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Abstract: As a critical component in industrial systems, timely and accurate fault diagnosis of
rolling bearings is closely related to reliability and safety. Since the equipment usually operates
in normal conditions with few fault samples, unbalanced data distribution problems lead to poor
fault diagnosis ability. To address the above problems, a two-channel convolutional neural network
(TC-CNN) model is proposed. Firstly, the frequency spectrum of the vibration signal is extracted
using the Fast Fourier Transform (FFT), and the frequency spectrum is used as the input to the
one-dimensional convolutional neural network (1D-CNN). Secondly, the time-frequency image of the
vibration signal is extracted using generalized S-transform (GST), and the time-frequency image is
used as the input to the two-dimensional convolutional neural network (2D-CNN). Then, feature
extraction in the convolution and pooling layers is performed in the above two CNN channels,
respectively. The feature vectors obtained from the two CNN models are stitched together in the
fusion layer, and the fault classes are identified using an SVM classifier. Finally, using the rolling
bearing experimental dataset of Case Western Reserve University (CWRU), the fault diagnosis effect
of the proposed TC-CNN model under various data imbalance conditions is verified. In comparison
with other related works, the experimental results demonstrate the better fault diagnosis results and
robustness of the method.

Keywords: convolutional neural network; fault diagnosis; generalized S-transform; fast Fourier
transform; rolling bearing; feature extraction

1. Introduction

In modern industries, machinery is more complex and intelligent, and many sensors
are installed in the system to detect the health condition of the equipment. These sensors
collect a large amount of system operation data. Intelligent fault diagnosis algorithms can
explore the in-depth features and apply them to fault diagnosis, and scholars have achieved
many results for data-driven fault diagnosis methods [1–3]. Most of the failures of rotating
machinery systems are due to the failure of rolling bearings. Failure of rolling bearings
can affect system operation, which leads to economic loss and time wastage. Therefore,
the reliability and safety of rolling bearings are crucial for the whole equipment. The fault
diagnosis problem of rolling bearings needs more extensive research [4–10].

Deep belief network (DBN) [11], auto-encoder (AE) [12], CNN [13], etc. intelligent
fault diagnosis algorithms have been rapidly developed [14,15]. He et al. used a genetic
algorithm-optimized DBN to diagnose gear transmission chain faults [11]. Gu et al. con-
structed a deep neural network (DNN) based on multiple AEs, and directly input the time
domain vibration signal into the DNN for feature learning and fault diagnosis [16]. This
method only extracts time domain features and does not consider the features of other
domains, so it does not fully utilize the features of the signals. Saucedo-Dorantes et al. de-
signed a rolling bearing fault diagnosis model consisting of multiple stacked auto-encoders
(SAE) [17]. Multiple SAEs are used to extract the time domain, frequency domain, and
time-frequency domain features of the signal simultaneously, and then the features from
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different domains are combined. This method is better than the PCA+neural network (NN)
and LDA+NN. Compared with AE and DBN, CNN are more advantageous in processing
time series data and images [18]. In recent years, researchers have used CNN to extract
discriminative features directly. Levent combined the feature extraction and classifica-
tion stages of CNN to reduce the computational complexity [19]. Pan et al. combined
CNN with the second-generation wavelet transform to enhance the robustness of fault
diagnosis [20]. Qiao et al. enhanced the sensitivity of CNN to fault features through an
adaptive weight vector [21]. Peng et al. converted the vibration signal of the rolling bearing
into a grayscale image, used the grayscale image to extract fault features, and achieved a
better fault diagnosis result [22].

Although all of the above CNN models achieve good diagnostic results, these methods
are premised on balanced datasets. However, in the actual working condition, rolling
bearings have faults occur infrequently, resulting in insufficient failure data compared to
normal data, thus affecting the fault diagnosis accuracy and stability [23]. The imbalanced
data make the features learned by CNN more biased to normal state sample features
and under-fit to fault sample. The common idea is to compose a balanced dataset by
increasing the number of faulty samples, thus eliminating the adverse effects of imbal-
ance learning. Chawla et al. proposed the synthetic minority oversampling technique
(SMOTE) to randomly generate virtual samples to balance the training set [24]. Tang et al.
used a Wasserstein generative adversarial network (WGAN) to balance training samples
and reduce differences in fault data distribution [25]. Wang et al. used GAN to generate
new samples and diagnosed faults by superposition denoising auto-encoder (SDAE) [26].
Mao et al. applied the fast Fourier transform (FFT) to preprocess the acquired data and
generate synthetic minority class samples using GAN [27]. Xuan et al. proposed a multi-
view GAN (MV-GAN) to extend the image dataset automatically [28]. Li et al. used GAN
to generate empirical mode decomposition (EMD) energy spectrum data, and the fault
diagnosis results were better than traditional oversampling techniques [29]. Han et al.
combined adversarial learning with CNN to improve the robustness [30]. Akhenia et al.
used multiple time-frequency feature extraction methods to extract two-dimensional time
spectrum images from bearing fault signals and then used single image GAN (SinGAN) to
generate additional datasets [31]. Tong et al. used auxiliary classifier GAN with spectral
normalization (ACGAN-SN) for bearing fault detection. The experimental results proved
that ACGAN-SN has better stability than GAN [32]. Ruan et al. modified the GAN genera-
tor based on the fault diagnosis results of CNN. In addition, the envelope spectrum error is
taken as another correction term, so that fault samples can contain more information [33].
Although all the above methods can solve the fault diagnosis problem under unbalanced
datasets to some extent, the following problems exist: generating new samples will change
the distribution of the original data, which tends to increase the training time as well as
lose important sample information, meaningless noise data may be generated when the
data are extremely unbalanced, and the reliability of fault diagnosis results based on noise
data are poor. Furthermore, the availability of generated data is related to the adequacy of
the initial data. Due to the infrequent occurrence of faults, limited fault data are obtained.
Learning trends and characteristics of fault data can be challenging if the initial fault data
are insufficient.

This paper proposed a TC-CNN model to address the above problems. The TC-CNN
model discovers more information by simultaneously extracting fault features in the fre-
quency domain and time-frequency domain of the vibration signal. Feature discovery
engineering is the focus of fault diagnosis. As long as the separability of data features is
good enough, it is easy to obtain good results no matter how strong the data imbalance
is. Adding fault features or making them easier to learn is another effective way to solve
problems. Compared with the DAE model proposed in [16], the proposed method can si-
multaneously extract fault features in two feature domains and reduce the difficulty of fault
diagnosis by increasing the dimension of features [17] used EMD for feature extraction, and
time-frequency features were expressed as a set of intrinsic pattern functions (IMFs). The
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difference of the proposed method is that: GST is used to extract time-frequency features
and represent them in the form of images, which takes advantage of the convolutional
structure of CNN in image feature extraction. Summarizng the main contributions of this
paper: (1) A TC-CNN model based on 1D-CNN and 2D-CNN is proposed, which increases
the dimensionality of extracted features by extracting features in both the frequency do-
main and time-frequency domain. (2) FFT is used to extract the frequency spectrum as
the input of 1D-CNN, and GST is used to extract the time-frequency image as the input of
the 2D-CNN. (3) Feature extraction is carried out in two CNN channels, respectively. The
splicing of the two feature vectors is performed in the fusion layer. The features learned
from frequency spectrums and time-frequency images are fused and incorporated into the
training and learning process of TC-CNN.

The rest of this article can be summarized as follows: Section 2 introduces the two
feature extraction methods used in TC-CNN. Section 3 introduces the theory related to CNN,
and the framework of the TC-CNN model is given. Section 4 verifies the performance
of TC-CNN through several experiments. Moreover, the proposed TC-CNN model is
compared with the approximate and existing models to show its advantages. Section 5
summarizes the limitations of the proposed method and future research priorities.

2. Feature Extraction Method
2.1. FFT

FFT is a common tool for signal processing and is widely used in feature extraction,
radar signal processing, etc. The specific implementation is shown as follows.

For a finite-length discrete signal x(n), n = 0, 1, . . . , N − 1, its discrete Fourier trans-
form (DFT) can be expressed as:

X(k) =
N−1

∑
n=0

x(n)Wkn
N (1)

where k = 0, 1, . . . , N − 1, WN = e−j 2π
N . FFT decomposes x(n) into an even sequence x1(n)

and an odd sequence x2(n):
x(n) = x1(n) + x2(n) (2)

where x1(n) and x2(n) are both of length N/2. In addition, then we can obtain:

X(k) =

N
2 −1

∑
n=0

x1(n)W2kn
N +

N
2

∑
n=0

x2(n)W
(2k+1)n
N (3)

The following formula can be obtained:

X(k) =

N
2 −1

∑
n=0

x1(n)W2kn
N + Wk

N

N
2

∑
n=0

x2(n)W2kn
N (4)

Because W2k
N = e−j 2π

N 2kn = e−j 2π
N/2 kn = Wkn

N/2:

X(k) =

N
2 −1

∑
n=0

x1(n)Wkn
N/2 + Wk

N

N
2 −1

∑
n=0

x2(n)Wkn
N/2

= X1(k) + Wk
N X2(k)

(5)

where X1(k) and X2(k) are the DFTs of x1(n) and x2(n) at N/2, respectively. Since both
X1(k) and X2(k) have a period of N/2, X(k) can be expressed as:{

X(k) = X1(k) + Wk
N X2(k)

X
(

k + N
2

)
= X1(k)−Wk

N X2(k)
(6)
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where k = 0, 1, · · · , N
2 − 1. The frequency spectrum obtained by performing FFT on a signal

is shown as follows.

2.2. GST

Vibrational signal analysis techniques such as EMD [34], Short time Fourier trans-
form (STFT) [35], Wigner–Ville distribution (WVD) [36], and wavelet packet transform
(WPT) [37] are widely used in fault diagnosis. Compared with GST, these methods have
some shortcomings when used as deep learning inputs. For EMD because IMF is frequency
independent, it is impossible to judge the correlation between fault characteristics and
IMF, so IMFs have difficulty being unified as deep learning inputs. STFT obtains the
time-frequency spectrum based on a sliding time window. When the window width is
short, it has high time resolution and low frequency resolution. Once STFT determines
the window function, the corresponding time-frequency resolution is also determined.
For non-stationary signals, WVD is similar to STFT. WVD analyzes the time-frequency
distribution of vibration signals. However, WVD has the problem of cross-interference
in engineering applications, and unlike manual analysis, it is difficult for deep learning
methods to distinguish cross-term interference automatically. WPT can decompose the
high frequency parts compared to wavelet transform, which improves the resolution of a
high frequency band. However, the characteristic frequency of bearing faults in rotating
machinery is generally less than ten times that of the rotation frequency so WPT may
increase computational cost. In conclusion, GST is chosen as the time-frequency domain
feature extraction method, and the specific implementation method is described as follows.

The formula for the Fourier transform is:

H( f ) =
∫ +∞

−∞
x(t)e−i2π f tdt (7)

Since the classical Fourier transform cannot locate both time and frequency, a window
function w(t) can be introduced, then the formula for the Fourier transform is:

H( f ) =
∫ +∞

−∞
x(t)w(t)e−i2π f tdt (8)

If the window function is a normalized Gaussian window function with scaling and
translation, then the window function is:

w(t− τ) =
1

σ
√

2π
e−

(t−τ)2

2σ2 (9)

The frequency spectrum of the signal x(t) is:

STFT(σ, τ, f ) =
∫ +∞

−∞
x(t)

1
σ
√

2π
e
−(t−τ)2

2σ2 e−i2π f tdt (10)

Because (10) is a function of three independent variables, it is not practical as a tool
for time-frequency analysis. If σ( f ) is simplified to σ( f ) = 1

| f | , then the S-transform is
defined as:

S(τ, f ) =
∫ +∞

−∞
x(t)

| f |√
2π

e
− f 2(t−τ)2

2 e−i2π f tdt (11)

The S-transform is the extension of the continuous wavelet transform (CWT). In (11),
the window width is fixed, which means that the width of the time-frequency window has
the same resolution for all frequency components. The test signals of rotating machines are
generally non-stationary signals with many frequency components. The change is more
violent in the high-frequency part, and the duration is relatively short. At this time, the
time window should be taken narrower. On the contrary, the time window should be taken
wider. Based on the above analysis, it is possible to relate the scale factor to the frequency.
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Let the scale factor become a function of the frequency f to adjust the width of the time
window adaptively with frequency. Let σ( f ) = 1

λ| f |p , where λ > 0, p > 0. According
to (10), the generalized S-transform can be obtained:

GST(τ, f ) =
∫ +∞

−∞
x(t)

λ| f |p√
2π

e
−λ2 f 2p(t−τ)2

2 e−i2π f tdt (12)

When λ = 1, p = 1, GST is the standard S-transform. The Gaussian window function
can be chosen flexibly with the change of frequency scale, which makes the GST better
adapted to the analysis and processing of different practical signals. In general, p should
not be too large, although GST does not theoretically limit its value. Since p is very sensitive
to the frequency change in the actual signal analysis, the value is too large to make the
window function too narrow, which is unsuitable for the time-frequency analysis. On the
other hand, when p gradually becomes small, the analysis result will be closer to STFT.
When p is fixed, the modulation factor λ can adjust to increasing and decreasing curvature
to the modulation effect caused by p. For the original signal in Figure 1, its GST time-
frequency image is shown in Figure 2, where λ = 0.5, p = 0.5, the horizontal coordinate is
time, and the vertical coordinate is frequency.

Figure 1. Frequency spectrum extraction using FFT.
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Figure 2. Generalized S-transform time-frequency image.

3. TC-CNN Model Framework

CNN has achieved excellent results in various fields with its feature extraction and
pattern recognition capabilities, so CNN is used as a theoretical analysis tool. This section
briefly introduces the principle of CNN first and then gives the rolling bearing fault
diagnosis process using the TC-CNN model.
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3.1. CNN

CNN consists of the input layer, the hidden layer, the fully connected layer, and the
output layer [38]. The hidden layer is alternately composed of convolutional layers and
pooling layers. The fully connected layer and the output layer form the classifier of CNN.
The convolution layer is convolved with the feature map of the input layer by a convolution
kernel, and the output feature is obtained through the activation function. The feature map
is filtered in the pooling layer. A typical CNN structure is shown in Figure 3 [39].

Figure 3. A typical CNN structure.

3.1.1. Convolutional Layer

The convolution layer contains several convolution kernels. The feature maps or
feature vectors from the previous layer are input to the convolutional layer, which are
convolved with convolutional kernels and mapped with the activation function to the new
feature information. CNN uses the following formula for convolution operation:

Ml
n = f

(
∑ Xl−1

m ·W l
mn + Bl

n

)
(13)

where l denotes the lth layer, Xl−1
m is the feature matrix of the mth or previous layer input,

W l
mn is the weight matrix of the mnth convolution kernel, Bl

n is the bias vector, Ml
n is the

feature matrix of the lth layer output, and f is the activation function.

3.1.2. Activation Function

The nonlinear activation function is an indispensable key module in CNN. In order to
prevent the gradient explosion or gradient dispersion, the commonly used ReLU function
is used in this paper:

f (x) = ReLU(x) = max(0, x) (14)

3.1.3. Pooling Layer

CNN sets up a pooling layer to perform downsampling operations to simplify and
refine the output feature information, reducing the dimension and capturing more feature
information. CNN uses the following formula for pooling operation:

Pm = max
Mn∈S

Ml
n (15)

where Pm is the output matrix, and S is the size of the pooling layer.

3.1.4. Fully Connected Layer

As the output layer of the network, the fully connected layer is the classifier, and its
role is to map the feature information learned by the network to the label space of the
samples. In this paper, SVM is used as the classifier. The extracted features are processed
through SVM to achieve classification.

3.2. The Proposed TC-CNN Model

The proposed TC-CNN model combines FFT, GST, and CNN, and the flowchart of the
proposed TC-CNN structure used to rolling bearing fault diagnosis is shown in Figure 4.
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The parallel convolution structure of 1D-CNN and 2D-CNN is used for feature extrac-
tion. The model includes a 1D convolutional structure based on the frequency spectrum
and a 2D convolutional structure based on the GST time-frequency image. The proposed
method can fully utilize the sample fault information and make the fault information
complement each other. Both CNN models have two convolutional layers, two pooling
layers, and one fully connected layer. The features extracted by FC1 and FC2 are stitched
by feature fusion layer C∗. To improve the generalization ability, the Dropout operation is
added between C∗ and FC∗1 .

Figure 4. Flowchart of the proposed TC-CNN structure used for rolling bearing fault diagnosis.

The fault diagnosis process can be divided into four parts: (1) Firstly, frequency
spectrums and GST time-frequency images are obtained by FFT and GST on the original
sampled data. (2) The frequency spectrum and GST time-frequency image are input to
the feature extractor for fault feature extraction and obtain the combined fault features
by a feature fusion layer. (3) The convolutional network is used for supervised learning
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of combined fault features, and the weights and parameters in the model are trained
and updated. (4) The fault classification performance of TC-CNN is verified through the
fault dataset.

3.3. Evaluation Criterion

Accuracy is a common evaluation criterion in neural networks. However, the evalua-
tion cannot be performed by accuracy alone if the dataset is unbalanced. The model will
make the classification result favor the majority class during the training process so that
the model has high accuracy. However, the classification result of minority class samples is
more meaningful. High accuracy is not equivalent to a better classification result. Therefore,
the F1 score is also used to measure the model more accurately and comprehensively in the
paper. The basic form of the confusion matrix is given:

Predicted

Actual

Positive Negative

Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

3.3.1. Accuracy

Accuracy is the percentage of correctly predicted outcomes over the total sample:

Accuracy =
TP + TN

TP + FN + TN + FP
(16)

3.3.2. Precision

Precision is the probability of the sample that is True among all the samples that are
predicted to be True:

Precision =
TP

TP + FP
(17)

3.3.3. Recall

Recall is the probability of a positive sample being predicted out of an actual posi-
tive sample:

Recall =
TP

TP + FN
(18)

3.3.4. F1 Score

The higher values of precision and recall are better. However, precision and recall
may have one high value and another low value, so the F1 score is introduced to combine
precision and recall. F1 score measures the ability to find positive samples:

F1 =
2× Precision× Recall

Precision + Recall
(19)

For the multiclassification problem, this paper uses the macro F1 score calculation
as follows:

F1 =
∑n

i=1 F1i

n
(20)

where n is the total number of fault classes, F1i is the F1 score of the class i, i = 1, 2, · · · , n.

4. Experimental Analysis
4.1. Experimental Data

In this paper, the bearing fault dataset of CWRU is used to verify the performance of
the TC-CNN fault diagnosis model [40]. The experimental facility is shown in Figure 5.
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The main components of this experimental facility include a 2-hp motor (left), a torque
transducer (middle), and a dynamometer (right). The test bearing (6205-2RS JEM SKF)
supports the motor shaft. The signals are collected from the drive end bearing with a
sample rate of 48,000 Hz, a motor load of 0 hp, and an average motor speed of 1724 rpm.
The fault locations mainly included ball defects (BD), outer ring defects (OR), and inner
ring defects (IR). Faults in this database of bearings are generated by electrical machining
with fault sizes of 0.007 inches, 0.014 inches, and 0.021 inches. Each fault location has the
above three damage conditions, representing different severity. Therefore, there are ten
classes of data, and the information is listed in Table 1.

The symbol @6:00 in Table 1 indicates that the fault direction is at 6 o’clock.

Figure 5. Rolling bearing experimental facility.

Table 1. Rolling bearing fault information.

Location Fault Diameter (inch) Fault Orientation Label

f1 Ball 0.007 -
f2 Ball 0.014 -
f3 Ball 0.021 -
f4 Inner race 0.007 -
f5 Inner race 0.014 -
f6 Inner race 0.021 -
f7 Outer race 0.007 Center @6:00
f8 Outer race 0.014 Center @6:00
f9 Outer race 0.021 Center @6:00
f0 Normal - -

4.2. Model Parameters

The paper is set with a sample of 1024 data points, p = 0.5, λ = 0.5 in GST: (1) The
original test signal of 1× 1024 dimension is performed FFT, and the 1× 513 dimension
frequency spectrum is obtained. (2) The original test signal of 1× 1024 dimension is com-
pressed to a 64× 64× 3 time-frequency image through GST. The purpose of compression is
to highlight the primary feature information and not drown out other information, reduce
the interference of background information, and improve the proportion of main features.
The time-frequency image and frequency spectrum are the input of 2D-CNN and 1D-CNN,
respectively. (3) The features extracted from the two CNN models are combined to obtain
the final fault features. The network model parameters are obtained based on actual test
results. The parameters set for the two networks are shown in Table 2.
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Table 2. Parameters of the TC-CNN.

Layer Name Parameter Layer Size

I1,1 - 1× 513× 1
I2,1 - 64× 64× 3
C1,1 Conv(1× 6), kernel size = 6 1× 508× 6
C2,1 Conv (3× 6), kernel size = 5 60× 60× 6
P1,1 kernel size = 4 1× 127× 6
P2,1 kernel size = 2 30× 30× 6
C1,2 Conv (6× 16), kernel size = 5 1× 123× 16
C2,2 Conv (6× 16), kernel size = 5 26× 26× 16
P1,2 kernel size = 3 1× 41× 16
P2,2 kernel size = 2 13× 13× 16
FC1 - 656
FC2 - 2704
C∗ - 3360
D - 3360

FC∗1 3360× 84 84
FC∗2 SVM 10
O - 1× 10

The last fully connected layer FC∗2 is an SVM classifier, and the kernel function is
Gaussian kernel. The kernel parameter γ = 0.01, and the penalty factor C = 1. The
remaining parameters are as follows: the dropout ratio is 0.5, the learning rate is 0.005, the
mini-batch size is 8, the total epochs is 500, and the loss function is cross-entropy.

4.3. Fault Diagnosis Results under a Balanced Dataset

In addition, 200 samples are randomly constructed for each class, and a sample set
containing 2000 samples is constructed. Visualize the hierarchical feature learning process
of TC-CNN using the t-distributed Stochastic Neighbor Embedding (t-SNE) method [41].
The learned features of the original input signal, fully connected layers FC1, FC2, and FC∗1
of the test dataset are mapped to two-dimensional features using t-SNE, respectively. The
mapped features of different layers are shown in Figures 6–9.
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Figure 6. Feature visualization of input data.
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Figure 7. Feature visualization of fully connected layer FC1.
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Figure 8. Feature visualization of fully connected layer FC2.
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Figure 9. Feature visualization of fully connected layer FC∗1 .
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Figures 6–9 show the feature map changes for different classes during the model
learning process. As shown in Figure 6, the original data features for all classes are relatively
scattered and difficult to distinguish. Figures 7 and 8 show the learned features of the
fully connected layers FC1 and FC2, respectively. Compared with the original input data, it
can be seen that, after the convolution and pooling operations, the samples are gradually
clustered. Furthermore, the clustering of features in the fully connected layer FC2 is better
than that in FC1. Finally, in Figure 9, features of the same class are very concentrated. The
distance between the feature distributions in FC∗1 is the largest compared to the feature
mapping results in FC1 and FC2. The classifier easily performs the classification of the
dataset, illustrating the excellent classification results.

The proposed methods in this paper are compared with 1D-CNN, 2D-CNN [22],
CWT+2D-CNN [38], DBN [42], and 1D-CNN+2D-CNN.

(1) 1D-CNN consists of an input layer, two 1D convolutional layers, two pooling
layers, a fully connected layer, a softmax classifier, and an output layer. The kernel sizes of
input and output channels of the convolutional and pooling layers are set as 5, 6, 3, and
6, respectively. The rest of the structural parameters are the same as the 1D-CNN in the
proposed model.

(2) Since the dimension of the original signal data are 1024, the original signal data
are transformed into a 32 × 32 dimensional matrix as the input of 2D-CNN. The classifier
is softmax. The rest of the structural parameters are the same as the 2D-CNN in the
proposed model.

(3) CWT+2D-CNN uses CWT to extract the time-frequency features, and the Morlet
cmor3-3 wavelet basis function is selected. The CWT time-frequency image is used as the
input of the 2D-CNN, and the classifier is softmax. The rest of the structural parameters
are the same as the 2D-CNN in the proposed model.

(4) The DBN contains an input layer, two hidden layers, and one output layer, and the
network structure is [1024, 50, 20, 10]. The learning rate is 0.05, a mini-batch size is 8, and
the number of iterations is 500.

(5) 1D-CNN+2D-CNN has the same network structure as TC-CNN. The difference is
that TC-CNN uses FFT and GST to extract features. The inputs of the two channels are
frequency spectrum and time-frequency images, respectively. In the 1D-CNN+2D-CNN,
the inputs of the two channels are the original signal and the 2D matrix transformed into
the original signal, respectively.

To avoid biased results due to random splits of the training and testing datasets, k-fold
cross-validation is applied. All samples are divided into k mutually exclusive subsets of
the same size, k− 1 subsets are used as training samples, and the remaining subset is used
as testing samples. The training samples are divided into the training set and validation
set. A total of k experiments are performed to obtain k Accuracy and F1 score results, and
the average is taken as the final experimental result. This paper set k = 10, the sample set is
divided into 10 subsets, and the ratio of training set, validation set, and test set is set to:
7:2:1. The Accuracy and F1 score on balanced data samples are shown in Tables 3 and 4
and Figure 10.

Table 3. The comparison of fault diagnosis accuracy.

Method
Accuracy (%)

Training Set Validation Set Test Set

TC-CNN 100.00 99.50 99.50
1D-CNN 100.00 81.25 82.50
2D-CNN 100.00 95.00 94.00

CWT+2DCNN 97.71 96.25 96.50
DBN 100.00 74.00 72.50

1D-CNN+2D-CNN 100.00 91.00 88.00
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Table 4. The comparison of F1 score.

Label
Method

TC-CNN 1D-CNN 2D-CNN CWT+2DCNN DBN 1D-CNN+2D-CNN

f1 1.00 0.74 0.86 0.94 0.58 0.73
f2 1.00 0.70 0.77 0.96 0.71 0.75
f3 1.00 0.87 1.00 0.90 1.00 1.00
f4 1.00 0.81 1.00 1.00 0.58 0.87
f5 0.98 0.71 0.92 0.98 0.51 0.88
f6 1.00 0.81 1.00 1.00 0.72 0.89
f7 1.00 0.96 1.00 1.00 0.74 0.97
f8 1.00 1.00 1.00 0.90 1.00 1.00
f9 1.00 0.81 0.95 1.00 0.52 0.83
f0 1.00 0.98 0.97 1.00 0.96 1.00

F1 score (macro) 1.00 0.83 0.94 0.97 0.73 0.89

TC-CNN 1D-CNN 2D-CNN CWT
+2D-CNN

DBN 1D-CNN
+2D-CNN
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Figure 10. Comparison of test set fault diagnosis results.

According to the results, it can be found that the methods with convolutional and
pooling layers are more capable of fault diagnosis, and the DBN obtains the lowest values
of Accuracy and F1 score among these models. Compared with the single-channel CNN
model, the fault diagnosis performance of TC-CNN is improved due to information richness.
Comparing 1D-CNN with 2D-CNN and CWT+2DCNN shows that 2D-CNN is generally
better than 1D-CNN for fault diagnosis. 1D-CNN+2D-CNN also utilizes a two-channel
model. Compared with single-channel CNN, its fault diagnosis effect is better than 1D-CNN
but worse than 2D-CNN. The reason is that the inputs of both channels are original signals.



Appl. Sci. 2022, 12, 8474 14 of 18

When the data set is balanced, some extracted features are redundant or unimportant,
leading to over-fitting of the model. The diagnostic results of the above-mentioned various
models with balanced data sets verify the superiority of TC-CNN.

4.4. Fault Diagnosis Results under the Unbalanced Dataset

The diagnostic performance of TC-CNN is discussed in the previous section based on
the balanced datasets. Traditional deep learning models need to be trained with a large
number of samples to ensure good performance. In practice, however, the amount of faulty
data is very small, and data imbalance is a common phenomenon. Therefore, it is necessary
to solve the fault diagnosis problem under unbalanced datasets effectively. In this section,
normal data and fault data are mixed in different proportions. The stability of TC-CNN for
fault diagnosis is further demonstrated based on the experimental results of the datasets
with different proportions. The normal and faulty samples in the training set are mixed in
the ratios of 2:1, 5:1, 10:1, 20:1, 30:1, and 50:1, respectively. In the test set, the ratio of normal
data to fault data is always 1:1. The distribution of the training set is shown in Table 5.

Table 5. Distribution of the training dataset.

Unbalanced Cases
Size of Normal Condition Size of Each Kind of Fault Conditions

Training Dataset Testing Dataset Training Dataset Testing Dataset

Case 1 2:1 300 100 150 100
Case 2 5:1 300 100 60 100
Case 3 10:1 300 100 30 100
Case 4 20:1 300 100 15 100
Case 5 30:1 300 100 10 100
Case 6 50:1 300 100 6 100

The fault diagnosis results are shown in Figures 11 and 12. The fault detection capabil-
ity of these methods varies with the number of fault samples. In case 1, the diagnostic Accu-
racy and F1 score for the six methods are (100.00%, 1.00), and (77.70%, 0.78), (91.71%, 0.92),
(99.90%, 1.00), (73.70%, 0.74), and (90.60%, 0.91), respectively.
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Figure 11. Accuracy of different methods for six unbalanced dataset cases.



Appl. Sci. 2022, 12, 8474 15 of 18

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1
sc
o
re

1.00 1.00 0.99 0.99 0.98
0.97

0.78

0.68

0.57

0.44
0.43

0.37

0.92

0.84

0.68

0.44

0.48

0.44

1.00 1.00
0.97

0.88
0.91

0.87

0.74

0.60

0.51
0.50

0.44

0.32

0.91

0.83

0.71

0.62

0.54

0.48

TC-CNN

1D-CNN

2D-CNN

CWT+2D-CNN

DBN

1D-CNN+2D-CNN

Figure 12. F1 scores of different methods for six unbalanced dataset cases.

Then, in case 6, the number of faulty training samples is only 1/50 of the normal
training samples, and the diagnostic Accuracy and F1 score of the proposed method are
96.80% and 0.97, respectively. The results of other methods are (40.80%, 0.37), (46.30%,
0.44), (46.30%, 0.44), (87.40%, 0.87), (37.20%, 0.32), and (51.80%, 0.48). When the ratio of the
number of normal samples to the number of faulty samples reaches 50:1, TC-CNN still has
excellent fault diagnosis ability. The diagnostic Accuracy is only 3.20% lower than in case 1,
and the F1 score decreases by 0.03. On the contrary, the fault diagnosis performance of
the remaining methods decreases significantly with the reduction of the fault sample size.
When the fault data in the training dataset decrease as the imbalance rate increases, the
model trained by these methods lacks a good ability to identify the fault data in this case.
As a result, most of the faulty samples in the test dataset could not be classified correctly,
resulting in low Accuracy and F1 score. When the imbalance ratio of data distribution
increases, the superiority of the TC-CNN model gradually emerges. The TC-CNN model
uses FFT and GST to add fault feature information, which extracts deeply into the data
features and makes fault samples easier to distinguish.

When the imbalance ratio is small, such as 2:1, the diagnostic performance of TC-
CNN is not much improved compared to CWT+2D-CNN. The feature richness advantage
possessed by TC-CNN is relatively small when fault samples are balanced. When the
data imbalance ratio is increased from 5:1 to 50:1, the fault diagnosis performance of TC-
CNN does not decrease significantly compared with CWT+2D-CNN. Because CWT+2D-
CNN only extracts time-frequency features, TC-CNN additionally extracts time-frequency
features. The features of different dimensions complement each other, enrich the fault
feature information, and make the fault samples easier to identify. When the imbalance
ratios are 2:1 and 5:1, respectively, the fault diagnosis performance of 1D-CNN+2D-CNN is
slightly lower than that of 2D-CNN. However, as the imbalance ratio gradually increases,
the fault diagnosis performance of 1D-CNN+2D-CNN is better than that of 2D-CNN,
indicating that 2D-CNN is more susceptible. The reason is that, when training samples
are relatively sufficient, 1D-CNN+2D-CNN may extract some redundant features leading
to overfitting of the model. However, when the data volume gradually decreases, 1D-
CNN+2D-CNN can extract more features that can be utilized and, therefore, has better
fault diagnosis performance. The fault diagnosis capability of TC-CNN is significantly
stronger than that of 1D-CNN+2D-CNN because FFT and GST can extract more fault
information with fewer fault samples, thus attenuating the effect of data imbalance. The
training difficulty of DBN gradually increases as the number of training samples decreases,
and it cannot effectively represent fault information. In addition, the DBN model has a
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limited ability to handle noise and other disturbing factors, thus significantly reducing
its performance.

Therefore, TC-CNN has better fault diagnosis performance compared with traditional
methods, although the severely unbalanced data set leads to performance degradation in
all models. In the case of various data imbalance ratios, the TC-CNN model has excellent
fault detection results and is less affected by the lack of fault data.

5. Conclusions

Summarizing the characteristics of the proposed method, firstly, the frequency domain
features and time-frequency domain features are extracted using FFT and GST, respectively,
which increases the dimensional of the extracted features, diversifies the fault features, and
complements the fault information. Secondly, a two-channel model that combines 1D-CNN
and 2D-CNN is proposed, with the frequency spectrum and time-frequency image as the
input. Then, the features of individual channels are fused and incorporated into the training
and learning process to achieve the fusion of feature layers. The experimental results show
that the method can accurately identify different fault types and better fault diagnosis
performance than many deep learning methods. In addition, the method shows good
robustness and stability on highly unbalanced datasets. The limitation of the proposed
method is that: the model input considered in this paper is a vibration signal. Using FFT
and GST for feature extraction is very appropriate, which can achieve better fault diagnosis
results. However, FFT and GST may not have good feature extraction effects for other types
of features, such as current or sound signals. Using suitable feature extraction methods for
current or sound signals is necessary. Therefore, the main work in the future is to research
more effective feature extraction methods and further improve the fault diagnosis effect of
the TC-CNN model under unbalanced datasets by fusing multiple types of signal features.
Meanwhile, GAN can be combined with the proposed method in future work to achieve
better diagnosis results.
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