. In Proceedings of the Fourth International Conference on Unsaturated Soils, Carefree, AZ, USA, 2–6 April 2006; pp. 1290–1301. [Google Scholar]
- Tamrakar, S.B.; Toyosawa, Y.; Mitach, T.; Itoh, K. Tensile strength of compacted and saturated soils using newly developed tensile strength measuring apparatus. Soils Found. 2005, 45, 103–110. [Google Scholar] [CrossRef]
- Liu, T.S. Loess and the Environment; Science Press: Beijing, China, 1985. [Google Scholar]
- Song, Y.; Chen, X.; Qian, L.; Li, C.; Li, Y.; Li, X.; Chang, H.; An, Z. Distribution and composition of loess sediments in the Ili Basin, Central Asia. Quatern. Int. 2014, 334–335, 61–73. [Google Scholar] [CrossRef]
- Young, W.C. Roark’s Formulas for Stress and Strain; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Bai, Y. Fatigue Crack Monitoring of T-Type Joints in Steel Offshore Oil and Gas Jacket Platform. Sensors 2021, 21, 3294. [Google Scholar]
- Tan, L.; Wei, C.; Tian, J.; Zhou, H. Experimental study of unfrozen water content of frozen soils by low-field nuclear magnetic resonance. Rock Soil Mech. 2015, 36, 1566–1572. [Google Scholar]
- Jäger, A.; Schaumann, G.E.; Bertmer, M. Optimized NMR spectroscopic strategy to characterize water dynamics in soil samples. Org. Geochem. 2011, 42, 917–925. [Google Scholar] [CrossRef]
- Tian, H.H.; Wei, C.F.; Lai, Y.M.; Chen, P. Quantification of Water Content during Freeze Thaw Cycles: A Nuclear Magnetic Resonance Based Method. Vadose Zone J. 2018, 17, 1–12. [Google Scholar] [CrossRef]
- Gao, S.; Chapman, W.G.; House, W. Application of low field NMR T2 measurements to clathrate hydrates. J. Magn. Reson. 2009, 197, 208–212. [Google Scholar] [CrossRef]
- Lambe, T.; Whitman, R. Soil Mechanics; Wiley: New York, NY, USA, 1979. [Google Scholar]
- Tang, C.S.; Pei, X.J.; Wang, D.Y.; Shi, B.; Li, J. Tensile Strength of Compacted Clayey Soil. J. Geotech. Geoenvironmental Eng. 2015, 141, 04014122. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.; Li, B. Loess and Loess Geohazards in China; CRC Press/Balkema: Boca Raton, FL, USA, 2017. [Google Scholar]
- Wuddivira, M.N.; Camps-Roach, G. Effects of organic matter and calcium on soil structural stability. Eur. J. Soil Sci. 2007, 58, 722–727. [Google Scholar] [CrossRef]
- Romero, E. A microstructural insight into compacted clayey soils and their hydraulic properties. Eng. Geol. 2013, 165, 3–19. [Google Scholar] [CrossRef]
- Lu, N. Generalized Soil Water Retention Equation for Adsorption and Capillarity. J. Geotech. Geoenvironmental 2016, 142, 04016051. [Google Scholar] [CrossRef] [Green Version]
Specific Gravity GS | Natural Water Content wa (%) | Liquid Limit (%) | Plastic Limit (%) | Plasticity Index | Soluble Salt Na2SO4 (%) | Less Soluble Salt CaSO4 (%) |
---|---|---|---|---|---|---|
2.64 | 14.1 | 28.2 | 19.1 | 9.15 | 1.52 | 0.15 |
Mineral | Quartz | Illite | Albite | Chlorite | Calcite |
---|---|---|---|---|---|
Content (%) | 37.77 | 28.80 | 12.03 | 11.53 | 9.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, P.; Wang, J.; Wu, Z.; Huang, W.; Li, C.; Liu, Q. Effect of Water Content Variation on the Tensile Characteristic of Clayey Loess in Ili Valley, China. Appl. Sci. 2022, 12, 8470. https://doi.org/10.3390/app12178470
Zheng P, Wang J, Wu Z, Huang W, Li C, Liu Q. Effect of Water Content Variation on the Tensile Characteristic of Clayey Loess in Ili Valley, China. Applied Sciences. 2022; 12(17):8470. https://doi.org/10.3390/app12178470
Chicago/Turabian StyleZheng, Penglin, Jinge Wang, Zihao Wu, Wei Huang, Changdong Li, and Qingbing Liu. 2022. "Effect of Water Content Variation on the Tensile Characteristic of Clayey Loess in Ili Valley, China" Applied Sciences 12, no. 17: 8470. https://doi.org/10.3390/app12178470
APA StyleZheng, P., Wang, J., Wu, Z., Huang, W., Li, C., & Liu, Q. (2022). Effect of Water Content Variation on the Tensile Characteristic of Clayey Loess in Ili Valley, China. Applied Sciences, 12(17), 8470. https://doi.org/10.3390/app12178470