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Abstract: Cloud Computing has rapidly emerged as a successful paradigm for providing Informa-
tion and Communication Technology (ICT) infrastructure. Resource allocation is used to execute
user applications in the form of requests for consolidated resources in order to minimize energy
consumption and violation of the Service Level Agreement (SLA) for large-scale data centers resource
utilization. The energy consumption is usually caused due to local entrapment and violation of SLA
during resource assigning and execution. Several researchers have proposed solutions to reduce
local entrapments and violations of SLA, to minimize the energy consumption of the entire data
center. However, strategies employed in their solutions face entrapment in either local searches
or at the global search level with a certain level of SLA violation. In this light, a Multi-Objective
Hybrid Flower Pollination Resource Consolidation (MOH-FPRC) scheme for efficient and optimal
resource consolidation of data center resources is put forward. The Local Neighborhood Search (LNS)
algorithm has been employed for addressing entrapment at the local search level, while the prominent
flower pollination algorithm is used to solve the problem of entrapment at the global search level.
This, in turn, reduces the energy consumption of the data centers. In addition, clustering strategies
have been introduced with a robust migration mechanism to minimize the violation of SLA while
also satisfying minimum energy consumption. The simulation results using the MultiRecCloudSim
simulator have shown that our proposed MOH-FPRC demonstrates an improved performance on
the data center energy consumption, resource utilization, and SLA violation with a 20.5% decrease,
23.9% increase, and 13.5% reduction, respectively, as compared with the benchmarked algorithms.
The proposed scheme has proven its efficiency in minimizing energy consumption while at the same
time improving the data center resource allocation with minimum SLA violations.

Keywords: cloud computing; data centers; energy-efficiency; flower pollination algorithm; consolidation

1. Introduction

The delivery of services and resources on the Internet, which is packaged as Virtual
Machine (VM), is called Cloud Computing (CC). The cloud makes facilities available for
use by industries, companies, and organizations on a payment basis, depending on the
magnitude of the utilization. This saves much of the cost for enterprises as it allows
them to concentrate on the core mandate without building the cloud infrastructure on the
organizations’ premises. The use of CC as a platform for providing services has increased
tremendously and been successfully utilized in recent years. The services provided by the
CC platform are in different categories of cloud data center levels, such as Software as a
service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) [1,2].

Generally, Cloud providers offer a heterogeneous set of resources to users with differ-
ent performances and capacities. Hence, resource management must be formulated as an
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optimization problem that intends to optimize the allocation and utilization of cloud data
center resources for users with different levels of capacity and usage. However, most of the
existing optimization algorithms suffer from local optima entrapment and non-optimal re-
source consolidation, which makes them inefficient in managing data center resources [3,4].
Local optima are defined as the relatively best solutions within a neighbor solution set
that is not necessarily optimum. Therefore, local optima entrapment could result to slow
convergence and non-optimal resource consolidation. The energy consumption of under-
utilized Physical Machines (PM) in cloud data centers accounts for a substantial amount of
the actual energy used [5,6]. This can be attributed to the entrapment at the local optima
resulting in an inefficient resource allocation policy of the data center [7,8].

Simultaneously maintaining energy efficiency and the user’s Service Level Agreement
(SLA) is sacrosanct for the service providers [9,10]. The cloud service providers require
energy-saving strategies such as the VMs consolidation [11]. According to [12,13], one of
the main reasons for the resource inefficiency in current data centers is overprovisioning. It
leads to inefficient utilization of resources hence, causing poor management of resources
that depletes more energy and violation of SLA. For these reasons, energy efficiency
and SLA compliance are becoming increasingly important for cloud data centers. The
underutilization of Physical Machines (PMs) has also been attributed to the inefficient
resource allocation policy of the data center [14–16]. However, central processing units
(CPUs) are the most used resources, which fully depends on the PM configuration and
the data center set up. CPUs are considered the single largest energy consumer within the
Cloud data center. Therefore, it is often assumed that inefficient CPU utilization leads to an
underutilized PM of the data center. However, all components are to meet the expected
results in reality. Although the CPU is apparently underutilized, other components are
already working at their limit. The data center’s maintenance is expensive and endangers
both humans and the natural environment by producing unwanted substances such as
carbon monoxide [17–19]. However, resource management in large-scale data centers is
a complex and challenging issue. The demand for large servers, storage, and network
infrastructure to accommodate faster processing contributes to the energy consumption
at the Cloud data center. Several multi-objective and optimization algorithms for efficient
resource allocation have been suggested for minimizing energy consumption and violation
of SLA at the data centers.

The existing nature-inspired resource allocation algorithm in Cloud may not fully
curtail the problem of energy consumption, thus, creating the need for an ideal solution.
Recently, Flower Pollination Algorithm (FPA) has been applied in CC data centers [20–22]
and other areas; the results obtained are competitive and, in some situations, perform
better than other state-of-the-art nature-inspired algorithms. FPA mimics the idea of
flowers’ reproduction methods as discussed in our first technique [20]. However, the
entrapment issue in local search and VM migration across the data center by the resource
consolidation algorithms are also the causes of the data center’s resource management
inefficiency. Local Neighborhood Search (LNS) and Clustering strategies are introduced
with a robust migration mechanism to minimize violation of SLA while also satisfying
minimum energy consumption to address energy-efficient resource consolidation issues in
IaaS Clouds.

• The main contributions of this article are as follows:
• Some mathematical models for the objective functions of energy-efficiency and SLA

violation are derived.
• Incorporation of LNS into FPA for addressing entrapment at both the local and global

search levels.
• Integration of clustering strategies with robust migration mechanisms into the FPA-

LNS to minimize the violation of SLA while satisfying minimum energy consumption.

The remaining part of this article is organized as follow: Section 2 presents the motiva-
tion of the study. Section 3 contains a review of the existing literature. Section 4 provides the
Multi-Objective Hybrid Flower Pollination Resource Consolidation (MOH-FPRC) scheme
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and its mathematical modelling. Section 5 presents the performance evaluation and experi-
mental results analysis. Finally, Section 6 concludes the research findings.

2. Motivation of the Study

Data center resource consolidation increases IaaS complexity due to resource hetero-
geneity, the migration of VMs applications, and workloads, which are typically moved to
another PM while preserving their status and network connection. Further, Cloud service
providers offer on-demand services that are regularly deployed or re-deployed, which
triggers frequent allocation/deallocation of VMs. The transfer of workload from one PM to
another and frequent allocation/deallocation of VMs contributes to the high energy deple-
tion of the data center. These mentioned challenges require optimization algorithms that
can handle both local and global searches for an optimal solution with zero or minimum
entrapment. This, in turn, will minimize the energy consumption of the data centers. In
most of the existing studies, their solution faces entrapment at either the local search or at
the global search with a certain level of SLA violation.

In addition, most of the current studies often neglected the essential characteristics of
CC such as heterogeneity, dynamism, and the stake of various Computing resources (CPU,
Memory, Storage), thereby failing to fulfill the Cloud service provider’s objective. These
resources are bound to high-energy consumption due to performance variations such as
resource utilization and VM migration, which leads to SLA violation.

Therefore, there is a need to design an algorithm that is based on the Pareto opti-
mization strategy for achieving multiple objectives of both energy and violation of SLA
minimization, which are also conflicting. In addition, the algorithm must be able to mini-
mize entrapment at both the local and global search of space, while also satisfying SLA.
The following section provides the related works of this study.

3. Literature Review

Several researchers have explored the use of Natured-Inspired optimization ap-
proaches to solve data center resource consolidation issues. These have paved the way
for devising a better approach to solving energy consumption in the Cloud data center.
Researchers that have contributed immensely to the use of nature-inspired optimization
approaches are explored.

Ref. [23] applied the reassignment algorithm (GeNePi) to reduce the consumption
of energy and maximize the use of resources. The GeNePi is found to improve energy
efficiency and maximize the utilization of resources. The green cloud data center has been
presented [24] using the ACO system. The approach uses dynamic VM migration to move
the under-loaded PMs to the averagely loaded PMs so that some PMs will switch off,
stand by, and/or hibernate while reducing energy consumption and increasing data center
performance. The approach uses two regression models to predict the CPU utilization of
the PMs to reduce SLA violation and energy usage. This has led to the achievement of
near-optimal solutions based on the specified objective function. However, the migration
has been done considering CPU utilization while other components are still working, which
also consumes energy. The approach produces sub-optimal results in terms of resource
utilization and energy consumption. The high demand by users to access resources and
process data has contributed to the inefficiency of the algorithms used, which led to higher
consumption of energy in the data centers.

There are other research works that used the ACO system to propose solutions for
data center consolidation [25,26]. In this case, the nature-inspired algorithm runs around a
local solution continuously without any progress, otherwise reaching the iteration limits.
Hence, if the value remains constant for a series of runs, then the algorithm traps in a local
minimum after some generation. Consolidation led to inefficient resource utilization and
energy wastage. In other words, trapping is a serious problem of nature-inspired algorithms
in resource management at the cloud data center. Furthermore, the proposed approaches
did not take into consideration of the SLA violation due to the migration of VMs. Thus,
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addressing resource allocation optimization problems using a consolidation technique that
avoids local optima entrapment is still an active research area. In addition, a cost-centric
ant colony optimization that focuses on resource allocation over cloud infrastructure is
proposed for minimizing network cost and execution time [27]. Therefore, the network
cost and execution time are considered as the fitness function for achieving improved
performance. However, the SLA violation constraint has not been considered.

Another approach, which is based on a gravitational search algorithm improved using
fuzzy for resource allocation in CC, has been suggested to handle nonlinear problems due
to the exponential time for checking search space [28]. Masses have been generated by
incorporating a sequence of tasks assigned to all machines. Thus, each mass position is
considered a solution to the problem. Fuzzy logic is employed to determine the number
of masses that affect each other during the implementation of the gravitational search
algorithm. A resource allocation strategy that employed a hybridized Cuckoo Search
Optimization (CSO) and Shuffled Frog Leaping Algorithm (SFLA) has been proposed [29].
The CSO is used to initialize, create, and evaluate fitness function execution. SFLA is used
to achieve quick convergence and simpler implementation to achieve lower execution
times during task allocation. However, service level agreement has not been considered in
achieving less computation time.

A resource allocation concept, which is self-adaptive, considering cloud-based soft-
ware as a service using the iterative quality of service (QoS) Prediction model has been
proposed to minimize high overhead due to frequent machine migration [30]. The model
entails feedback loops which go through the developed iterative QoS prediction frame-
work and PSO-centered runtime decision algorithm. However, this model is centered
on software as a service paradigm of the CC, without considering the infrastructure as
a service aspect. Further, a solution for dynamic resource allocation based on improved
power management and optimized task scheduling has been presented for to address the
problem of high energy consumption due to inefficient resource scheduling [31]. The solu-
tion is based on a dynamic resource table maintenance algorithm and prediction strategy
for improved response and task completion time. However, the service level agreement
for power management in CC may not have been considered. Ref. [24] proposes ant
colony-based virtual machine consolidation (ACS-VMC) for green CC to improve energy
efficiency. Similarly, [32] applied a multi-objective CSO (MO-CSOA) to minimize PMs to
improve energy efficiency. Ref. [32] used VM Consolidation in cloud data centers based
on ACO (VMC-ACO) for the reduction of energy consumption in the cloud data centers.
Ref. [33] modified PSO (MPSO) for VM reallocation to improve the energy efficacy of the
system. Ref. [34] proposed a prediction based on host selection for energy efficiency for VM.
Ref. [35] applied Reinforcement Learning to improve the efficiency of energy utilization in
the cloud data center [36].

A Whale optimization algorithm has been employed for handling poor resource usage
and high operational cost of the cloud system in the process of task scheduling [37]. Further,
a multi-objective optimization model is used to improve the computing resources and
performance of the cloud system. Similarly, a quality service-focused cloud scheduler that
uses deep reinforcement learning has been proposed for handling large task scheduling [38].
The deep learning approach is used for managing decision-making problems in terms of
task allocation to the virtual machine. Further, Ref. [39] suggested a deep adversarial
imitation reinforcement learning architecture. The framework is used for scheduling
time-constrained cloud tasks. In this, user requests are scheduled in such a way as to
maximize task success rate while also reducing task response time. A deep Q-learning
strategy for task scheduling in cloud computing setup has been proposed to improve
the quality of service [40]. The Q-learning approach is introduced for the purpose of
addressing the problem of directed acyclic graph jobs in cloud data centers [41]. An Energy-
Efficient Dynamic Resource Management has been proposed to address the issue of energy
consumption using a dynamic VM migration strategy and k-means clustering technique.
However, the technique focuses on quality of service and make-span to reduce the DC
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energy consumption and resource under-utilization. Similarly, an energy-efficient virtual
machine migration approach with SLA conservation in cloud computing has been proposed
by [42]. The technique focuses on SLA violations based on the number of VM migrations
allocated on an individual host [43]. Interference Attentive Genetic Algorithm (IAGA)
based VM allocation strategy has been proposed by [44] to reduce SLAV and performance
degradation on the IaaS platform. Likewise, resource utilization management has been
proposed using an agent-based algorithm in an IoT distributed environment [45]. Furthermore,
a review of various numerical and hybridization of bio-inspired optimization techniques has
been proposed in order to provide a consolidated platform for future research [46].

The inefficiency of the existing nature-inspired algorithms to meet-up in solving the
challenge of resource consolidation calls for a promising ideal solution.

4. Multi-Objective Hybrid Resource Consolidation Algorithm

This section presents the design and development of an efficient resource consolidation
algorithm that is capable of grouping the PMs using the clustering technique to organize the
user requests based on their resource demand in order to reduce high energy consumption
and SLA violation. The schematic structure of the proposed system is shown in Figure 1.
The algorithm is composed of two main phases: the clustering phase, in which large
resource management is carried out, and the resource consolidation phase comprised of
VM allocation, which identifies the PMs to consolidate while monitoring the resources
that will determine the target PMs. VMs are migrated to the targeted PM, and finally, the
transition state decides on the consolidated candidate. A brief description of each phase is
presented as follows.
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The first phase is the Dynamic Clustering (DC) strategy, which groups the VMs
requests into sub-groups based on user demand. Requests with similar requirements are
placed on the PMs that are in the same cluster to reduce the need for resource migration,
which also leads to energy consumption. This strategy determines where the user request
will be executed based on the current resource utilization of a cluster type. The clusters are
divided into three groups, either CPU intensive, Memory intensive, or Storage intensive.
The second phase is VM resource consolidation, which uses LNS and the migration strategy.
The LNS balance the local and global search procedure that avoids entrapment, while
migration from overloaded PMs is used to avoid SLA violation. At the final stage of this
phase, a monitoring module is employed to provide information on resource availability
and clusters to determine the VMs that need to be migrated, those that need to be switched
off/on by the transition state to increase resource utilization, or moved to a shutdown
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pool so they can be reinitialized later if user requests increase. In this way, the data center
resource management in terms of energy efficiency and SLA violation could be improved.

4.1. Mathematical Modelling of Objectives Functions

This section incorporated the mathematical model of the SLA violation due to VM
migration. Additionally, the energy model of PM is calculated based on the energy con-
sumption model presented [47,48] using the ATTO Disk benchmark software solution.
This is to ensure that the model addresses the conflicting objectives as addressed by the
proposed algorithm. The Pareto optimization strategy was adopted to address this multi-
objective problem. Obviously, resource consolidation decisions that result in fewer SLA
violations can be a better choice. Therefore, the SLA violation due to the VM migration and
the multi-objective consolidation are modelled as discussed in the following sub-section.

4.1.1. Service Level Agreement Model

The SLA violations due to the VM migration in Cloud data center environments are
adapted from [49]. However, the authors only considered the migration of one resource.
This research, on the other hand, considered not only the CPU but other resource compo-
nents such as memory and storage. Furthermore, the SLA violation due to VM migration
is divided into service violation per active PM, which is the percentage of time active
PM experiencing 100% utilization of its resource components that lead to SLA violation.
Another potential situation is when the active PM performance is below the expectation
due to the VM migration, known as Performance Degradation (PD). SLA violation (SLAV)
is modelled as in Equations (1)–(4),

SLAV(PD) =
1
M ∑M

j=1
∇VMi

∆VMs
(1)

where M is the number of VMs, ∇VMi is the estimate of PD of VMi due to migration, and
∆VMs is the total resource capacity of VMi during its execution time.

SLAV(PMactive) =
1
N ∑N

i=1

TPMj

TPMjiactive

(2)

where N is the number of PMs, TPMj is the total time PMj reached 100% resource utilization,
and TPMjiactive

is the total time of PMj considered active for serving user request in form of VM.
Given the above estimation models for single VM migration overhead factors, the

overall SLAV migration overhead for a particular VM consolidation plan for a cluster of
PMs is modeled as the accumulated overhead of all the necessary VM migrations within
the cluster:

SLAV =

(
1
M ∑M

j=1
∇VMi

∆VMs

)
+

(
1
N ∑N

i=1

TPMj

TPMjiactive

)
(3)

Here, the sum of all time needed for the resource utilization for all VMs in data centers
against active VMs is calculated for near average results.

SLAV =
Total VMi Request− Total AllocatedVMi

TotalPMjactive

(4)

4.1.2. Resource Consolidation Model

The aim of multi-objective resource consolidation is to simultaneously minimize
energy consumption and SLA violation because of migrating VMs from one PM to another.
Therefore, an index has been assigned to the consolidation technique as the evaluation
parameters as follows:

Y is a consolidation parameter and 1− Y is the lack of a consolidation parameter.
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The index shows the amount of resource energy consumption (EU(t)j) and SLA
violation

(
SVM

(
Ai, Bj

))
due to resource consolidation (Rc). Therefore, the resource con-

solidation index in the CC environment is as defined above, in which their coefficients
(Φ, Ω, Ψ) are subject to change. According to consolidation importance, Y has the higher
value and coefficients, Ω and Ψ, according to the type of system, and the importance of
energy consumption and SLA violation will change. Eventually, the aim is to minimize the
index Rc. When the number of URn increases, the complexity rises, and while the allocated
resources reach to their maximum utilization a lot of resources need to be relocated to
improve performance. Consequently, EU(t)j and SVM

(
Ai, Bj

)
increase. To overcome this

limitation, the number of active PM resources is reduced by consolidating VMs, and EU(t)j
is reduced drastically in the Cloud environment. Consolidation causes the reduction of
SVM

(
Ai, Bj

)
and then existing resources by allocation techniques as much as possible.

Therefore, in principle, data centers’ resource management requires consolidation in re-
source allocation to improve the overall data center resource utilization that reduces energy
consumption and SLA violation.

The combined objectives’ function of resource consolidation denoted as Rc, which
minimizes energy consumption and SLA violation of the Cloud data center, can be mathe-
matically formulated as follows in Equation (5).

Rc = Φ(1− con f lict) + ΩEU(t)j + Ψ SVM
(

Ai, Bj
)

(5)

where Φ, Ω, and Ψ are the coefficient of the consolidation with the conflicting objectives,
while (1− con f lict) signifies that there is no consolidation.

Min
(

Rc = Φ
(
1− con f lictBj

)
+ ΩEU(t)Bj + Ψ SVMBj

)
(6)

Min Rc is the objective function to minimize the overall energy consumption and
SLA violation.

where:

EU(t)j =

{
1 i f UR assigned to Ai

0 else

SVMBj =

{
1 i f VMi migrate to PMj

0 else

4.2. Hybrid Flower Pollination Resource Consolidation Algorithm

The proposed MOH-FPRC scheme is designed and developed by improving the FPA
Nature-Inspired algorithm. The algorithm uses the Dynamic Clustering (DC) algorithm to
create clusters of VM requests based on the type of resources provided by the PMs through
the Cloud management system. Additionally, the MOH-FPRC algorithm also employs the
LNS strategy in order to avoid local optima entrapment in a local search, the VM migration
strategy is employed, leading to better performance. Before presenting the LNS strategy,
there is a need to introduce the existing FPA algorithm, which is very strong in terms of a
global search strategy. This will provide the necessary background required to trail and
understand the proposed hybrid solution.

4.2.1. Flower Pollination Algorithm

One of the fascinating processes of reproduction in the natural world is flower polli-
nation, and its evolutionary features are employed in the design of a unique optimization
algorithm by [37]. It is a global optimization algorithm that is centered on population. The
following steps summarize the flower pollination procedures.

Procedure 1: cross-pollination, which is termed as biotic, is considered global pollina-
tion carried out by pollinators called pollen vectors. The pollen vectors could be bats, birds,
and bees. The pollen vector that carries pollen grain performs Levy flights.
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Procedure 2: self-pollination is considered abiotic, which is a local pollination process.
This pollination occurs on the same flower or nearby flowers.

Procedure 3: flower constancy is passive in terms of the reproduction chances, and is
directly proportional to the resemblance of two flowers involved.

Procedure 4: the switch probability p ∈ [0, 1] controls both the global pollination and
local pollination. Considering the real-life proximity and other factors such as wind, a
significant fraction p in the whole pollination process can be achieved by local pollination.

Considering the above procedures, the FPA comprises local and global pollination
operators. From the FPA, each pollen grain is handled as a solution, SlXi, and the solutions
are set with non-uniform vectors in the viable search space. The preliminary formula is
expressed in Equation (7) follows:

SlXi = lower + RDv(upper− lower) (7)

Such that i ∈ {1, . . . , NP}, the population size, is represented as NP, and RDv is the
random vector between [0, 1]D with D-dimension. The lower boundary of the search space
is lower = l1, . . . , ld, . . . , lD and the upper boundary is upper = u1, . . . , ud, . . . , uD.

Considering the global pollination process, pollen vectors such as birds have a compar-
atively large movement coverage and could carry pollens over a lengthy distance. Hence,
procedures 1 and 3 are expressed as in Equation (8).

SlXt+1
i = SlXt

i+ ∝ L(β)
(

gbest− SlXt
i
)

(8)

where SlXt
i is the solution i at the cycle of execution t, the present global best solution is

termed as gbest, β represents the step factor, the flight characteristics of a bird could be
numerically mimicked by a levy distribution symbolized by L(β) in Equation (3), and it can
be perceived as a varying step factor for measuring the intensity of pollination. The levy
distribution when L > 0 can be expressed as in Equation (9).

L ∼ β∅(β) sin( πβ/2)
π

· 1
S1+β

(9)

s� s0 > 0, s0 = 0.1 ,

where ∅(β) represents the standard gamma function with β = 1.5. In addition, s is obtained
with 2 Gaussian distribution V and W as follows in Equation (10).

s =
V

|V|
1
β

, V ∼ N
(

0, µ2
)

, W ∼ N(0, 1), µ2 =

{
∅(1 + β)

β∅[(1 + β)/2]
· sin(πβ/2)

2(β−1)/2

}1/β

(10)

where N
(
0, µ2) represents the normal distribution attached with the mean score 0 and

variance µ2; N(0, 1) represents the standard normal distribution.
In the case where the pollination process involves local pollination, pollen grains are

spread to a local neighbor, and the mathematical model can be formulated considering
procedures 2 and 3 as in Equation (11).

SlXt+1
i = SlXt

i + ϑ
(

SlXt
j − SlXt

k

)
(11)

where SlXt
j and SlXt

k are the pollen grain, which are non-uniformly selected from different
flowers in the same plant, such that j and k ∈ {1, . . . , NP} and ϑ represent D-dimensional
non-uniform vector in [0, 1]D. Moreover, considering procedure 4, the two-pollination
process happens non-uniformly and is obtained using a probability p. Thus, when a
non-uniform value rand in [0, 1] is less than the value of p, global pollination is carried
out. However, if the random value is higher than p, then global pollination is not carried
out. The whole concept of the FPA is integrated with the LNS strategy as discussed
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further in Section 4.2.2. The following sections explain the phases of the proposed MOH-
FPRC algorithm.

4.2.2. Local Neighborhood Search Strategy Phase

Previous neighborhood strategies were static and did not consider the whole search
space that we integrated into the FPA. In this research, the LNS is dynamic, and each
solution has a knowledge of the current and previous solutions. This reduces the time
taken to find a solution. The LNS contains an X and Y axis that divides the search space
into a fully connected neighborhood. The square contains vectors in which the structure
explores to find other solutions instead of the whole population size. The search is carried
out in a clockwise movement from the positive Y to the negative X direction within the
neighborhood radius in which each neighbor shares their best solution. It is assumed that
there exists a differential evolutionary population PG = [X1,S, X2,S, . . . , Xi+1,S], and each
Xi,S(i = 1, 2, 3, . . . , HQ) is a parameter vector with D-dimension. Each vector subscript
index is randomly divided to ensure the diversity of each neighborhood. Figure 2 illustrates
the structure of the LNS strategy of the MOH-FPRC algorithm, where every solution can
be compared with each other.
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For each vector Xi,S, which defines a neighborhood, and the radius k (2k + 1 < HQ).
The neighborhood consists of vector Xi−k,S,Xi,S, . . . , Xi+k,S. The assumption is that the
vectors are in accord with the subscript indices in a loop structure formed within the search
space. Hence, XHQ,S and X2,S are two direct neighbors of X1,S. The neighborhood structure
is dynamic and determined by the collection of vector subscripts. Thus, the LNS strategy
can be expressed in the Equation (12).

Xi+1,S = Xi,S +∅
(
Xn−bestiS

)
+ ϑ

(
Xp,S − Xq,S

)
(12)

where Xn−bestiS is the best vector of the Xi,S neighborhood, h, q ∈ [i− k, i + k](p 6= q 6= i),
and ∅, ϑ are two scale factors.

4.2.3. Clustering Phase

Resource clustering is the group of PMs in the Cloud data center joined together and
managed as a single resource pool, reserved for efficient infrastructure resource manage-
ment and consolidation. The main aim of the Dynamic Clustering (DC) algorithm is to
reduce the number of migrations, find the best cluster for VM migration, and to support
resource consolidation by identifying user requests with the same characteristics pattern.
Figure 3 shows the conceptual framework of the clustering algorithm.
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The clusters make independent and local decisions on intra/inter cluster migration in
case a PM within a cluster should attain the utilization threshold. For example, consider a
set of user requests Ai ∈ in representing a partition in = {A1 + A2 + A3 + An} of Ai into
n clusters. Therefore,

Ai 6= { i = {1, 2, 3, . . . , n} (13)

Here, the user request is not the same as the current type of request being executed for
resource allocation.

Ai ∩ Li = { i,L = 1, 2, 3, . . . , n, i 6= L; (14)

Therefore, the user request does not intersect and has no relationship with the current request,

Hn
i=1 Ai = J (15)

Thus, these user requests are clustered into a group called J, where { i = 1, 2, 3, . . . , n;
These are denoted as different kind of requests. Li is the distinct cluster group andHn

i=1 is
the total distinct group within each cluster.

The DC strategy phase groups the VMs request based on user demand into groups
of clusters using the Cloud management system. Requests with similar requirements are
placed on the PMs that are on the same cluster to reduce network communication overhead
that also leads to energy consumption. This strategy determines where the user request
will be executed based on the current resource utilization of a cluster type. The clusters are
divided into three groups, including the CPU intensive, Memory intensive, and Storage
intensive clusters. Conversely, because of the dynamic characteristic of both user requests
and resources, the volume of a cluster is tentative for more resourceful usage. At each
point of the consolidation, the Cloud management system is used to determine the current
number of available PMs in order to dynamically partition the VM request in accordance
with the current number of available resources. Algorithm 1 shows the DC pseudo-code.

4.2.4. Virtual Machine Migration Phase

The VM migration technologies have proven to be a very effective tool for data center
resource management in a non-disruptive manner, and their migration incurs SLA vio-
lations. Based on the above modeling analysis, the VM migration pseudocode has been
presented as Algorithm 2. The proposed MOH-FPRC algorithm uses a VM migration
strategy with a minimum number of migrations to reduce energy consumption and mini-
mize the number of SLA violations. The main idea of the VM migration algorithm, after a
request has been received, is to identify a target resource for in-cluster scaling. Then, the
two PMs, one sending the request and the other accepting to be the target, negotiate the
VM migration. Once an agreement has been reached, the two PMs carry out the operation
without disrupting the power of the former for efficient resource utilization. Some of
the main improvements introduced into this new approach to achieving the MOH-FPRC
algorithm include (i) the introduction of the DC technique that helps to reflect on the
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most accurate number of available resources in the Cloud system. It also helps to divide
the submitted request in into an equal number of clusters as the number n of available
resources, and (ii) with the incorporation of the LNS strategy to balance the global and local
search procedure for efficient optimization. In addition, (iii) the algorithm integrates the
resource migration strategy in case of resource over-utilization during the consolidation.
The proposed algorithm migrates resources to available target resources to reduce the
number of migrations that results in fewer SLA violations.

Algorithm 1 Dynamic Clustering Algorithm

Require: Combination of resource request
Ensure: CPU Cluster, Memory Cluster, and Storage Cluster
1: Initialization
2: Get n from the Cloud management system
3: in = {A1 + A2 + A3 + . . . . . . . . . An}
4: Ai = {J} i = 1, 2, 3, . . . , n;
5: k = 0
6: Let in = in−k/(n−k)
7: Current Step:
8: While(n− k ≥ 1) or

(
in 6= {

)
. Do

9: Select AiLi ∈ in−k
10: in−k = (in−k ∪ Li)/(n− k)
11: k = k + 1
12: Get current n from Cloud management system
13: End While

Algorithm 2 VM Migration Algorithm

Require: Active PMs in n cluster, VM migration VMm, Migration time, Migration data
Ensure: SLA violation due to PM migration
1: Initialization
2: For each PM in PM list do
3: For each data of PM component (CPU, memory, storage) do
4: Select best VM migration strategy
5: Estimate the SLAV = (PDM) + (PMactive)
6: Compute the predicted resource utilization of PM
7: If utilization < 1 then
8: Repeat step 2–step 7 Else
9: VM is migrated

10:

Migration time

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 23 
 

1: Initialization 
2: For each PM in PM list do 
3: For each data of PM component (CPU, memory, storage) do 
4:        Select best VM migration strategy 
5:        Estimate the𝑆𝐿𝐴𝑉 = (𝑃𝐷𝑀) + (𝑃𝑀௧௩) 
6:        Compute the predicted resource utilization of PM 
7:        If utilization < 1 then  
8:        Repeat step 2–step 7 Else 
9:        VM is migrated                  
10:     Migration time            VM get allocated 
11: VM started on targeted PM 
12: PM state change according to current utilization 
12:        End  
13: End  
14: Return (Number of VMs migration) 
15: SLAV 

4.2.5. Implementation of Hybrid Resource Consolidation Algorithm 
The proposed MOH-FPRC algorithm for the Cloud data center resource consolida-

tion is presented as Algorithm 3 with the flowchart of the algorithm shown in Figure 4. 
The shapes represented with a white background indicate the existing algorithm, while 
the colors and dark gray indicate the improved part of the algorithm which enhances it. 
The MOH-FPRC algorithm used the DC and migration strategies to improve the resource 
management of the Cloud data center, satisfying conflicting objectives that are simultane-
ously optimized. The DC strategy creates clusters that map VM requests based on their 
application requirement. The multi-objective FPA optimizes the number of active PMs by 
finding a migration plan with a fewer number of VMs and initializing the best global mi-
gration plan at the global search space. The solution iterates to generate a new solution of 
flowers and switches to the local search using the switching probability. Each flower pol-
len at the local search chooses a solution appropriate to the cluster. If the solutions cannot 
be handled by the cluster, then the impact of the migration is computed based on SLA 
constraint. This step ensures that only high-quality solutions remain. The MOH-FPRC it-
erates until the stopping criterion is met and returns the best consolidation plan with 
lower migration and SLA violation. 

Algorithm 3 Multi-Objective Hybrid Flower Pollination Algorithm  
Require:Set of population ofnflowers/pollen gametes with random solutions 
Find the best solutiong∗in the initial population 
Ensure:Define a switch probability 𝑃 = 0.6 − 1.0 𝑋 (ெ௫ೝೌି௧)ெ௫ೝೌ  

1: Initializing: use algorithm 1 // Resource are clustered into CPU, memory, storage 
2: Each Cluster is a single resource demand  
3: VMs are classified based on requirement 
4: Input: PM list, VM, set of parameters 
5: Migration Strategy: use algorithm 2 // Resource and SLA violation constraint   
6: Output: Consolidation 
7: Objective 𝑀𝑖𝑛 (𝑅 = Φ൫1 − conflict൯ + ΩEU(t)୨ + 𝛹 𝑆𝑉𝑀)//Eq. (5) 
8: Initialize: a population of n flowers/pollen gametes with random solutions 
9: Find the best solution 𝒈∗ in the initial population 

10: Define a switch probability 𝑃 
11: While (t < 𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) 
12:        For 𝑖 = 1: 𝑛 (𝑎𝑙𝑙 𝑛 𝑓𝑙𝑜𝑤𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 

VM get allocated
11: VM started on targeted PM
12: PM state change according to current utilization
13: End
14: End
15: Return (Number of VMs migration)
16: SLAV

4.2.5. Implementation of Hybrid Resource Consolidation Algorithm

The proposed MOH-FPRC algorithm for the Cloud data center resource consolidation
is presented as Algorithm 3 with the flowchart of the algorithm shown in Figure 4. The
shapes represented with a white background indicate the existing algorithm, while the
colors and dark gray indicate the improved part of the algorithm which enhances it. The
MOH-FPRC algorithm used the DC and migration strategies to improve the resource man-
agement of the Cloud data center, satisfying conflicting objectives that are simultaneously
optimized. The DC strategy creates clusters that map VM requests based on their applica-
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tion requirement. The multi-objective FPA optimizes the number of active PMs by finding
a migration plan with a fewer number of VMs and initializing the best global migration
plan at the global search space. The solution iterates to generate a new solution of flowers
and switches to the local search using the switching probability. Each flower pollen at the
local search chooses a solution appropriate to the cluster. If the solutions cannot be handled
by the cluster, then the impact of the migration is computed based on SLA constraint. This
step ensures that only high-quality solutions remain. The MOH-FPRC iterates until the
stopping criterion is met and returns the best consolidation plan with lower migration and
SLA violation.

Algorithm 3 Multi-Objective Hybrid Flower Pollination Algorithm

Require: Set of population of n flowers/pollen gametes with random solutions
Find the best solution g∗ in the initial population
Ensure: Define a switch probability P = 0.6− 1.0 X (Maxiteration−t)

Maxiteration

1: Initializing: use Algorithm 1 // Resource are clustered into CPU, memory, storage
2: Each Cluster is a single resource demand
3: VMs are classified based on requirement
4: Input: PM list, VM, set of parameters
5: Migration Strategy: use Algorithm 2 // Resource and SLA violation constraint
6: Output: Consolidation
7: Objective Min

(
Rc = Φ

(
1− conflictBj

)
+ ΩEU(t)Bj + Ψ SVMBj

)
//Equation (5)

8: Initialize: a population of n flowers/pollen gametes with random solutions
9: Find the best solution g∗ in the initial population
10: Define a switch probability P
11: While (t < MaxGeneration)
12: For i = 1 : n (all n f lowers in the population)
13: If rand < p,
14: Draw a (d− dimentional) step vector L which obeys a Levy distribution
15: Global pollination via Xt

i = Xt
i + L

(
g∗ − Xt

i
)

16: Else
17: Draw ∈ f rom a uni f orm distribution in [0, 1]
18: Randomly choose j and k among all the solutions

19:
Do local pollination via Xi+1,G =

Xi,G +∅
(
Xn−besti G

)
+ ϑ

(
Xp,G − Xq,G

)
where ∅ = ϑ =∈;

20: end if
21: Evaluate new solutions
22: If new solutions are better, update them in the population
23: end for
24: Find the current best solution g∗
25: End while

25:
Termination criteria: If the stopping criterion is satisfied, then output the content of
archive as the optimal solutions otherwise Move to line 8.
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5. Performance Evaluation

Extensive simulation experiments were carried out in MultiRecCloudSim with the
IntelliJ IDEA release version 3.4 to evaluate the performance of the MOH-FPRC algorithm.
The general description of the simulation setup is presented in Table 1. The use of the DC
and VM migration strategies in the proposed algorithm provide global optimum solutions
for allocating VMs to PMs, minimizing the data center energy consumption. The proposed
algorithm is different from other existing approaches in the way that it selects and migrates
VMs by considering not only CPU as a metric but also the considered storage and memory.
Therefore, the strategy used in the proposed algorithm of selecting the destination PM
based on DC with a minimum number of VM migrations in this research is more energy-
efficient than the existing approaches. The performance comparison of the MOH-FPRC
algorithm is estimated in terms of VM migrations, SLA violations, and energy consumption.
The experiments are performed by a varying number of PMs and VMs requests to evaluate
the scalability of the MOH-FPRC algorithm. In the following sub-section, the experimental
results of the proposed algorithm are discussed and analyzed. The simulation setup is
presented in Table 1.
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Table 1. Simulation settings: (a) PM and VM Parameters setting (b) Parameter settings of the
compared Algorithm.

(a)

Cloud Entity Parameter Value

Datacenter Number 1

PM

RAM 2,048,000 MB
Disk 10,000,000 MB

Operating System Linux
Bandwidth 1,000,000,000 MB

Architecture x86
VM Manager Xen

CPU Power Model PowerModelSpecPowerX3550XeonX5675
Storage Power Model PowerModelStorageSimple
MemoryPower Model PowerModelMemorySimple

VM

RAM 2,048,000 MB
Bandwidth 0.1 GB/s

MIPS 367 MHz
Storage 1,000,000 MB

(b)

Algorithms Parameter Value

MOH-FPRC

Population size 50, 100, 150, 200
Standard gamma function β 1.5

Random walk L ∈ [0, 1]
Switching Probability p [0, 1] 0.6–1.0

Maximum iteration 1000

FPA

Population size 50, 100, 150, 200
Standard gamma function β 1.5

Random walk L ∈ [0, 1]
Switching Probability p [0, 1] 0.9

Maximum iteration 1000

MOACS/ACS-VMC

Population size 50, 100, 150, 200
Crossover rate 0.5

Pheromone tracking weight α 0.3
Heuristic information weight

β
1

Pheromone updating constant
Q 100

Maximum iteration 1000

Result Analysis of MOH-FPRC

This section presents the experimental results and analysis of the MOH-FPRC algo-
rithm. The proposed algorithm was designed and developed to address resource allocation
problems in a CC environment. This was achieved by considering energy consumption and
SLA violation as the consolidation parameters. The experiments were repeated ten times
for each of the algorithms, and the averages of VM migration, energy consumption, and
the SLA violation rate (in percentage) were observed. The performance of the proposed
algorithm, together with that of the benchmarked algorithms, were elaborated based on
two multi-objective parameters, namely energy consumption and SLA violation. Figure 5
illustrates the trend of the performance of the consolidation algorithms.
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Figure 5. Comparison of algorithms Energy consumptions and SLA violation on VMs allocation.

As shown in Figure 5, a VM user request of 5000 VMs at the interval of 500 from
500–1000 and 1500–2000 is presented. All consolidation algorithms started at a promising
point, with low energy consumption and SLA violations. However, as the number of
VMs continued to increase, the energy consumption level on all consolidation algorithms
increased significantly, together with the SLA violation. In all the consolidation algorithms,
the MOACS algorithm tended to have the highest energy consumption at each increasing
VM interval, as shown in Table 2. The ACS-VMC algorithm consumed less energy at the
initial VM placement as compared with the MOACS algorithm. The differences can be seen
in the results between the ACS-VMC and MOACS algorithms. However, the algorithm
consumed more energy than the MOH-FPRC algorithm. This is because in the MOH-FPRC
algorithm, VM placement takes into consideration the user request and places the request
on the appropriate cluster of resources. This observation can be clearly described by the
fact that the MOH-FPRC algorithm uses hybridization, which notably improves the output
result as compared with benchmarking algorithms.

Table 2. Average energy consumption and SLA violation with different VM request.

Algorithm MOH-FPRC ACS-VMC MOACS

VM Request
Energy

Consumption
(kWh)

SLA Violation
%

Energy
Consumption

(kWh)

SLA Violation
%

Energy
Consumption

(kWh)

SLA Violation
%

500 1089.25 0.00 1489.35 0.201 1589.45 0.220

1000 1304.05 0.00 1704.18 0.252 1804.11 0.251

1500 1609.32 0.15 2009.97 0.304 2109.76 0.312

2000 2139.84 0.20 2539.47 0.305 2639.34 0.325

2500 2539.21 0.25 2939.53 0.308 3039.62 0.339

3000 3089.59 0.30 3489.48 0.319 3589.46 0.339

3500 3569.35 0.35 3969.36 0.301 4069.64 0.342

4000 4189.87 0.40 4589.95 0.318 4689.89 0.342

4500 4739.65 0.42 5139.54 0.41 5139.41 0.401

5000 5739.14 0.48 6420.25 0.50 6200.96 0.50
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Furthermore, as depicted in Table 3, the MOH-FPRC algorithm shows improvement
in terms of PM utilization which leads to minimum energy consumption and less SLA
violation after consolidation. In the table, the values indicate the energy consumption
and SLA violation of the PM utilization of the tested workload. The data center energy
consumption and the SLA violation of different algorithms is shown in Figure 6. The
MOACS algorithm consumes higher energy with greater SLA violation compared with
the ACS-VMC algorithm. However, the ACS-VMC consolidation algorithm seems more
promising than the MOACS in terms of SLA violation and the amount of energy consump-
tion. Moreover, the performance of the MOH-FPRC consolidation algorithm is outstanding
at each increasing PM interval. The obtained energy consumption level by the MOH-FPRC
is minimal compared to the benchmarked algorithms. This can also be seen in Table 4,
which depicts the performance improvement (PI) of the MOH-FPRC algorithm as 14.54%
and 29.48% better than the MOACS and ACS-VMC algorithms, respectively. The MOH-
FPRC algorithm achieved the optimal balance in multiple conflicting objectives using the
positive feedback mechanism and the constantly updated monitoring of resources, which
effectively reduced the energy consumption and minimized violation of SLA. Likewise,
the table shows a performance improvement of 13.57% for both MOACS and ACS-VMC
algorithms in terms of SLA violation.

Table 3. Average energy consumption and SLA violation with different PM utilization.

Algorithm MOH-FPRC ACS-VMC MOACS

PM Utilization
Energy

Consumption
(kWh)

SLA Violation
%

Energy
Consumption

(kWh)

SLA Violation
%

Energy
Consumption

(kWh)

SLA Violation
%

10 900.021 0.00 1275.25 0.21 1370.59 0.22

20 1115.50 0.01 1427.05 0.25 1522.36 0.25

30 1420.11 0.15 1845.32 0.34 1940.21 0.32

40 1950.01 0.20 2375.84 0.35 2470.58 0.35

50 2350.27 0.25 2775.21 0.38 2870.98 0.39

60 2900.14 0.31 3325.59 0.31 3420.74 0.39

70 3380.89 0.33 3805.11 0.38 3900.51 0.32

80 4010.22 0.37 4425.23 0.38 4520.45 0.32

90 4550.82 0.40 5075.87 0.41 5170.67 0.41

100 5150.42 0.43 5925.64 0.50 6100.07 0.50

Similarly, MOH-FPRC provides minimum SLA violation compared to the ACS-VMC
and MOACS consolidation algorithms, as stated above. The reason is that the incorporation
of the Pareto Optimization strategy provides better options for selecting PMs with less
energy consumption within the proposed algorithm, helping to reduce the level of energy
consumption and avoid high SLA violation. The VM selection and PM allocation policies
within the proposed algorithm help facilitate the choosing of VMs for migration out from
the overloaded PMs and selecting new PMs for the VMs to be migrated as shown in Table 3.
The migration strategies used in this research by the MOH-FPRC and benchmarking
algorithms are Static Threshold (ST) and Inter Quartile Range (IQR), and the strategy that
returned the same performance in terms of the number of migrations and dynamic VM
allocation strategies based on Median Absolute Deviation (MAD).

Table 5 shows the results generated due to the migration of VM resources using
different strategies with different numbers of VMs at the interval of 625 VMs. The table
reveals more details of the performance of the proposed algorithm on VM migration.
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Table 4. MOH-FPRC performance improvement on energy consumption and SLA violation.

MOH-FPRC ACS-VMC MOACS

Total average energy consumption and SLA violation
5150.42 5925.64 6100.07

0.43 0.50 0.50

PI over ACS-VMC and MOACS (kWh) – 14.54% 29.48%

PI over ACS-VMC and MOACS (SLA violation) – 13.57% 13.57%

Table 5. Average energy consumption and SLA violation with different number of PMs.

Algorithms MOH-FPRC ACS-VMC MOACS

Number of
PM

Number of
VM

MAD
Number of
Migration

ST
Number of
Migration

IQR
Number of
Migration

MAD
Number of
Migration

ST
Number of
Migration

IQR
Number of
Migration

MAD
Number of
Migration

IQR
Number of
Migration

ST
Number of
Migration

100 625 287 69 122 300 210 420 323 400 239

200 1250 520 114 145 535 458 810 540 800 466

300 1875 754 128 170 760 513 835 761 850 520

400 2500 805 215 310 810 621 855 810 970 624

500 3125 973 248 384 985 785 1100 982 1140 786

600 3750 1222 291 390 1240 986 1225 1238 1220 997

700 4375 1298 315 410 1310 1125 1324 1312 1320 1136

800 5000 1356 357 456 1400 1265 1368 1405 1420 1329

The MOH-FPRC algorithm incorporated VM migration from overloaded PMs to avoid
SLA violation as shown in Figures 7–9 under different migration strategies. The results
produced by the benchmarking algorithms, namely MOACS and ACS-VMC, caused a
higher number of migrations for resource consolidation as compared with the proposed
MOH-FPRC algorithm. However, MOACS migrated VMs 1405 times, while the ACS-VMC
did so 1400 times compared with the proposed MOH-FPRC algorithm.
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Figure 8. Comparison of algorithms using ST migration strategy.

This shows the reason why their energy consumption level (MOACS and ACS-VMC)
increased significantly with SLA violation. Furthermore, the results indicate that, when
the number of PMs increases due to the user request of VMs, the proposed MOH-FPRC
algorithm performs better at minimizing the total energy consumption with SLA violation
simultaneously as compared with the benchmarked algorithms. The main reason for
that is the proposed algorithm employs a strategy to avoid migration that results in over-
utilization of the destination PM. The total number of migrations by the proposed algorithm
is less than that of the MOACS and ACS-VMC algorithm because of the use of DC and
different migration strategies suitable for the Cloud data center resource management.
More interestingly, there is a difference between the three migration strategies (ST, IQR,
and MAD) as presented in Figures 7–9 by more than 30% higher due to the dependency of
the MC strategy on upper and lower thresholds to perform the VM migration. This leads
to the strategy migrating more VMs than the MMT strategy. Similarly, the MAD strategy
remains the highest strategy in terms of VMs migration despite the availability of the PMs.
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As can be observed from the above-mentioned figures, the performance improvements
are a result of the incorporation of the LNS strategy in the local search of the conventional
FPA, which significantly improved the convergence of underlying MOH-FPRC that avoid
local entrapment. Therefore, the use of the LNS and DC methods efficiently enhances the
search performance to obtain better non-dominated solutions. In this way, the data center
resource management has been improved in terms of energy efficiency and SLA violation,
and the impact on the data center has been equally improved. This proves that MOH-FPRC
is an effective and efficient solution method for solving large-scale resource consolidation
optimization problems.

6. Conclusions

In this article, we presented a MOH-FPRC algorithm. The proposed algorithm ad-
dressed conflicting objectives between energy consumption and SLA violation in the context
of large-scale data centers to improve resource management. To achieve optimal resource
consolidation, the MOH-FPRC algorithm incorporated the Pareto optimization strategy, DC
strategy, resource monitoring, VM and PM selection, and a transition state. This resulted
in efficient and reliable resource consolidation for CC data centers with minimum energy
consumption and fewer SLA violations. The DC strategy maps VM requests based on their
application requirement to assist in finding the appropriate cluster among the clusters that
minimize the energy consumption and reduce the complexity that lead to local entrapment
avoidance. The avoidance of entrapment is the result of the LNS strategy integrated into
the FPA algorithm. The MOH-FPRC algorithm optimizes the allocation of VMs, monitors
the performance of VM and PM, migrates VMs, and decides on the transition state of the
resources. Furthermore, the proposed algorithm reduces the migration requirement of VMs
to PMs, thereby making it robust and energy-efficient. Therefore, the proposed algorithm
can effectively save energy consumption of the Cloud datacenter while reducing SLA
violation rates compared to the benchmark algorithms. The simulation results significantly
show the performance of MOH-FPRC as compared to similar nature-inspired consolidation-
based algorithms using different performance evaluation metrics. However, the article also
reveals a gap between Cloud user requirements and the IaaS provider in terms of resource
management. Overall, utilizing CDC resource management techniques to build a more
credible green data center with Fog computing is a promising research direction.
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Abbreviations

Abbreviation Meaning
CC Cloud Computing
IaaS Infrastructure as a Service
PaaS Platform as a Service
SaaS Software as a service
PM Physical Machine
VMs Virtual Machines
PMs Physical Machines
CPU central processing unit
FPA Flower Pollination Algorithm
LNS Local Neighborhood Search
SLA Service Level Agreement
FPRC Flower Pollination Resource Consolidation
MOH-FPRC Multi-Objective Hybrid Flower Pollination Resource Consolidation
ACO Ant Colony Optimization
QoS Quality of service
PSO Particle Swarm Optimization
CSO Cuckoo Search Optimization
SFLA Shuffled Frog Leaping Algorithm
ACS-VMC Ant Colony System-based VM Consolidation
MO-CSOA Multi-Objective CSO Algorithm
VMC-ACO VM Consolidation in Cloud data centers using ACO metaheuristics
MPSO Modified PSO
UP-POD utilization of resources through the host over-load detection
UP-PUD host under-load detection
RL Reinforcement Learning
DC Dynamic clustering
SLAV SLA violation
EU(t)j energy consumption
SVM(Ai, Bj) SLA violation
Rc resource consolidation
MOH-FPRC Multi-Objective Hybrid Flower Pollination Resource Consolidation
DC Dynamic Clustering
IQR Inter Quartile Range
ST Static Threshold
MOACS Multi-Objective Ant Colony System
ICT Information and Communication Technology
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