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Abstract: Flexible-joint manipulators (FJMs) have been widely used in the fields of industry, agricul-
ture, medical service, aerospace, etc. However, the FJMs in practical applications inevitably encounter
various uncertainties including matched and mismatched disturbances. In this paper, we consider the
high precision tracking control problem of FJMs in the presence of unknown lumped matched and
mismatched disturbances. An efficient model-assisted composite control approach is proposed by
integrating two reduced-order extended state observers (RESOs), a second-order command filtered
backstepping (SCFB) technique and an error compensation dynamic system. Unlike some existing
methods, the RESOs constructed with partial known model information are capable of estimating and
compensating the matched and mismatched disturbances simultaneously. In addition, by employing
the SCFB with an error compensation system, the proposed approach can not only overcome the
problem of “explosion of complexity” inherent in backstepping, but also reduce the filtering errors
arising from the command filters. The stability of the resulting control system and the convergence of
error signals are guaranteed by Lyapunov stability theory. Comparative simulations are conducted
for a single-link FJM with both matched and mismatched disturbances, and the results show that
the proposed approach achieves a better tracking performance, i.e., compared with conventional
backstepping method and adaptive fuzzy command filtered control method, the tracking accuracy is
improved by 99.5% and 99.2%, respectively.

Keywords: flexible-joint manipulators; reduced-order extended state observer (RESO); backstepping;
command filter; error compensation

1. Introduction

The last decades have witnessed a tremendous progress in the development of flexible
manipulators. Roughly speaking, the flexible manipulators can be divided into flexible-link
manipulators (FLMs) [1,2] and flexible-joint manipulators (FJMs) [3–5]. In this paper, we
focus on the study of FJMs, whose joints are made up of harmonic reducer, torque sensor,
and other elastic components. The FJMs usually exhibit many distinctive features, such
as light weight, good flexibility, high human-robot interaction safety, etc. As a result, they
have a wide application prospect in the fields of industry, agriculture, medical service,
aerospace, and so on [6,7]. However, the flexible joints are easy to produce elastic vibrations
during the movements, especially in high-speed operations, which greatly affect the control
accuracy of FJMs. In addition, the model of FJMs in practical applications may contain
various nonlinear uncertainties including matched and mismatched disturbances. If these
uncertainties are ignored in the control design, the performances of the controllers will be
deteriorated [8]. Therefore, the study on vibration suppression of FJMs in the presence of
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uncertainties with a high precision control has attracted great attentions in both control
theory and engineering community.

In the past decades, many effective control methods have been proposed for the control
of FJMs, e.g., fuzzy control [9,10], singular perturbation control [11–13], feedback lineariza-
tion control [14,15], backstepping control [16–19], etc. Among them, the backstepping
control is a Lyapunov function-based recursive design method, which constructs control
Lyapunov functions step by step and designs intermediate virtual control laws recursively
until the actual control law is reached. However, it suffers from the drawback of “explosion
of complexity”, that is, the derivatives of virtual control laws designed in the procedures
need to be computed repeatedly. To solve this problem, a dynamic surface control (DSC)
was proposed in Ref. [20], where a first-order low-pass filter was introduced in each step
to obtain the derivative of the virtual control law instead of taking the derivative directly.
Based on the DSC technique, several adaptive control schemes [21–23] were proposed
for the single-link FJMs with unknown nonlinearities, and a DSC backstepping-based
impedance controller was designed in Ref. [24] for a 5-DOF flexible joint robot. However,
these results do not consider the potential errors caused by the filters. Furthermore, the
derivatives of virtual control laws in DSC are actually approximated through numerical
differentiations, which may amplify the noise and reduce the control accuracy.

To avoid numerical differentiations, a second-order command filtered backstepping
(SCFB) method was proposed in Refs. [25,26]. It obtains the derivatives of the virtual
control laws through integrations instead of differentiations, which can not only avoid the
problem of “explosion of complexity”, but also simplify the controller design. With the
SCFB technique, an adaptive neural tracking controller was designed in Ref. [27] for
uncertain robotic manipulators, and an adaptive fuzzy controller was proposed in Ref. [28]
for a two-link robotic manipulator. Furthermore, regarding the filtering errors produced
by command filters, two improved SCFB controllers were designed in Refs. [29,30] for
FJM systems, where two error compensation mechanisms were constructed to reduce the
filtering errors. Unfortunately, most of the above mentioned methods do not consider the
practical uncertainties that may exist in the control of FJMs.

To cope with uncertainties, intelligent control methods including neural networks
(NNs) and fuzzy logic systems (FLSs), which are well-known for their universal approxi-
mation abilities, have been widely utilized for uncertain FJMs. For example, the uncertain
model of FJMs was approximated by a Radial Basis Function (RBF) neural network in
Ref. [31], on the basis of which an adaptive observer and DSC controller were developed.
Similarly, an FLS was employed in Ref. [32] to approximate the unknown functions, and an
adaptive fuzzy tracking controller was designed. However, both the NNs and the FLSs re-
quire complex online learning mechanisms, which are computationally expensive. Sliding
mode control, which is famous for its insensitivity to uncertainties, has also been applied in
the control of FJMs [33–36], but the phenomenon of chattering cannot be avoided.

Observer-based technique is an alternative to deal with uncertainties, which estimates
the uncertainties by designing a state/disturbance observer. In Ref. [37], a high gain
observer-based robust output feedback control approach was proposed for a single-link
FJM with matched disturbances and parametric uncertainties. In Ref. [38], a nonlinear
disturbance observer (NDO) based DSC approach was proposed for the FJM with input
saturation and unknown nonlinear disturbance, where the NDO was applied to estimate
the unknown external disturbance and compensate the saturation constrain. However, only
matched disturbances were considered in these control methods. Extended state observer
(ESO), which regards internal and external disturbances as an extended system state vari-
able, is another effective and practical disturbance estimation and attenuation approach [39].
As for FJMs in the presence of disturbances, an ESO-based feedback linearization control
method was proposed in Ref. [40], and a cascaded-ESO based sliding-model control strat-
egy was proposed in Ref. [41]. However, the conventional ESO is only applicable for
integral chain systems, which should satisfy the so-called matching conditions. Although
the ESOs in Refs. [40,41] can transform a mismatched disturbance into a matched one, they
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require a series of complex coordinate transformations, which make the control algorithms
computationally complicated. In addition, the order of the constructed ESOs is greater than
the system. For high-order systems like the FJM, it may bring about some negative effects
of the high gain action, such as noise amplification and the peaking phenomenon [41].

Unlike conventional ESO, the reduced-order ESO (RESO) [42], which makes full use
of the measurable system state information, can attenuate the peaking phenomenon and
yield a better estimation performance. More importantly, the RESO can be applied to
non-integral chain systems with matched and mismatched disturbances. Due to these
advantages, the RESO has been widely used for the control of various engineering systems,
such as missiles [43], gear-shifting actuators [44], underwater vehicles [45], DC-DC buck
converters [46], all-clamped plates [47], etc. However, the application of RESO on FJMs has
not been reported.

Based on the above literature review and analysis, it is noted that there are still many
crucial problems worthy of being further investigated in the control of FJMs, which can be
summarized as follows.

(1) The FJMs in practical applications inevitably encounter various uncertainties including
matched and mismatched disturbances. Unfortunately, the current researches focus on
the matched disturbances, while the mismatched ones are not considered. Although
the conventional ESO can transform a mismatched disturbance into a matched one,
it requires a series of complex coordinate transformations, which make the control
algorithms computationally complicated;

(2) The backstepping technique employed for the control design of FJMs suffers from the
drawback of “explosion of complexity”. Although the DSC or SCFCB can deal with
the computation problem, the potential errors caused by the introduction of filters are
not considered, which may greatly reduce the tracking accuracy.

Motivated by the above considerations, this paper aims to propose an efficient model-
assisted composite control approach for the high precision tracking control of FJMs in the
presence of lumped matched and mismatched disturbances by integrating the techniques
of RESO and the SCFB. More specifically, the uncertain model of a single-link FJM is
first given, where all the uncertainties affecting the system including friction/damping
terms and external disturbances are lumped as matched and mismatched disturbances.
Then, two model-assisted RESOs are constructed to estimate the matched and mismatched
disturbances in real time. On the basis of the estimation values from the RESOs, a feedback
controller is derived by using the recursive backstepping methodology, where three second-
order command filters (SCFs) are incorporated to overcome the problem of “explosion of
complexity”. In addition, an error compensation dynamic system is designed to reduce the
filtering errors caused by the SCFs. By utilizing Lyapunov stability theory, it rigorously
proves that all the error signals in the closed-loop control system are uniformly ultimately
bounded, and converge to a small neighbourhood of the origin. Numerical simulations
with comparisons to existing methods are finally presented to verify the effectiveness and
efficiency of the proposed approach.

The novel features and main contributions of this paper are highlighted as follows.

(1) The RESOs constructed with partial known model information are capable of esti-
mating and compensating the matched and mismatched disturbances simultaneously.
This is much different from the existing ESO-based methods where complex coordi-
nate transformations are required to convert a mismatched disturbance into a matched
one. The developed control algorithm is thus robust and efficient;

(2) The inherent complexity problem of backstepping is addressed by employing the
SCFB control, where the derivatives of the virtual control laws are obtained through
integrations instead of differentiations. The transient control performance of the
controller is thus improved;

(3) The potential filtering errors caused by the command filters are taken into account,
and they are reduced by the error compensation dynamic system, which improves the
steady-state tracking control accuracy.
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The remainder of this paper is organized as follows. The dynamic model of a single-
link FJM with disturbances and the corresponding control problem are presented in
Section 2. The detailed control design including two RESOs, a backstepping controller, and
an error compensation system is given in Section 3. The stability of the resulting control
system is analysed in Section 4. Simulation results are presented in Section 5 to verify the
effectiveness and efficiency of the proposed approach. The concluding remarks are finally
discussed in Section 6.

2. Problem Formulation

This paper studies the control problem of an FJM with one flexible joint and one rigid
link, whose physical model is shown in Figure 1.

L

g

y

I

q

x

M

Link

Motor

K
u

J

Base

Spring

Figure 1. Physical model of a single-link FJM.

The parameters and variables in Figure 1 are given as follows: q and θ represent the
angles of the link and the motor shaft, respectively; u is the control torque generated by
the motor; g is the acceleration of gravity; M, K and L are the mass of the link, the spring
stiffness of the flexible joint, the distance between the flexible joint, and the mass centre
of the link, respectively; I and J are the rotational inertia of the rigid link and the motor,
respectively.

According to the Euler–Lagrangian equation, the mathematical model of the single-
link FJM is obtained as [16,48]:{

Iq̈ + K(q− θ) + MgL sin q = w1
Jθ̈ − K(q− θ) = u + w2

(1)

where w1 and w2 are the lumped disturbances including system friction/natural damping
terms and unknown external disturbances.

Define x = [x1, x2, x3, x4]
> = [q, θ, q̇, θ̇]> as the state variable, and y as the output of

the system, then the state-space equation of model (1) is written as:
ẋ1 = x2
ẋ2 = x3 + g1(x) + d1
ẋ3 = x4
ẋ4 = 1

J u + g2(x) + d2

y = x1

(2)
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where
g1(x) = −x3 −

K
I
(x1 − x3)−

MgL
I

sin x1

g2(x) =
K
J
(x1 − x3)

d1 =
1
I

w1

d2 =
1
J

w2

(3)

Note that the terms g1(x) and g2(x) are straightforwardly derived from (1), and they
are treated as nominal functions of the FJM model, which will be used for the control
design. The main feature of the FJM system expressed as (2) is that it contains two terms
d1 and d2, which are the mismatched and matched lumped disturbances, respectively.
Generally speaking, the mismatched lumped disturbance d1 is determined by the friction
term and external disturbance, while d2 represents the lumped disturbance caused by
the natural damping and the disturbance generated by the control torque. In this paper,
the mismatched and matched disturbances are simultaneously estimated by employing
two RESOs, and the estimation values are fed back to the controller to compensate for
their effects.

Considering the physical limitations on the FJM in practical applications, some as-
sumptions are given as follows.

Assumption 1 ([30]). The desired reference trajectory yd and its first-order time derivative ẏd
are available.

Assumption 2 ([43]). The lumped disturbances d1, d2, and their derivatives are all bounded,
i.e., there exist positive constants d̄1, d̄1d, d̄2 and d̄2d that satisfy |d1| ≤ d̄1,

∣∣ḋ1
∣∣ ≤ d̄1d, |d2| ≤ d̄2,∣∣ḋ2

∣∣ ≤ d̄2d, ∀t ∈ [0,+∞).

To facilitate the control design and stability analysis, the following lemmas are needed
in the subsequent context.

Lemma 1 ([25]). Consider the second-order command filters (SCFs) defined as{
żi = zid
żid = −2ζωnzid −ω2

n(zi − αi)
(i = 1, 2, 3) (4)

where αi are the inputs and αc
i = zi, α̇c

i = zid are the outputs of the SCFs; ζ and ωn are the damping
ratio and bandwidth, respectively. Set the initial conditions as zi(0) = αi(0) and zid(0) = 0. ∀
t ≥ 0, if the inputs satisfy |α̇i| ≤ ς1, |α̈i| ≤ ς2, where ς1 > 0, ς2 > 0, then there exist ζ ∈ (0, 1],
ωn > 0 and µ > 0, such that |zi − αi| ≤ µ, |zid − α̇i| ≤ µ, and |żi|, |z̈i|, |

...
z i| are bounded.

Theoretically, the filtering errors of the SCFs can be made arbitrarily small by increasing ωn.

The structure of an SCF is shown in Figure 2, from which it is clearly seen that the
derivative of αi is obtained through an integrator rather than a differentiator. This can reduce
the measurement noise caused by differential operation and improve the control accuracy.

+ + 

--

Figure 2. Structure of a second-order command filter.
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Lemma 2 ([19,49]). For V : [0,+∞) ∈ R, the solutions of inequality equations of V̇(t) ≤
−aV(t) + f are

V(t) ≤ e−a(t−t0)V(t0) +
∫ t

t0

e−a(t−h) f (h)dh, ∀t ≥ t0 ≥ 0 (5)

where a is any constant.

The control problem of this paper is formulated as following. Consider the single-link
FJM (2) in the presence of lumped mismatched and matched disturbances. Design a proper
controller by integrating the techniques of RESO and SCFB such that the output y tracks a
desired trajectory yd quickly and precisely.

3. RESO-Based Backstepping Control Design

To achieve the above control objective, in this section, two model-assisted RESOs are
first designed to estimate the lumped matched and mismatched disturbances, and then a
feedback controller with an error compensation mechanism is developed by employing the
SCFB technique.

3.1. Reduced-Order ESO (RESO)

In order to estimate the lumped disturbances d1 and d2 in system (2), according to the
design principle of RESO [42], two specified RESOs are given as{

d̂1 = p1 + β1x2
ṗ1 = −β1 p1 − β2

1x2 − β1x3
(6)

{
d̂2 = p2 + β2x4
ṗ2 = −β2 p2 − β2

2x4 − β2 J−1u
(7)

where d̂1 stands for the estimate of the sum term of g1(x) and d1; d̂2 stands for the estimate
of the sum term of g2(x) and d2; pi and βi > 0(i = 1, 2) are the auxiliary states and the
observer gains, respectively.

Note that the internal dynamics g1(x) and g2(x) are available, which can be directly
used as given model information for the observers. Hence, to reduce the estimation burden,
the model-assisted RESOs are designed as{

d̂1 = p1 + β1x2
ṗ1 = −β1 p1 − β2

1x2 − β1[x3 + g1(x)]
(8)

{
d̂2 = p2 + β2x4
ṗ2 = −β2 p2 − β2

2x4 − β2[J−1u + g2(x)]
(9)

where d̂1 and d̂2 stand for the estimates of the lumped uncertainties d1 and d2, respectively.
Define the estimation errors as

d̃1 = d̂1 − d1 (10)

d̃2 = d̂2 − d2 (11)

Then, based on (8) and (10), the time derivative of d̃1 can be obtained as

˙̃d1 = ˙̂d1 − ḋ1 = ṗ1 + β1 ẋ2 − ḋ1

= −β1 p1 − β2
1x2 − β1[x3 + g1(x)] + β1[x3 + g1(x) + d1]− ḋ1

= −β1(p1 + β1x2) + β1d1 − ḋ1

= −β1d̃1 − ḋ1

(12)

According to the same derivation process, ˙̃d2 can also be obtained as
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˙̃d2 = ˙̂d2 − ḋ2 = ṗ2 + β2 ẋ4 − ḋ2

= −β2 p2 − β2
2x4 − β2[J−1u + g2(x)] + β2[J−1u + g2(x) + d2]− ḋ2

= −β2(p2 + β2x4) + β2d2 − ḋ2

= −β2d̃2 − ḋ2

(13)

Combining (12) with (13), the disturbance estimation error dynamics for system (2)
can be written in the following compact form:

ėo = Aoeo + ḋ (14)

where eo =
[
d̃1, d̃2

]T, ḋ =
[
−ḋ1,−ḋ2

]T and Ao = diag{−β1,−β2}. Note that the gains in
(8) and (9) are chosen as βi > 0(i = 1, 2), which ensure that Ao is a Hurwitz matrix.

3.2. Second-Order Command Filtered Backstepping (SCFB) Controller

Based on the RESOs, a feedback tracking controller is designed by using the SCFB
technique, and an error compensation system is proposed to reduce the filtering errors.

Firstly, we define the tracking errors as
e1 = y− yd
e2 = x2 − z1
e3 = x3 − z2
e4 = x4 − z3

(15)

where zi(i = 1, 2, 3) are the outputs of the SCFs defined in (4). In order to reduce the filtering
errors produced by the SCFs, an error compensation dynamic system is designed as:

ξ̇1 = −k1ξ1 + ξ2 + (z1 − α1)

ξ̇2 = −1
I

k2ξ2 +
K
I
[ξ3 + (z2 − α2)]

ξ̇3 = −k3ξ3 + ξ4 + (z3 − α3)
ξ̇4 = −k4ξ4

(16)

where ki > 0 (i = 1, 2, 3, 4) are design parameters, and the initial values of ξi (i = 1, 2, 3, 4)
are ξi(0) = 0. Then the compensated tracking errors are defined as

v1 = e1 − ξ1
v2 = e2 − ξ2
v3 = e3 − ξ3
v4 = e4 − ξ4

(17)

Next, we derive the control laws to stabilize the tracking errors vi by using the recursive
backstepping methodology. The whole design procedure is divided into the following
four steps.

Step 1: To stabilize v1, the first Lyapunov function candidate is chosen as:

V1 =
1
2

v2
1 (18)

Based on (2), (15) and (17), the time derivative of v1 is computed by

v̇1 = ė1 − ξ̇1 = ẋ1 − ẏd − ξ̇1

= x2 − ẏd − ξ̇1 = v2 + z1 − ẏd + ξ2 − ξ̇1
(19)

Taking the time derivative of V1 along (19) and using the first equation of (16) yields
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V̇1 = v1v̇1 = v1
(
v2 + z1 − ẏd + ξ2 − ξ̇1

)
= v1(v2 + α1 − ẏd + k1ξ1)

= v1(v2 + α1 − ẏd + k1e1 − k1v1)

(20)

To make V1 negative, the virtual control law α1 is chosen as

α1 = −k1e1 + ẏd (21)

where k1 is a positive design parameter. Substituting (21) into (20) yields

V̇1 = −k1v2
1 + v1v2 (22)

Obviously, if v2 = 0, then V̇1 ≤ 0.
Step 2: Similarly, to stabilize v2, the second Lyapunov function candidate is chosen as:

V2 = V1 +
1
2

Iv2
2 (23)

The time derivative of v2 is obtained as

v̇2 = ė2 − ξ̇2 = ẋ2 − ż1 − ξ̇2

= −K
I
(x1 − x3)−

1
I

MgL sin x1 + d1 − z1d − ξ̇2

=
K
I
(v3 + z2 + ξ3)−

K
I

x1 −
1
I

MgL sin x1 + d1 − z1d − ξ̇2

(24)

Taking the time derivative of V2 along (24) and using the second equation of (16) yields

V̇2 = V̇1 + Iv2v̇2

= −k1v2
1 + v1v2 + v2

[
K(v3 + z2 + ξ3)− Kx1 −MgL sin x1 + Id1 − Iz1d − Iξ̇2

]
= −k1v2

1 + v2(v1 + Kv3 + Kα2 − Kx1 −MgL sin x1 + Id1 − Iz1d + k2e2 − k2v2)

(25)

To make V2 negative, the virtual control law α2 is chosen as

α2 =
1
K

(
−k2e2 + Kx1 + MgL sin x1 + Iz1d − v1 − Id̂1

)
(26)

where k2 is a positive design parameter; d̂1 is the estimate of d1 from the RESO (8). Subsist-
ing (26) into (25) yields

V̇2 = −k1v2
1 − k2v2

2 + Kv2v3 − Iv2d̃1 (27)

If v3 = 0 and d̃1 = 0, then V̇2 ≤ 0.
Step 3: To stabilize v3, the third Lyapunov function candidate is chosen as:

V3 = V2 +
1
2

v2
3 (28)

The time derivative of v3 is computed by

v̇3 = ė3 − ξ̇3 = ẋ3 − ż2 − ξ̇3

= x4 − z2d − ξ̇3 = v4 + z3 + ξ4 − z2d − ξ̇3
(29)
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Taking the time derivative of V3 along (29) and using the third equation of (16) yields

V̇3 = V̇2 + v3v̇3

= −k1v2
1 − k2v2

2 + Kv2v3 − Iv2d̃1 + v3
(
v4 + z3 + ξ4 − z2d − ξ̇3

)
= −k1v2

1 − k2v2
2 − Iv2d̃1 + v3(Kv2 + v4 + α3 − z2d + k3e3 − k3v3)

(30)

To make V3 negative, the virtual control law α3 is chosen as

α3 = −k3e3 + z2d − Kv2 (31)

where k3 is a positive design parameter. Substituting (31) into (30) yields

V̇3 = −k1v2
1 − k2v2

2 − k3v2
3 + v3v4 − Iv2d̃1 (32)

If v4 = 0 and d̃1 = 0, then V̇3 ≤ 0.
Step 4: To stabilize v4, the final Lyapunov function candidate is chosen as:

V4 = V3 +
1
2

Jv2
4 (33)

The time derivative of v4 is

v̇4 = ė4 − ξ̇4 = ẋ4 − ż3 − ξ̇4 =
u
J
+

K
J
(x1 − x3) + d2 − z3d − ξ̇4 (34)

Taking the time derivative of V4 along (34) and using the fourth equation of (16) yields

V̇4 = V̇3 + Jv4v̇4

= −k1v2
1 − k2v2

2 − k3v2
3 + v3v4 − Iv2d̃1

+ v4
[
u + K(x1 − x3) + Jd2 − Jz3d − Jξ̇4

]
= −k1v2

1 − k2v2
2 − k3v2

3 − Iv2d̃1

+ v4[v3 + u + K(x1 − x3) + Jd2 − Jz3d + k4e4 − k4v4]

(35)

To make V4 negative, the actual control law u is designed as

u = −k4e4 − K(x1 − x3) + Jz3d − v3 − Jd̂2 (36)

where k4 is a positive design parameter, and d̂2 is the estimate of d2 from the RESO (9).
Substituting (36) into (35) yields

V̇4 = −k1v2
1 − k2v2

2 − k3v2
3 − k4v2

4 − Iv2d̃1 − Jv4d̃2 (37)

If d̃1 = 0 and d̃2 = 0, then V̇4 ≤ 0.
Summarizing the above design steps, the proposed SCFB controller is composed of

the following control laws.
α1 = −k1e1 + ẏd

α2 =
1
K

(
−k2e2 + Kx1 + MgL sin x1 + Iz1d − v1 − Id̂1

)
α3 = −k3e3 + z2d − Kv2
u = −k4e4 − K(x1 − x3) + Jz3d − v3 − Jd̂2

(38)

where zid(i = 1, 2, 3) come from the SCFs (4), and d̂1, d̂2 are from the RESOs (8) and (9).
The block diagram of the proposed RESO based SCFB composite control system for the
single-link FJM is shown in Figure 3.
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Figure 3. Block diagram of the composite control system for the single–link FJM control system.

4. Stability Analysis

In this section, the convergence of the error signals and the stability of the resulting
control system are analyzed using the Lyapunov stability theory.

Theorem 1. Consider the proposed RESOs (8) and (9) for the single-link FJM described by (2)
with matched and mismatched disturbances. If Assumption 2 is satisfied, then the error norm of the
RESOs is bounded by

‖eo‖ ≤
max

(
d̄i
)

min(|βi|)
(i = 1, 2) (39)

Proof. Consider the Lyapunov function candidate Vo

Vo =
1
2

e>o Peo (40)

where P is a positive definite matrix. Since Ao is a Hurwitz matrix, there exists a positive
definite matrix Q such that

A>o P + PAo = −Q (41)

Taking the time derivative of Vo along (14) and (41) yields

V̇o =
1
2

ėT
o Peo +

1
2

eT
o Pėo

=
1
2

eT
o

(
AT

o P + PAo

)
eo + eT

o Pḋ

= −1
2

eT
o Qeo + eT

o Pḋ

≤ −1
2
‖eo‖2Q + ‖eo‖‖P‖max

(
d̄i
)

≤ −‖eo‖
[
‖eo‖‖P‖min(|βi|)− ‖P‖max

(
d̄i
)]

(42)

where min(|βi|)(i = 1, 2) represents the smallest eigenvalue of Ao. Therefore, within finite
time, the norm of the estimation errors is bounded by

‖eo‖ ≤
max

(
d̄i
)

min(|βi|)
(i = 1, 2) (43)

This completes the proof of Theorem 1.

Theorem 2. Consider the single-link FJM described by (2) with matched and mismatched dis-
turbances. Suppose that Assumptions 1 and 2 are satisfied. The RESOs (8) and (9), the error
compensation system (16), and the SCFB controller (38) guarantee that all the signals in the control
system are uniformly ultimately bounded, and the tracking errors converge to a small neighborhood
around zero.
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Proof. Based on the design procedure in Section 3.2, the final Lyapunov function candidate
for the feedback control is

Vf =
1
2

v2
1 +

I
2

v2
2 +

1
2

v2
3 +

J
2

v2
4 (44)

According to (37), the time derivative of Vf can be described as

V̇f = −k1v2
1 − k2v2

2 − k3v2
3 − k4v2

4 − Iv2d̃1 − Jv4d̃2 (45)

Using the Young’s inequality, we have

∣∣Iv2d̃1
∣∣ ≤ I

2
v2

2 +
I
2

d̃2
1∣∣Jv4d̃2

∣∣ ≤ J
2

v2
4 +

J
2

d̃2
2

(46)

Substituting (46) into (45) yields

V̇f ≤ −k1v2
1 −

(
k2 −

I
2

)
v2

2 − k3v2
3 −

(
k4 −

J
2

)
v2

4 −
I
2

d̃2
1 −

J
2

d̃2
2 (47)

Rewriting inequality (47) in a compact form, we have

V̇f ≤ −α0Vf + D (48)

where
α0 = min (2k1, 2k2 − I, 2k3, 2k4 − J)

D = − I
2

d̃2
1 −

J
2

d̃2
2

(49)

Selecting the design parameters k1 > 0, k2 > I/2, k3 > 0, k4 > J/2 to ensure α0 > 0. Then,
according to Lemma 2, the solution of (48) is

Vf (t) ≤
D
α0

+

[
Vf (0)−

D
α0

]
e−α0t (50)

which means that Vf (t) converges exponentially to the upper bound of D
α0

, i.e., as t→ ∞,
Vf (t) ≤ D

α0
. As a result, the compensated errors vi(i = 1, 2, 3, 4) are bounded.

Furthermore, it has been proved in Ref. [50] that the compensation signals ξi(i = 1, 2, 3, 4)
in (16) are bounded. Since ei = vi + ξi, it is clearly known that the tracking errors ei are also
bounded. According to Lemma 1 and Theorem 1, the filter outputs zi, zid(i = 1, 2, 3) and
the estimations d̂1, d̂2 are bounded. From (38), it is evident that the virtual control laws
α1(ẋd, e1), α2

(
x1, e2, d̂1, z1d, v1

)
, α3(e3, z2d, v2), and the actual law u

(
x1, x3, e4, d̂2, z3d, v3

)
are also bounded because of the boundedness of their independent variables.

Therefore, all the signals in the closed-loop control system are uniformly ultimately
bounded. In addition, by properly choosing the design parameters, such as large ki(i=1,2,3,4)
and βi(i = 1, 2), the tracking errors ei(i = 1, 2, 3, 4) can converge to a small neighbourhood
around zero. This completes the proof of Theorem 2.

5. Numerical Simulations

To evaluate the effectiveness and efficiency of the proposed control method, two
simulation tests are conducted in the MATLAB/SIMULINK platform. Specifically, the first
simulation is presented to examine the tracking control performance of the proposed
approach for the single-link FJM with matched and mismatched disturbances as well as
measurement noises. In the second simulation, a comparison study between the proposed
method and the existing approaches are presented to show the superior performance of the
proposed controller.
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The physical parameters of the single-link FJM in (1) are given as: M = 0.25 kg,
g = 9.8 m/s2, L = 0.45 m, K = 5 N ·m/rad, I = 0.05 m/s2, J = 0.0005 m/s2. The gains of
the controller (38) are chosen as k1 = 7, k2 = 25, k3 = 8, k4 = 8. Meanwhile, the parameters
of the SCFs (4) are chosen as ωn = 1100, ζ = 0.8, and the parameters of the proposed
RESOs in (8) and (9) are: β1 = 50, β2 = 50.

The initial condition of the FJM is set as x(0) = [0.5, 0, 0, 0]>. The initial states of the
error compensation system and the SCFs are all zeros. The desired reference trajectory is
chosen as yd = 0.5(sin t + sin 0.5t), and the lumped mismatched and matched disturbances
added for the two simulations are given as:{

w1 = 0.005 cos q̇ + 0.3 sin(2πt)
w2 = 0.1θ̇ + 0.3 cos(2πt)

(51)

5.1. Simulation Results with Disturbances and Noises

To imitate the measurement noises of encoders equipped in the FJM, Gaussian white
noise with zero mean and standard deviation of 0.1, which can be generated by the “randn”
function in MATLAB, is added for all the state measurements. The simulation results are
depicted in Figures 4–9.

Figure 4 displays the trajectories of the system output y and the given reference
signal yd. Figure 5 shows the curve of tracking error. From these figures, we can see
that the proposed approach achieves a satisfactory tracking control performance despite
the presence of mismatched and matched disturbances as well as noises affecting mea-
surements. The estimates of the mismatched and matched disturbances are respectively
illustrated in Figures 6 and 7, from which we can see that the designed RESOs can estimate
the disturbances quickly and precisely.
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Figure 4. Tracking performance of the system output y under the proposed approach with noises.
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Figure 5. Tracking error e1 under the proposed approach with noises.
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Figure 8. Filtering performance of the SCF with α1 being the input and z1 being the output.

Figure 8 depicts the intermediate virtual control law α1 and the corresponding filtered
control signal z1 from the SCF. It is clearly seen that the virtual control law α1 is corrupted
by the white noises, but the filtered signal z1 through the SCF is smooth. In addition,
Figure 9 shows the comparison results between the direct time derivative of α1 and the
output z1d of the SCF in the presence of white noises. It is noticed that the chattering
amplitude of α̇1 is much bigger than that of z1d, which indicates that the noises in α̇1 are
amplified. The reason is that the derivative of α1 is approximated by the SCF through
integration rather than differentiation (as shown in Figure 2). These results demonstrate
that the SCF employed for FJMs with measurement noises can not only filter the noises
for the control signal to some extent, but also avoid the amplification of the noises in the
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recursive backstepping design. Similar results are obtained for αi (i = 2, 3) and zid, which
are omitted for the space saving.
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Figure 9. Comparison results between α̇1 and the output of the SCF z1d.

5.2. Comparison Results with CBC and AFCFC Methods

In order to further show the superior performance of the proposed RESO based
command filtered controller (RBCFC), the following two controllers are selected to make a
comparison study.

(1) Conventional backstepping controller (CBC) proposed in [16]. The structure of the
controller is given as:

α1 = −k1e1 + ẏd

α2 =
1
K
(−k2e2 − e1 + MgL sin x1 + Kx1 + Iα̇1)

α3 = −k3e3 − Ke2 + α̇2
u = −k4e4 − e3 − K(x1 − x3) + Jα̇3

(52)

(2) Adaptive fuzzy command filtered controller (AFCFC) proposed in [30]. The struc-
ture of the controller is given as:

α1 = −k1e1 + ẏd

α2 =
1

M−1K
(−k2e2 −

1
2

v2 − e1 + z1d −
v2θ̂ψ>1 ψ1

2l2
1

)

α3= −k3e3 −M−1Ke2 + z2d

u = B(e4 + z3) + K(e3 + z2 − e1 − yd) + J(−k4e4 − e3 + z3d)

˙̂θ =
rv>2 v2ψ>1 ψ1

2l2
1

− r̄θ̂

(53)

where zid(i = 1, 2, 3) are the outputs of SCFs, l1, r, r̄ are positive design parameters,
θ̂ is the estimation of the adaptive parameter θ, ψ1 is the vector of fuzzy basis functions.
More details about these control parameters are referred to in Ref. [30].

Remark 1. It is noticed that the structure of the CBC is the simplest among the three controllers,
but it suffers from the drawback of computational complexity, and does not consider the influence
of disturbances. Both the proposed RBCFC and AFCFC can address these problems, but the
AFCFC employs a fuzzy system with an online adaptive learning law to approximate the unknown
disturbances, while the proposed RBCFC utilizes two simple RESOs to estimate the disturbances.

Since the three controllers are designed using the same backstepping methodology,
their gains are chosen as the same for the sake of fair comparison, i.e., k1 = 7, k2 = 25,
k3 = 8, k4 = 8. Meanwhile, the same parameters of the SCFs are chosen for the proposed
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controller and the AFCFC, i.e., ωn = 1100, ζ = 0.8. Other parameters for the AFCFC are
chosen as in Ref. [30]. No measurement noises are considered in this circumstance for a
clear and fair comparison.

The simulation results of the single-link FJM under the three controllers are depicted
in Figures 10–13, which record the curves of the tracking performance of the system output
y, the tracking error e1, the state of the motor angle θ, and the control torque u, respectively.
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Figure 10. Tracking performance of the system output y under the three controllers.

-0.0004

0.0004

0.0

0.0002

-0.0002

13 14 15

0.2

0.5

0.4

0.3

0.6

T
ra

ck
in

g
 e

rr
o
r 

ra
d

0.0

0.1

-0.1
0 1596

time s

3 12

e
1
(Proposed)

e
1
(CBC)

e
1
(AFCFC)

0.0002841

-0.0339297

0.0579304
-0.10

0.4 1.4 2.4

0.10

0.0

0.05

-0.05

Figure 11. Tracking error e1 under the three controllers.
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From Figure 10, it is seen that both the proposed controller and the AFCFC can
attenuate the influence of lumped disturbances and achieve satisfactory control perfor-
mance. However, the system output with the CBC is seriously affected by the disturbances,
and fluctuates around the reference trajectory. This is mainly because the CBC does not
contain a compensation term for the disturbances. The same results can be further verified
by Figures 11 and 12, which respectively show that the tracking error e1 and the motor
angle θ under the three controllers converge to a small neighborhood around zero. It is
clearly seen that the convergence radius of the proposed controller is the smallest among
the three controllers.

In order to quantitatively analyze the control performance of the three controllers, we
define three performance indexes including the settling time ts, the mean squared error in
the transient stage between 0.4 s and 2.4 s, i.e.,

e1MSE =
1
N

N

∑
i=1

[e(i)]2 (54)

and the maximum tracking error in the steady stage |e1∞ max|. The details of the quantified
performance indexes of the three controllers are given in Table 1.

Table 1. Performance indexes under the three controllers.

Methods ts(s) e1MSE(rad) |e1∞ max|(rad)

RBCFC [Proposed] 0.93 3.09× 10−5 2.84× 10−4

CBC [16] 0.68 1.51× 10−3 5.79× 10−2

AFCFC [30] 0.86 4.84× 10−4 3.39× 10−2

As seen from Table 1, the proposed RBCFC exhibits better performance than the other
two controllers in aspects of transient and steady tracking errors. Although the settling
time of the proposed controller is a little longer than those of other controllers, the mean
squared error of the proposed controller in the transient stage is reduced almost down
to 3.09× 10−5, which is quite smaller than that (i.e., 1.51× 10−3) of CBC, as well as that
(i.e., 4.84× 10−4) of AFCFC. In addition, the maximum tracking error of the proposed
controller in the steady stage is about 2.84× 10−4, while those of CBC and AFCFC are
5.79× 10−2 and 3.39× 10−2, respectively. Compared with the CBC and the AFCFC, the
tracking accuracy of the proposed controller is improved by 99.5% and 99.2%, respectively.

From Figure 13, it is seen that the control torque u of the proposed controller in the
initial stage between 0 s and 0.2 s shows large fluctuations. The reason for this may be that
the proposed controller in the system adjustment stage is more susceptible to the unknown
disturbances. By introducing the RESOs, however, the disturbances are quickly estimated
and compensated for in the feedback control.
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According to the above comparative simulation results, it can be concluded that
compared with other methods, the proposed controller can estimate and compensate the
unknown matched and mismatched disturbances effectively, and achieve a better transient
and steady tracking performance.

6. Conclusions

This paper has successfully proposed an efficient model-assisted composite control
approach for the high precision tracking control of FJMs in the presence of lumped matched
and mismatched disturbances. Two RESOs are constructed with partial known model
information of FJMs to estimate and compensate the disturbances, three second-order
command filters are incorporated into the backstepping control design to avoid the problem
of “explosion of complexity”, and an error compensation dynamic system is designed to
reduce the filtering errors. The stability of the resulting control system is rigorously proven
via Lyapunov stability theory, and the tracking errors are guaranteed to be uniformly
ultimately bounded. The numerical simulation results prove that the proposed RESOs
deliver accurate estimates of both the matched and mismatched disturbances. In addition,
compared with conventional backstepping method and adaptive fuzzy command filtered
control method, the proposed approach achieves a better tracking performance, i.e., the
tracking accuracy is improved by 99.5% and 99.2%, respectively.

It is worth pointing out that the proposed approach requires the knowledge of all
the state variables, which may be unfeasible or inconvenient in practice. It is interesting
to study the output feedback control problem of FJMs with unmeasured state variables
by integrating the state estimation technique, e.g., Kalman state observers presented in
Refs. [1,2]. In addition, it is necessary and significant to evaluate the control performance
of the proposed approach under varying load mass and extend the proposed approach to a
more general 6-DOF FJM. These issues will be investigated in our future works.
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