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Abstract

:

Recent years have witnessed tremendous advances in clouding gaming. To alleviate the bandwidth pressure due to transmissions of high-quality cloud gaming videos, this paper optimized existing video codecs with deep learning networks to reduce the bitrate consumption of cloud gaming videos. Specifically, a camera motion-guided network, i.e., CMGNet, was proposed for the reference frame enhancement, leveraging the camera motion information of cloud gaming videos and the reconstructed frames in the reference frame list. The obtained high-quality reference frame was then added to the reference frame list to improve the compression efficiency. The decoder side performs the same operation to generate the reconstructed frames using the updated reference frame list. In the CMGNet, camera motions were used as guidance to estimate the frame motion and weight masks to achieve more accurate frame alignment and fusion, respectively. As a result, the quality of the reference frame was significantly enhanced and thus being more suitable as a prediction candidate for the target frame. Experimental results demonstrate the effectiveness of the proposed algorithm, which achieves 4.91% BD-rate reduction on average. Moreover, a cloud gaming video dataset with camera motion data was made available to promote research on game video compression.
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1. Introduction


As an important information transmission medium, videos are widely used in entertainment, security monitoring, online meetings, virtual reality, and other fields. Although the rapid development of video services meets the requirements of users, the huge data volume of raw videos can hardly be directly transmitted and stored. Especially in recent years, the progress of cloud computing technology has promoted the revitalization of the cloud gaming industry [1], and the transmission of various high-definition cloud gaming videos required by cloud gaming systems has greatly increased the demand for bandwidth. Compared to natural videos, game videos contain complicated animations and visual effects, thus requiring larger bandwidth when transmitted [2]. For instance, the most popular commercial cloud gaming system, i.e., OnLive, needs at least 2 Mbps bandwidth [3]. A large amount of transmitted data and high bandwidth occupation have put great limitations on the development of cloud gaming. To this end, how to effectively compress cloud gaming videos is crucial.



Video compression technology has developed vigorously since the 1980s, and can remove the redundancy of videos while maintaining quality. As one of the core modules in video coding, inter-prediction uses the reconstructed blocks in reference frames to predict the coding blocks in the current frame. Compared to directly encoding and transmitting the raw frames, processing the predicted residuals can significantly reduce the transmitted data volume. In particular, when the reference frame is of high quality and highly related to the current frame, it can further improve the accuracy of motion estimation and motion compensation, therefore greatly reducing the bits for coding residuals. Therefore, reference frames play an important role in inter-frame prediction. In traditional video codecs, the reconstructed previous frame with the highest relation to the current frame and reconstructed frames with the highest quality in each previous Group of Pictures (GOP) are generally selected as reference frames under the Low-Delay-P (LDP) configuration. Moreover, with the improvement of computing power, deep learning neural networks have been gradually applied to video compression. Either enhancing the quality of reference frames or generating additional reference frames through deep learning networks [4,5,6] has shown excellent performance far beyond traditional algorithms. To put it differently, optimizing the frames in the reference frame list through a deep learning network can improve the coding efficiency to a certain extent.



However, most of the networks mentioned above are applicable to natural videos captured by cameras, while we aim at improving the coding efficiency of game videos in cloud gaming. Meanwhile, the commonly used video coding standard H.265/HEVC mainly works for simple translation movements [7] while cloud gaming videos, especially the first angle games, contain more complicated rotation movements. We can see from Figure 1 that H.265/HEVC has different compression performances under various camera motions in the same scene. Videos with camera rotation often require higher transmission bits. Considering that the core of cloud gaming is to render 3D video games on the cloud server and send game scenes as 2D videos to game players through broadband networks, the video encoder runs together with the 3D game engine so that we can obtain the camera motions in graphics rendering contexts directly. The movement between frames can be further described in detail and intuitively using the frame-by-frame camera motion information. This prior information can help obtain more accurate pixel motion vectors in various complex movements, therefore reducing the encoding residuals. In this case, we propose to leverage the camera motion information unique to cloud gaming videos to guide the optimization of reference frames with deep learning techniques. By introducing additional high-matching and high-quality reference frames, the temporal redundancy is greatly reduced, resulting in a significant reduction in bits for coding residuals, so that the compression efficiency of cloud gaming videos with a large number of rotation movements can also be improved.



In this paper, we present how we take advantage of the camera motions to optimize video encoding for cloud gaming videos. Overall, using the camera motion information and the known reconstructed frames in the reference frame list, we generate a high-quality enhanced reference frame with high relation to the current frame through a deep learning network. Then the enhanced frame is added to the reference frame list to participate in the coding process. The operation at the decoder side is consistent with the encoder side, which recovers the updated reference frame list using the transmitted camera motion information and decodes the frames based on it (That is to say, the proposed scheme is not compatible with the H.265 standard). Specifically, to generate the enhanced reference frame, we propose a camera motion-guided network referred to as the CMGNet, which consists of three parts: the camera motion-guided prediction module, the alignment and fusion module, and the reconstruction module. We first estimate more accurate pixel-level motion information and fusion masks through the camera motion-guided prediction module, then align input frames to the target frame and merge them to acquire the fused feature. Finally, the reconstruction module is used to generate the corresponding high-quality reference frame.



The main contributions of this paper can be summarized as follows:




	
We propose a coding optimization algorithm for cloud gaming videos applying deep learning techniques to optimize traditional video codecs, which generates an enhanced reference frame with high relation to the frame to be encoded and adds it to the reference frame list for better compression;



	
Our proposed CMGNet for generating enhanced reference frames uses camera motions as guidance to estimate more accurate pixel-level motions for frame alignment, significantly enhancing the quality of the reference frame;



	
We have established a game video dataset containing sufficient rendering frames and camera motions to promote research on game video compression;



	
Experimental results demonstrated the effectiveness of the proposed coding optimization algorithm for cloud gaming videos.








The rest of the paper is organized as follows. Related work is summarized in Section 2. The proposed coding optimization algorithm for cloud gaming videos together with the proposed CMGNet for the generation of enhanced reference frame is detailed in Section 3. Experimental results are shown in Section 4 to verify the expected improvements. Finally, a brief summary of this paper is given in Section 5.




2. Related Work


2.1. Video Compression


In recent years, various video applications have emerged with the development of network and storage technologies. The diversification and high-definition trend of video applications have put forward higher requirements for video compression. The formulation of international video coding standards has promoted the video compression process. In particular, H.265/HEVC [7] standardized by ITU-T Video Coding Expert Group (VCEG) and ISO/IEC Moving Picture Expert Group (MPEG) is widely used due to its 50% bitrate reduction over its predecessor H.264/AVC [8] while maintaining the same level of video quality. Some researchers proposed algorithms to achieve computational complexity scalability for HEVC encoders [9,10,11,12] and others optimized the loop filters [12,13,14], as well as the intra-frame/inter-frame prediction process [15,16]. Some works use the features of the infrared videos [17], satellite videos [18] and surveillance videos [19,20] to generate additional reference frames for H.265/HEVC for further bitrate savings. Many works also applied deep learning techniques to video compression, including using deep learning networks to improve the accuracy of sub-pixel motion estimation and motion compensation [21,22,23,24], enhance the bi-prediction performance [25], and improve the quality of reference frames [4,5,6], etc. Considering the continuous growth of video services and the development of new industries such as cloud gaming, the demand for bandwidth is increasing exponentially and the exploration of video compression is still urgent.




2.2. Video Quality Enhancement


The purpose of video quality enhancement is to reduce the distortion of compressed videos, and the methods based on deep learning have achieved remarkable results. The early ARCNN [26] and IFCNN [27] were inspired by the NN-based image super-resolution algorithm and improved based on the SRCNN [28] structure. VRCNN [29] introduces CNN in the loop filter of HEVC intra-coding and obtains improved coding performance. With the continuous development of deep learning, more complicated structures are applied to enhancement networks. For instance, RHCNN [30] introduces residual highway units to improve the quality of reconstructed frames. ACRN [31] uses asymmetric convolution and dense structure to better extract features. RRCNN [32] adopts the recursive residual module to achieve parameter sharing, obtaining excellent performance with fewer parameters, etc. Some other works apply coding information to the network, such as the partitioning map of the Coding Unit (CU) and Transform Unit (TU) [33,34], coding residual [35], and Quantization Parameter (QP) [36] to help the network converge quickly and further improve the quality of reconstructed frames.



However, the networks mentioned above only consider the frame to be enhanced, ignoring the temporal correlation between frames in the video sequence. To further take advantage of the inter-frame relationship, methods for multi-frame quality enhancement have emerged. QENet [37], LMVE [38], and MGANet [39] use the optical flow estimated by the optical flow network [40,41] to align input frames to the current frame and feed them into the network for fusion and enhancement. MFQE [42] finds two peak quality frames to enhance the adjacent frame. MFQE 2.0 [43] further extends MFQE and significantly improves it. Moreover, STDF [44] and RFDA [45] learn a novel Spatio-Temporal Deformable Convolution (STDC) to aggregate temporal information while performing frame fusion. There are also works combining optical flow with deformable convolution for better alignment [46,47]. Either using a single frame or multiple frames for video quality enhancement has shown excellent performance.





3. The Proposed Coding Optimization Algorithm and Network Architecture


3.1. Algorithm Overview


We propose a coding optimization algorithm for cloud gaming videos with reference frame enhancement through a deep learning network. Figure 2 shows an overview of the proposed optimization compression pipeline. The blue boxes represent the conventional codec (i.e., H.265), which is applied to compress the cloud gaming videos. The cyan blocks indicate the proposed CMGNet, which is responsible for generating the enhanced reference frame. There are at most four reconstructed frames in the reference frame list under the LDP configuration. We use the four reference frames and the camera motions to generate an enhanced reference frame through the CMGNet and then add it to the reference frame list to participate in the inter-prediction process of the current frame. It is noted that there are less than four reference frames in the reference frame list of the first three predictive frames, so we copy the last reference frame with the smallest Picture Order Count (POC) in the list to make up the four reference frames. The camera motion information is signaled along with the conventional codec’s bitstream. On the decoder side, the operation is consistent with the encoder side, and it is not necessary to transmit additional labels to mark the generated reference frames.




3.2. Network Architecture


We assume that the reference frames in the reference frame list are denoted as   I  R 1   ,   I  R 2   ,   I  R 3   , and   I  R 4   , which are arranged in order of the POC (from the smallest to the largest). Considering that the reconstructed frame of the previous frame and those with the highest quality in each previous GOP are generally selected as reference frames under the LDP configuration,   I  R 4    has the highest temporal correlation and similarity with the frame to be encoded while   I  R 1   ,   I  R 2   , and   I  R 3    have a higher objective quality. We take the high-quality reference frames   I  R 1   ,   I  R 2   , and   I  R 3    to enhance the quality of   I  R 4   , using the temporal correlation between them to generate a new reference frame denoted as   I   R 4   E  , with both high-quality and high-temporal correlation. Thus, the proposed model can be expressed as:


   I   R 4   E  =  f θ       I  R i    1 4  ,    V   R i   R 4     1 4     



(1)




where    V   R i   R 4    , i ∈   1 , 2 , 3 , 4     represents the camera motion indicating the transformation from the position of   I  R i    to   I  R 4   .   I   R 4   E   is the enhanced target frame (i.e., the output of the CMGNet).   I  R i    and   V   R i   R 4     are the inputs of the proposed CMGNet and  θ  represents the set of the learnable model parameters. The structure of the proposed CMGNet is shown in Figure 3, which consists of a camera motion-guided prediction module, an alignment and fusion module, and a reconstruction module.



As shown in Figure 3,   I  R i   ,   I  R 4   , and   V   R i   R 4     are first fed into the camera motion-guided prediction (i.e., CMGP in Figure 2) block to predict the pixel offset   p  R i    for the alignment of the input frame to the target frame, and the weight mask   m  R i    for the frame fusion. Then, four pairs of offsets and masks, i.e.,     p  R i   ,  m  R i     , together with   I  R i   , for each   i ∈   1 , 2 , 3 , 4    , are fed into the alignment and fusion module to obtain the fused feature. We use the deformable convolution (DCNv2) [48] to perform frame alignment and fusion, which has been proved effective. Finally, the fused feature is input to the reconstruction module to fully explore the information contained in the feature map, therefore improving the quality of the reference frame. In our implementation, we select a simple yet effective eight-layer convolution with residual learning [49] as the reconstruction module due to its versatility and efficiency (eight layers for the luma component and four layers for the chroma component). Thus, the model can be re-formulated as:


   I   R 4   E  =  f  Re c t      f  D C N      f  C M G P         I  R i   ,  V   R i   R 4      1 4  ,  I  R 4     ,    I  R i    1 4    ,  I  R 4       



(2)




where    f  C M G P    ·   ,    f  D C N    ·   , and    f  Re c t    ·    represent the CMGP module, the alignment and fusion module, and the reconstruction module, respectively. The outputs of    f  C M G P    ·    are offset   p  R i    and mask   m  R i    required by DCNv2. We will describe the CMGP in detail below.



3.2.1. Camera Motion-Guided Prediction (CMGP)


It is well-known that effectively using the temporal correlation between frames for frame alignment and fusion is a key issue. The non-consecutive inputs with varying degrees of motion offset further increase the difficulty for frame alignment and fusion. Deformable convolution has shown advanced performance in frame alignment and fusion, so we use it in our network. In deformable convolution operations, obtaining accurate alignment offsets and fusion masks is crucial. Inspired by the excellent performance of flow-guided deformable alignment [47], we adopt the flow-based method to predict the basic offset in our paper. Meanwhile, benefiting from the rendering and coding mechanism of the cloud gaming system, the camera motions that accurately record displacements between frames can be directly obtained. To some extent, the camera motion between the input frame and the target frame reflects the corresponding offset between them, and input frames with different camera motions relative to the target frame could bring different degrees of reference and correlation. Therefore, we use this information to guide the offset and mask prediction process. Figure 4 gives the illustration of the proposed CMGP. One CMGP block is selected as an example in the following discussion for simplification, and the operation is identical for all blocks.



Given a pair of reconstructed reference frames   I  R i    and   I  R 4   , we first use a pre-trained flow prediction network to calculate the optical flow   F   R i  →  R 4    . The well-known pyramid structure SPyNet [50] obtains final optical flow by generating flows at different scales and gradually refining them. Its smaller model parameters with advantages in terms of accuracy and speed attract us to adopt it. Then the warped frame   I      R i  →  R 4     W   is obtained by warping   I  R i    to   I  R 4    through the optical flow   F   R i  →  R 4    . The above process can be expressed by the following formulas:


     F   R i  →  R 4       = S P y N e t    I  R i   ,  I  R 4           I      R i  →  R 4     W     = w a r p    I  R i   ,  F   R i  →  R 4          



(3)







We regard the optical flow as the basic offset. Then we use the warped frame   I      R i  →  R 4     W   and the target frame   I  R 4    to predict the residual offset   Δ  p  R i     and fusion mask   m  R i   . As shown in Figure 4, we use an encoder-decoder architecture to predict them, where convolution and deconvolution layers with a stride of 2 are used for downsampling and upsampling, respectively. In the convolution layers with a stride of 1, we use zero padding to keep the resolution of features unchanged. There is also a camera motion-guided transformation layer inspired by [51] before the last downsampling layer. The camera motion information   V   R i   R 4     participates in the prediction process by guiding the production of the affine transformation parameters for the downsampling feature in this layer. Such projection then guides the feature adjustment based on the accurate prior information, leading to more precise residual offset and mask prediction. Since we focus on the rotation movement of cloud gaming videos in this paper, the camera motion   V   R i   R 4     can be represented by a quaternion in the shape of   4 × 1 × 1  . Then in the camera motion-guided transformation layer, we use a fully connected layer and a repeat operation to make   V   R i   R 4     the same dimension as that of the input feature   f  i n   . The transformation parameters   γ   R i  →  R 4     and   β   R i  →  R 4     are produced by a mapping function:


     γ   R i  →  R 4    ,  β   R i  →  R 4      = Ψ     f  i n   ,  V   R i   R 4         



(4)




where the camera motion and input feature are concatenated together for guidance. After that, the translation is carried out by scaling and shifting the input feature:


   f  o u t   =  γ   R i  →  R 4    ⊙  f  i n   +  β   R i  →  R 4      



(5)




where   f  o u t    represents the output feature after the camera motion-guided transformation layer, whose dimension is the same as   γ   R i  →  R 4     and   β   R i  →  R 4    , and ⊙ is referred to element-wise multiplication. Afterward, the residual offset and fusion mask can be obtained through several convolution layers. The final offset can thus be represented as:


   p  R i   =  F   R i  →  R 4    + Δ  p  R i     



(6)







Considering that the general video sampling format of H.265/HEVC is YUV4:2:0, and the luma component contains more detail and high-frequency information while the chroma component is relatively flat, we process the luma and chroma separately in the paper and set the network structure of the chroma component as a simplified version of that of the luma component. Therefore, in a CMGP block, the luma component performs downsampling and upsampling three times while the chroma component performs two times. The optical flow of the chroma component is also simply set as a twice performed downsampling version of luma. It should be noted that we set   F   R 4  →  R 4     to zero and do not perform the spatial warping operation when   i = 4  . That is to say, we use two   I  R 4    frames to predict the residual offset   Δ  p  R 4     and fusion mask   m  R 4   , and the final offset is directly represented by   Δ  p  R 4     in this case.




3.2.2. Loss Function


We adopt the commonly used Mean Absolute Error (MAE) to supervise the proposed network. The MAE can be represented as:


     M A E    I  R 4   ,  I   R 4   E        =      I  R 4   −  I   R 4   E    1   W × H +  W 2  ×  H 2  +  W 2  ×  H 2              =       Y  R 4   −  Y   R 4   E    1  +     U  R 4   −  U   R 4   E    1  +     V  R 4   −  V   R 4   E    1     3 2  W H             =  4 6  M A E    Y  R 4   ,  Y   R 4   E    +  1 6  M A E    U  R 4   ,  U   R 4   E    +  1 6  M A E    V  R 4   ,  V   R 4   E        



(7)







Furthermore, the loss function can be described accordingly as:


  l o s s = 4 M A E    Y  R 4   ,  Y   R 4   E    + M A E    U  R 4   ,  U   R 4   E    + M A E    V  R 4   ,  V   R 4   E      



(8)




where   Y   R 4   E  ,   U   R 4   E  , and   V   R 4   E   are the components of the enhanced frame,   Y  R 4   ,   U  R 4   , and   V  R 4    are those of the ground truth. Weighting in the ratio of 4:1:1 can better reflect the importance of each component.






4. Experiments


4.1. Experimental Setup


4.1.1. Datasets


Most current datasets for deep learning only contain camera–captured natural images while we aim at cloud gaming videos with corresponding camera motions. Herein, we use the Air Light VR (ALVR) [52], a piece of software to stream SteamVR games to the standalone VR headsets of users, to establish a cloud gaming video dataset containing the rendering images and rotating camera motions. The camera motions are represented by quaternions. We select five representative popular games [53,54,55,56,57] containing various scenes as the game sequence library, and the raw videos are selected across diverse types of content. Ten videos with 1000 frames are employed for training, and another three with 500 frames called Secret Shop, Robot Repair, and VRChat, are used for testing. The videos are cropped to a uniform size of 1024 × 1024. Figure 5 shows several frames of the test set as examples.




4.1.2. Implementation Details


All videos are encoded by HM 16.22 under the LDP configuration at four different quantization parameters (QP) (i.e., 22, 27, 32, 37) on an Intel ( R ) Core ( TM ) i7-9700K CPU @ 3.60 GHz processor. We train four models from scratch for the four QPs independently. The Adam optimizer [58] with    β 1    =   0.9  ,    β 2    =   0.999  , and   ε  =   10  − 8     is adopted for the training of the proposed CMGNet. We set the batch size to 32 and randomly crop the input frame into patches in 128 × 128. The learning rate is set to   10  − 4    thorough out the training process. We train the luma component and chroma component separately. In the CMGP block, there are three downsampling and upsampling layers with 32 channels followed by ReLU activation for the luma component, while there are two for the chroma component. The number of output channels is equal to 64. We select an eight-layer convolution with residual learning in the reconstruction module for the luma component and that with four layers for the chroma component. All layers have 48 convolution filters followed by ReLU activation. The generated frame is added at the first position of the original reference frame list, and original reference frames are moved backward in sequence. For the evaluation of the performance, we adopt the Bjontegaard Deltas [59] for the rate (i.e., BD-rate,) and the Bjontegaard Deltas for the quality measure (i.e., BD-PSNR) in the YCbCr space to evaluate the proposed coding optimization algorithm, and use the Peak Signal-to-Noise Ratio (PSNR) in the YCbCr space and Structural Similarity Index (SSIM) in the RGB space to evaluate the proposed CMGNet.





4.2. Experimental Results


4.2.1. Compression Performance of the Coding Optimization Algorithm


We first evaluate the rate-distortion performance of our proposed algorithm to validate its efficiency. We take the commonly used H.265 as the anchor and compare our proposed algorithm with it in terms of BD-rate and BD-PSNR under the LDP configuration. Negative BD-rate values and positive BD-PSNR values indicate better performance. It should be noted that the proposed algorithm needs transmit the camera motion information to the decoder side, whereas the additional overhead is mostly below 0.02%. Hence, we ignore the bits for camera motion when calculating the two metrics. Table 1 lists the rate savings and quality gains of three test videos, where it can be observed that 4.0%, 8.51%, 2.20% bitrate savings and 0.12, 0.25, 0.07 quality gains for different test sequences can be achieved, respectively. On average, our proposed algorithm can achieve a 0.15 dB improvement relative to H.265 at the same bitrate or saves 4.91% of the bitrate to achieve the same PSNR. We also provide the RD curves in Figure 6 for better illustration. The blue lines in Figure 6 represent the performance of the traditional codec H.265 and the red ones indicate that of the proposed algorithm. It is obvious that the red line is above the blue line in each subplot, which demonstrates the superior RD performance of the proposed algorithm on different sequences. Moreover, our algorithm can achieve better RD performance at both low and high bit rates, proving the superiority of the proposed coding optimization algorithm.



We also give the encoding and decoding time of the proposed algorithm in Table 2 to compare the complexity. All experiments are tested on an Intel (R) Core (TM) i7-9700K CPU @ 3.60 GHz processor and an NVIDIA GeForce RTX 2060 GPU. The forward operation of the proposed CMGNet is conducted with GPU acceleration, and the remaining operations are performed by the CPU. In Table 2, we can observe that compared with H.265/HEVC, our algorithm takes 137% of the encoding time, 9856% of the decoding time, and 157% of the total time. The proposed scheme has little increase in encoding complexity while greatly influencing the decoding time. The reasons are the long network inference time and the additional time-consuming CPU-GPU memory transfer operation. Choosing a high-performance GPU device can speed up inference time to a certain extent. Considering the complexity is positively related to parameters and floating-point operations per second (FLOPS) of the model, we can simplify the model to speed up the network forward operation in the future. High computational complexity is one of the disadvantages of CNN-based methods, and it is also an important factor affecting the implementation of the decoder. Further optimization to speed up the operation of the network is crucial and is currently under our investigation.




4.2.2. Quality Enhancement of the Proposed CMGNet


In this section, we evaluate the quality enhancement performance of our proposed CMGNet in terms of PSNR and SSIM, which represent the degree of distortion and structure similarity between the enhanced frames and the original ones, respectively. Since our goal is to generate a high-matching and high-quality reference frame to update the reference frame list, the generated reference frame is supposed to be closer to the original one than that directly generated by H.265. Therefore, we compare the quality of the generated enhanced frame with that of the unenhanced frame compressed by H.265. Table 3 presents the results averaged over 500 frames for each test sequence at four different QPs. As shown in this table, our proposed CMGNet outperforms H.265 consistently in terms of PSNR and SSIM. Specifically, with QP equal to 22, the proposed network can achieve a PSNR gain of about 0.5 dB on average over the three test sequences. Even at QP 37, we can still obtain about a 0.3 dB performance gain. The same superiority is achieved in terms of SSIM. Meanwhile, our algorithm exhibits different degrees of performance gains under different test sequences, showing a good generalization enhancement effect.



We also provide qualitative evaluations in Figure 7 to demonstrate the visual performance of our model. Taking QP equal to 37 as an example, three patches from different sequences are enlarged and presented below. We recommend further zooming in on the figure for a more intuitive observation. Compared to the raw frame, the unenhanced frame compressed by H.265 inevitably loses a lot of details at such a high QP. For instance, the appearance outline of the sound in the second picture becomes extremely blurred, especially around the oval-shaped loudspeaker. The enhanced frame generated by the proposed CMGNet looks smoother with fewer artifacts due to the recovery of details. It is the same in other pictures. Although the quality of the enhanced frame is not as good as the original frame, it has been demonstrated in the previous section that the enhanced frame is sufficient to optimize the traditional codec.



To further analyze the impact of the camera motion in our network, we present the quality enhancement difference between the full model and that without camera motion in Figure 8, taking the QP equal to 37 as an example. It can be clearly seen from Figure 8 that the camera motion information plays a positive role in the quality enhancement, as the full model shows better performance than the model without motion information on both PSNR and SSIM metrics in the three test videos.




4.2.3. Comparison to State-of-the-Arts


In this section, we compare the proposed CMGNet with state-of-the-art video quality enhancement networks, i.e., MFQE2.0 [43], STDF [44], and TDAN [60]. It is noted that TDAN was originally designed for super-resolution tasks. Since it is a typical network using the deformable convolution for frame alignment, we remove the Pixel-Shuffle layer to extend it suitable for quality enhancement for comparison with the proposed CMGNet. Moreover, all of the compared methods take the preceding frame, i.e.,   X  t − 1   , and the succeeding frame, i.e.,   X  t + 1   , to help enhance the quality of the target frame, i.e.,  X t  , while our proposed model takes four preceding frames in the reference frame list as inputs. In addition, the compared models are all trained on camera-captured nature videos while we aim at cloud gaming videos. For a fair comparison, we modified parts of their architectures and trained them from scratch using the same game videos dataset as ours. The overall quantitative performance measured by PSNR and SSIM is shown in Table 4. We also show the parameters (sum of the luma network and the chroma network) of each model in the first row.



It can be seen in Table 4 that the proposed model performs the best compared to the other three models in general, where PSNR has an increase of 0.02 dB∼0.08 dB and SSIM has an increase of 0.005∼0.06 on average. Taking an average of PSNR under each QP, our model achieves the highest performance. Although in terms of SSIM, our model is sub-optimal at QP 22 and 32, the decrease is negligible (i.e., only about 0.0005) compared to the best performance. In a word, the proposed CMGNet achieves satisfactory quality enhancement compared to these four state-of-the-art models. On the other hand, in terms of the number of model parameters, the TDAN has the most parameters, but it achieves the worst performance. Although the proposed model has more parameters than those of the MFQE and STDF, the proposed model achieves better performance. To put it differently, the proposed model achieves advanced tradeoffs between coding performance and computational complexity.






5. Conclusions


In this paper, we propose a coding optimization algorithm for cloud gaming videos. Specifically, an enhanced reference frame is generated through the proposed camera motion-guided network (i.e., CMGNet) and added to the reference frame list for the participant in the coding process, thus improving the coding performance. Moreover, the proposed CMGNet takes the known reconstructed reference frames in the reference frame list together with the camera information as inputs and generates a reference frame with high-quality and high-relation to the current frame through the camera motion-guided prediction module, the alignment and fusion module, and the reconstruction module in turn. Extensive experimental results demonstrated the superior performance of the proposed algorithm.
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Figure 1. Relationship between camera motions and transmission bits in H.265/HEVC. 
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Figure 2. Overview of the proposed optimization compression pipeline. 
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Figure 3. The proposed camera motion-guided network CMGNet. 
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Figure 4. Illustration of the CMGP block. 
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Figure 5. Examples of the test set. (a) Secret Shop. (b) Robot Repair. (c) VRChat. 
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Figure 6. Rate-distortion curves of three test videos. (a) Secret Shop. (b) Robot Repair. (c) VRChat. 
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Figure 7. Qualitative comparisons of the proposed CMGNet. 
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Figure 8. Quality enhancement difference under QP = 37. (a)  Δ PSNR. (b)  Δ SSIM. 
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Table 1. BD-Rate and BD-PSNR on test videos relative to H.265.
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	Sequences
	BD-Rate
	BD-PSNR





	Secret Shop
	−4.03%
	0.1210



	Robot Repair
	−8.51%
	0.2540



	VRChat
	−2.20%
	0.0761



	Avreage
	−4.91%
	0.1503
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Table 2. Encoding and decoding complexity.
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	Sequences
	Δ     T Enc    
	Δ     T Dec    
	Δ     T Total    





	Secret Shop
	142%
	11,023%
	164%



	Robot Repair
	140%
	11,796%
	163%



	VRChat
	130%
	6747%
	144%



	Avreage
	137%
	9856%
	157%
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Table 3. Quantitative performance on PSNR and SSIM at four QPs.
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Sequences

	
Methods

PSNR(dB)

	
QP = 22

	
QP = 27

	
QP = 32

	
QP = 37




	
SSIM

	
PSNR(dB)

	
SSIM

	
PSNR(dB)

	
SSIM

	
PSNR(dB)

	
SSIM

	






	
Secret Shop

	
H.265

	
43.754

	
0.9417

	
40.845

	
0.9071

	
38.419

	
0.8642

	
36.183

	
0.8121




	
CMGNet

	
44.214

	
0.9477

	
41.320

	
0.9169

	
38.815

	
0.8743

	
36.479

	
0.8275




	
Robot Repair

	
H.265

	
43.850

	
0.9572

	
41.105

	
0.9347

	
38.677

	
0.9051

	
36.405

	
0.8648




	
CMGNet

	
44.372

	
0.9613

	
41.606

	
0.9409

	
39.145

	
0.9139

	
36.806

	
0.8750




	
VRChat

	
H.265

	
40.494

	
0.9453

	
36.169

	
0.8931

	
32.763

	
0.8217

	
30.267

	
0.7382




	
CMGNet

	
40.856

	
0.9493

	
36.518

	
0.9013

	
33.055

	
0.8318

	
30.508

	
0.7534




	
Average

	
H.265

	
42.699

	
0.9481

	
39.373

	
0.9116

	
36.620

	
0.8637

	
34.285

	
0.8050




	
CMGNet

	
43.147

	
0.9528

	
39.815

	
0.9197

	
37.005

	
0.8733

	
34.598

	
0.8186








Bold indicates the best performance
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Table 4. Comparison to State-of-the-arts.
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QP

	
Sequences

	
MFQE 2.0

(408.03 K)

	
STDF

(540.51 K)

	
TDAN

(2.74 M)

	
CMGNet (Proposed)

(1.96 M)




	
PSNR

	
SSIM

	
PSNR

	
SSIM

	
PSNR

	
SSIM

	
PSNR

	
SSIM






	
22

	
Secret Shop

	
44.210

	
0.9487

	
44.193

	
0.9476

	
44.199

	
0.9471

	
44.214

	
0.9477




	
Robot Repair

	
44.258

	
0.9599

	
44.352

	
0.9613

	
44.332

	
0.9612

	
44.372

	
0.9613




	
VRChat

	
40.829

	
0.9513

	
40.864

	
0.9500

	
40.793

	
0.9492

	
40.856

	
0.9493




	
Average

	
43.099

	
0.9533

	
43.136

	
0.9530

	
43.108

	
0.9525

	
43.147

	
0.9528




	
27

	
Secret Shop

	
41.269

	
0.9170

	
41.245

	
0.9156

	
41.210

	
0.9124

	
41.320

	
0.9169




	
Robot Repair

	
41.527

	
0.9383

	
41.540

	
0.9403

	
41.373

	
0.9380

	
41.606

	
0.9409




	
VRChat

	
36.476

	
0.9026

	
36.496

	
0.9010

	
36.375

	
0.8981

	
36.518

	
0.9013




	
Average

	
39.757

	
0.9193

	
39.760

	
0.9190

	
39.653

	
0.9162

	
39.815

	
0.9197




	
32

	
Secret Shop

	
38.809

	
0.8751

	
38.761

	
0.8747

	
38.740

	
0.8626

	
38.815

	
0.8743




	
Robot Repair

	
39.118

	
0.9094

	
39.185

	
0.9141

	
39.173

	
0.9133

	
39.145

	
0.9139




	
VRChat

	
33.030

	
0.8334

	
33.044

	
0.8326

	
32.990

	
0.8300

	
33.055

	
0.8318




	
Average

	
36.986

	
0.8726

	
36.997

	
0.8738

	
36.967

	
0.8687

	
37.005

	
0.8733




	
37

	
Secret Shop

	
36.479

	
0.8130

	
36.410

	
0.8244

	
36.235

	
0.7825

	
36.479

	
0.8275




	
Robot Repair

	
36.670

	
0.8615

	
36.767

	
0.8723

	
36.767

	
0.8730

	
36.806

	
0.8750




	
VRChat

	
30.502

	
0.7450

	
30.507

	
0.7528

	
30.505

	
0.7532

	
30.508

	
0.7534




	
Average

	
34.550

	
0.8065

	
34.561

	
0.8165

	
34.502

	
0.8029

	
34.598

	
0.8186




	
Average

	
38.598

	
0.8879

	
38.614

	
0.8906

	
38.558

	
0.8851

	
38.641

	
0.8911








Bold indicates the best performance.
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