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Abstract: This study proposes a statistical approach based on vibration energy at damage to detect
multiple damages occurring in roller bearings. The analysis was performed at four different rotating
speeds—1002, 1500, 2400, and 3000 RPM—following four different damages—inner race, outer race,
ball, and combination damage—and under two types of loading conditions. These experiments
were performed on a SpectraQuest Machinery Fault Simulator™ by acquiring the vibration data
through accelerometers under two operating conditions: with the bearing loader on the rotor shaft
and without the bearing loader on the rotor shaft. The histograms showed diversity in the defected
bearing as compared to the intact bearing. There was a marked increase in the kurtosis values of each
damaged roller bearing. This research article proposes that histograms, along with kurtosis values,
represent changes in vibration energy at damage that can easily detect a damaged bearing. This study
concluded that the vibration energy at damage-based statistical technique is an outstanding approach
to detect damages in roller bearings, assisting Industry 4.0 to diagnose faults automatically.

Keywords: fault detection; Industry 4.0; roller bearings; statistical analysis; vibration energy at damage

1. Introduction

The maintenance of any machine can be performed using the following three basic
techniques: (1) run to failure is the technique in which the maintenance is performed after
the part and the analysis of its regions have failed; (2) periodic inspection is focused on
determining the time remaining until failure, and maintenance activities are performed
according to the schedule prepared by measuring the mean time to when failure last
occurred; (3) predictive maintenance is a type of pro-active technique in which the data is
acquired continuously, and maintenance activities are performed accordingly; it is focused
on performing maintenance before the failure happens [1]. In the mechanical industry,
bearings have a vital role, as they support the shaft and bear a greater loading. Early stage
detection of bearing faults is critical in order to avoid catastrophic failure. Hence, predictive
maintenance is very often used in many branches of industry. Industry 4.0 has currently
become popular, and predictive maintenance can be a very helpful tool in making it fully
automatic. Some developed technologies, such as cloud computing, the Internet of things,
and big data analytics, have already provided many benefits for the implementation of
Industry 4.0 [2]. The strain sensor based on the highly sensitive nanocomposite is developed
for Industry 4.0 [3]. To implement Industry 4.0, a review for sensor monitoring is also been
presented [4]. However, big data and cyber-physical systems require more attention in
Industry 4.0 to make it fully autonomous [5].

Numerous studies were conducted to diagnose faults in rotating machinery. Experi-
mental analysis was performed to detect damages in a wind turbine. The vibration signals
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were measured by mounting the strain gauges on the gearbox and generator. Both the
analyses based on the time domain and frequency domain were performed to capture
components’ features and find the location of the damages [6]. A novel method, called ex-
tended phase space topology (EPST), was proposed for pattern recognition and machinery
diagnostics. The EPST was applied to the vibration data obtained from a rotating machine
through the proximity probes. The EPST does not require any feature selection; therefore,
it is easily applied in an automated process [7]. The different fault conditions in rotating
machinery were identified using an efficient feature extraction technique on the raw vi-
brational signal so that the mechanical health status can be detected in a timely manner.
The proposed feature extraction technique was based on improved multiscale dispersion
entropy (IMDE) and max-relevance min-redundancy (mRMR). The proposed methodology
was analyzed experimentally, and the results proved that it is a useful technique for the
fault diagnosis of mechanical components, including gearboxes and rolling bearings [8].

The roller bearing diagnosis was performed at the low-energy stage of its development.
The information from a machine vibration signal was extracted by amplitude level-based
decomposition of the signal, and the spectral analysis was performed to extract features for
bearing damage [9]. The diagnosis for a rolling element bearing was also studied using
a new fault feature extraction method—decomposing the vibration signal with adaptive
local iterative filtering (ALIF) and measuring the signal complexity with modified fuzzy
entropy. The technique was experimentally checked, and the results concluded that the
proposed technique can be used in fault diagnostics [10]. The bearing damages were also
analyzed using vibrational resonance (VR) on the vibrational signals generated through
simulation and experimentation. The proposed methodology was compared with the
envelope spectrum, and it was concluded that the proposed VR method is better than the
envelope spectrum method because the characteristic frequency was remarkably amplified
in the proposed VR methodology [11]. After reviewing the approaches for the change
detection and optimal segmentation of the vibrating data acquired through the operation
of the rolling element bearings (REB), a new approach based on the change detection and
optimal segmentation of the vibrating signal was presented, and it was concluded that the
proposed technique can be used for condition monitoring and industrial processes [12].
The importance of correlated kurtosis was explored to indicate the periodicity and the
impact of the signal [13]. A novel method based on data-driven random fuzzy evidence
acquisition and the Dempster–Shafer evidence theory was introduced to diagnose faults in
rolling bearings, and the results proved that it has high accuracy [14]. The bearing faults
were also detected by combining fuzzy entropy of empirical mode decomposition (EMD),
principal component analysis (PCA), and the self-organizing map neural network [15]. An
improved pattern spectrum algorithm based on a support vector machine was proposed to
extract features by employing a morphological erosion operator. The experimental results
concluded that the accuracy of the proposed algorithm reached 87.5% (21/24) in training
and 91.7% (44/48) in testing [16]. The deep structure of the convolutional neural network
(CNN), which does not require the extraction of features and still shows high classification
accuracy, was proposed to diagnose the bearing faults [17].

Whenever a mating surface hits a defect, the energy is converted from kinetic into
elastic potential energy. A shock pulse is generated at the interface because of a sudden
change in the contact stress. These sudden changes (shock pulses) excite the system
components, which react in their normal modes [18]. Machinery defects can easily be
detected in the early stages with periodically repeating shocks; gear defects have been
detected with the real order derivative [19]. The stochastic aspect of the shock occurrence
was discovered for first time by the author’s of [20], in which these shock pluses were
analyzed on simulated and actual vibration data by modeling the bearing fault vibration as
a series of impulse responses of a single degree of freedom system. These findings were
readdressed in their subsequent works [21–23]. In another article, bearing clearance has
been determined by using three methods, including the calculation of the spectral kurtosis
of corresponding spectra, and the results showed reliability in service detection [24].
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Predictive maintenance have proven effective for Industry 4.0 because it provides
maintenance activities before the failure happens. In order to perform predictive mainte-
nance, accurate condition monitoring of mechanical machinery is required. This article
proposes that due to the impairment in a damaged bearing, the bearing produces high
amplitude vibrations as compared to the undefective bearing. The damaged bearing has
high vibration energy at damage, which is why it produces high amplitude vibrations. The
proposed method has been examined through systematic and detailed experimentation.

The literature concluded that the concept of Industry 4.0 requires some automatic
fault detection techniques for implementation. This research article proposes two statistical
parameters, histograms and kurtosis, as the indications of a change in vibration energy
at damage for the detection of roller bearing faults. The damaged bearing will produce
high vibrations, as it has high damage energy, and this damage energy change can be used
to detect faults in the roller bearing. Detailed experimentation is performed to explore
the proposed methodology. An overview of the vibration energy at damage concept
and corresponding formulas are given in the next section, followed by the experimental
setup section, in which the experimental setup is explained in detail. Finally, the results
are discussed.

2. Vibration Energy at Damage-Based Statistical Approach

One body has six degrees of freedom (DOF): three are translational, and three are
rotational. The equation of motion for a shaft under torsional/rotational vibration is shown
by Equation (1). The signal acquired from the machine in terms of displacement, velocity,
or acceleration can be compared with a defected signature to perform fault diagnosis.

I
..
θ + Kd

.
θ + Ktθ = T(t) (1)

where I is the mass moment of inertia,
..
θ is the angular acceleration, Kd

.
θ is the damping

coefficient in the torsional domain, Ktθ is the torsional stiffness, and T(t) is the torque
as a function of time. These torsional vibrations can be measured by a laser torsional
vibrometer and optical encoders. In this study, accelerometers were used to measure
rotational vibration, rather than measuring the torsional vibration. The data can be acquired
in terms of displacement (x), velocity

( .
x
)

or acceleration
( ..

x
)
. The followings are the basic

parameters to measure vibration:

|x| = X ,
∣∣ .
x
∣∣ = ωX ,

∣∣ ..x∣∣ = ω2X (2)

where ω is the rotational frequency in rad/s, which can also be expressed as 2π f , and
f is the frequency in cycles per second, or hertz (Hz). Generally, the X is measured at
0 < f < 10, the ωX is measured at 10 < f < 1000, and the ω2X is measured at f > 1000.
On the right hand side of the equation of motion, there is a forcing function, and it depends
upon ω, which is the forcing frequency. The natural characteristics of the machine can be
obtained from Equation (3):

ωn =

√
k
m

fn =
1

2π

√
k
m

(3)

where ωn, k, m, and fn are the natural rotational speed, stiffness, mass, and natural fre-
quency of the machine, respectively. The resonance will occur if the forcing frequency is
equal to the natural frequency, and it will result in larger displacement. Operators avoid
the natural frequency during the operation, but this parameter is calculated by designers
for safety. The following Equations (4) and (5) explain the frequency response functions,
where F is the forcing function:

Sti f f ness =
F
x

Damping =
F
.
x

Mass =
F
..
x

(4)
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Compliance =
x
F

Mobility =

.
x
F

Impedance =
..
x
F

(5)

In this study, a statistical approach is proposed to detect roller bearing damages. As
the roller bearings are mainly used in industry, it is important to detect damages at the early
stages. The roller bearings have to bear great loading at high rotating speeds. Therefore, it
is necessary to use a proactive technique for inspection. This technique not only provide a
safe environment the proper function of the machines, but it also decreases the maintenance
costs. Basically, the roller bearings bear loading with their rolling elements and reduce
friction. Roller bearings have three main components: the balls, the inner race, and the
outer race.

The disorder or sudden peak in the vibration-based frequency or time domain data
are often considered faults. Because, as the ball passes through a discontinuity or defect, it
can be subjected to an impulsive force as an effect of damages, peaks in courses of physical
magnitudes can be noticed. Thus, most of the researchers have analyzed characteristic
features of signals at frequency. In this research, the characteristic fault frequency multi-
pliers for ball pass frequency outer race (BPFO), ball pass frequency inner race (BPFI),
ball spin frequency (BSF), and fundamental train frequency (FTF) were calculated using
Equations (6)–(9). However, our main objectives are to plot histograms and calculate kur-
tosis values so that the damage energy for an intact bearing and damaged bearing can
be compared.

BPFO =
n
2

[
1− DB

DP
cos θ

]
(6)

BPFI =
n
2

[
1 +

DB
DP

cos θ

]
(7)

BSF =
DP

2DB

[
1−

(
DB
DP

)2
cos2 θ

]
(8)

FTF =
1
2

[
1− DB

DP
cos θ

]
(9)

where, DB is the ball diameter, DP is the pitch diameter, n is the number of balls, and θ
is the angle of contact. The ER-16K faulty rolling element bearings, with ball diameter
DB = 8 mm and pitch diameter DP = 38 mm, number of balls n = 9, and angle of contact
θ = 9.08◦, are used in this study. By putting the values of DB, DP, n, and θ in the above
Equations (6)–(9), the characteristic fault frequencies of the roller bearings are calculated
and shown in Table 1.

Table 1. The characteristic fault frequency multipliers of roller bearings used in this study.

Operating Speed RPM Ball Pass Frequency
Outer (BPFO)

Ball Pass Frequency
Inner (BPFI)

Ball Spin Frequency
(BSF)

Fundamental Train
Frequency (FTF)

3.572 5.43 2.322 0.402

1002 3579.144 5440.86 2326.644 402.804

1500 5358 8145 3483 603

2400 8572.8 13,032 5572.8 964.8

3000 10,716 16,290 6966 1206

The characteristics fault frequencies are obtained by multiplying the operating speed
by the multipliers calculated in the second row of Table 1. The peaks at these characteristics
fault frequencies and their respective harmonics are analyzed, and the bearing is often
regarded as a damaged bearing if the vibrations are high at these characteristics fault
frequencies (BPFO, BPFI, BSF, and FTF). However, in reality, these peaks are submerged
by the noise, and it is not an easy task to recognize the peaks at these characteristic fault
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frequencies. Thus, a novel method is proposed in this study, based on the vibration
energy at damage. The histograms, along with the kurtosis values, were used to analyze
the vibration data of an intact and damaged bearing. The kurtosis is a measurement of
the frequency of extreme values, or peakedness of distribution. The kurtosis (K) can be
calculated from the following Equation (10):

K =
m4

m22 =
m4

(σ2)
2 (10)

where m4 is the fourth moment, m2 is the second moment, and σ is the variance. First, the
deviation from the mean is calculated by using Equation (11), then the second moment
(m2), variance (σ), and the fourth moment (m4) can be calculated from Equations (12)–(14),
respectively. The averaged value of kurtosis is used in this study so that the accuracy of
measurement can be improved. The averaged value of kurtosis is the mathematical average
of the numeric (absolute) value of all data blocks.

deviation f rom the mean = Xi − Xavg (11)

m2 =
∑n

i=1
(
Xi − Xavg

)2

n
(12)

σ2 =
∑n

i=1
(
Xi − Xavg

)2

n
(13)

m4 =
∑n

i=1
(
Xi − Xavg

)4

n
(14)

where, Xi is the ith observation, Xavg is the arithmetic average of all values, and n is the
number of values. The formula to calculate the second moment (m2) and variance (σ) is
the same. Finally, the formula to calculate kurtosis (K) becomes:

K = n × ∑n
i=1
(
Xi − Xavg

)4(
∑n

i=1
(
Xi − Xavg

)2
)2 (15)

The system that samples the data from a machine and then converts it to the digital
form is known as the data acquisition system (DAQ). The following Equations (16)–(19) are
used in DAQ:

T = N × ∆t (16)

fs = 2 fmax (17)

∆ f =
1
T

=
1

N × ∆t
=

fs

N
(18)

Seconds per block =
Rows per block
Sampling rate

(19)

where T is the total time, N is the number of data points, ∆t is the time resolution, fs is the
sampling frequency, fmax is the maximum frequency, and ∆ f is the frequency resolution.
The smaller the time resolution is, the higher the sampling frequency will be, and this will
enhance the results. By increasing the fmax, speed range, and spectrum lines, the frequency
resolution can be enhanced. Generally, the fmax is calculated by 20 or 40 times the rotating
speed. The Hanning window produces a high-frequency resolution, along with protection
from leakage, with fair amplitude accuracy.

3. Experimental Setup

This study is based on the experiments performed on a machinery fault simulator
(MFS). Experiments testing the vibration energy at damage-based statistical approach
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in detecting bearing damages were performed on an MFS made by SpectraQuest. This
simulator has a three-phase pre-wired electric motor of 1 HP that drives a rotor assembly
with a variable frequency AC drive that has a multi-featured, front panel programmable
controller. The rotating speed is measured by a built-in tachometer, with an LCD display,
that can be varied from 0 to 6000 rpm with a short duration. The motor and rotor shaft
is connected with an L-type standard jaw coupling, made of sintered iron, that has a
length of 54.6 mm. The rotor assembly consists of a 25.4 mm diameter turned, ground,
and polished (TGP) steel rotor shaft supported by two roller bearings. The roller bearings
are placed in a horizontal-type split bracket. The accelerometers are placed on inboard
and outboard bearing housings in the vertical and horizontal direction, and the vibration
data are recorded. These accelerometers can record the vibration with a sensitivity of
10.2 mV and a measurement range of ±490 ms−2. An eight-channel data acquisition card
was used to acquire the data from the simulator, which was later analyzed. The complete
experimental apparatus is shown in Figure 1.

Appl. Sci. 2022, 12, 8541 6 of 23 
 

times the rotating speed. The Hanning window produces a high-frequency resolution, 
along with protection from leakage, with fair amplitude accuracy. 

3. Experimental Setup 
This study is based on the experiments performed on a machinery fault simulator 

(MFS). Experiments testing the vibration energy at damage-based statistical approach in 
detecting bearing damages were performed on an MFS made by SpectraQuest. This sim-
ulator has a three-phase pre-wired electric motor of 1 HP that drives a rotor assembly with 
a variable frequency AC drive that has a multi-featured, front panel programmable con-
troller. The rotating speed is measured by a built-in tachometer, with an LCD display, that 
can be varied from 0 to 6000 rpm with a short duration. The motor and rotor shaft is con-
nected with an L-type standard jaw coupling, made of sintered iron, that has a length of 
54.6 mm. The rotor assembly consists of a 25.4 mm diameter turned, ground, and polished 
(TGP) steel rotor shaft supported by two roller bearings. The roller bearings are placed in 
a horizontal-type split bracket. The accelerometers are placed on inboard and outboard 
bearing housings in the vertical and horizontal direction, and the vibration data are rec-
orded. These accelerometers can record the vibration with a sensitivity of 10.2 mV and a 
measurement range of ±490 ms−2. An eight-channel data acquisition card was used to ac-
quire the data from the simulator, which was later analyzed. The complete experimental 
apparatus is shown in Figure 1. 

 
Figure 1. Experimental setup for evaluating bearing damages. 

This simulator was used in our previous studies to detect: the imbalance caused by 
using accelerometers at three different operating speeds [25], the misaligned and cracked 
shafts using order analysis [26], the bearing faults using spectral density analysis [27] and 
octave analysis [28]. It was also used to detect imbalance using piezoelectric strain sensors 
[29]. The misaligned and cracked shaft was also analyzed on this simulator, and sensitive 
locations for transducers were discussed [30]. This study focuses on multiple damages in 
roller bearings; bearing damages have been analyzed by comparing the intact bearing’s 
histogram and kurtosis values with the following defected bearings: (1) inner race defect; 
(2) outer race defect; (3) ball defect; and (4) combination defect. 

All of the above defected bearings in this experimental study were used at 1002, 1500, 
2400, and 3000 RPM rotating speeds, with two types of loading conditions: without in-

Figure 1. Experimental setup for evaluating bearing damages.

This simulator was used in our previous studies to detect: the imbalance caused by
using accelerometers at three different operating speeds [25], the misaligned and cracked
shafts using order analysis [26], the bearing faults using spectral density analysis [27]
and octave analysis [28]. It was also used to detect imbalance using piezoelectric strain
sensors [29]. The misaligned and cracked shaft was also analyzed on this simulator, and
sensitive locations for transducers were discussed [30]. This study focuses on multiple
damages in roller bearings; bearing damages have been analyzed by comparing the intact
bearing’s histogram and kurtosis values with the following defected bearings: (1) inner
race defect; (2) outer race defect; (3) ball defect; and (4) combination defect.

All of the above defected bearings in this experimental study were used at 1002,
1500, 2400, and 3000 RPM rotating speeds, with two types of loading conditions: without
installing a bearing loader and with installing a bearing loader. In the first type of the
loading condition, the vibration data of intact and defected bearings were acquired through
the accelerometers, without installing a bearing loader on the rotor assembly. In the second
type of loading condition, a bearing loader was installed at a distance of 5 cm from the
outboard bearing housing, and the vibration data of intact and defected bearings were
acquired through the accelerometers. For both types of loading conditions, the defected
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bearing was placed at outboard bearing housing. The intact bearing histograms and
kurtosis values are compared with each defected bearing. The inner race, outer race, ball,
and combination damage bearings were placed only at the outboard bearing housing. The
vibration data were acquired with 12,800 spectral lines and 10 kHz maximum frequency.

The overall velocity-RMS values have been collected at no fault condition for both
types of loading conditions in order to follow the ISO standard 20816-1 [31]; this was also
done in our previous studies [25–28]. The ISO standard 20816-1 has a vibration severity
chart consisting of four categories: A, B, C, and D. Category ‘A’ means that the machine
is in outstanding condition, and category ‘D’ means that the machine’s vibrations are not
permissible. The vibration severity chart of ISO standard 20816-1 also classifies all machines
into four classes, class I through class IV, depending upon the size of the machine. The
simulator had a power of 1 HP and according to the ISO standard 20816-1 vibration severity
chart, it belongs to class 1. The velocity-RMS values in class 1 range from 0.28 mm/s to
2.80 mm/s for category ‘A’ to ‘C’, respectively, meaning that if the machine belongs to
category ‘C,’ the vibrations are within the limits. The velocity-RMS values before placing
the damaged bearings for all rotating speeds, without installing a bearing loader and with
installing a bearing loader, are shown in Tables 2 and 3 respectively. From Tables 2 and 3,
it is found that the maximum overall velocity-RMS value is 2.7166 mm/s in the horizon-
tal direction at 3000 RPM for the rotor inboard bearing housing, which is less than the
2.80 mm/s value of category ‘C’. Therefore, this simulator falls into category ‘C,’ meaning
that the vibrations are within tolerable limits, and the experiments can be performed.

Table 2. Overall velocity-RMS (mm/s) without installing a bearing loader at no-fault condition.

Rotating Speed
(RPM)

Rotor Inboard Bearing Housing Rotor Outboard Bearing Housing

Horizontal Vertical Horizontal Vertical

1002 0.2757 0.1337 0.2771 0.1741
1500 0.5939 0.3116 0.6544 0.5724
2400 1.2863 0.7680 1.2607 1.0588
3000 2.0655 1.1951 2.6264 2.3558

Table 3. Overall velocity-RMS (mm/s) with installing a bearing loader at no-fault condition.

Rotating Speed
(RPM)

Rotor Inboard Bearing Housing Rotor Outboard Bearing Housing

Horizontal Vertical Horizontal Vertical

1002 0.3557 0.1557 0.2675 0.1548
1500 0.6291 0.2669 0.4674 0.2990
2400 1.1643 0.9012 0.7484 0.5704
3000 2.7166 1.5035 1.7238 1.4493

4. Results and Discussion

The four types of bearing damages: inner race, outer race, ball, and combination
damage, were analyzed by using histograms and kurtosis values in the following sections.

4.1. Inner Race Damage

A bearing with an inner race fault was replaced with an intact bearing at the outboard
bearing housing. The accelerometers were installed on the outboard and inboard bearing
housing in the horizontal and vertical direction. To analyze the inner race defect, the
simulator was operated at 1002, 1500, 2400, and 3000 RPM rotating speed, and the data
were acquired with two loading conditions: (1) without installing a bearing loader, and
(2) with installing a bearing loader. The histograms for the outboard bearing housing
in the vertical direction at each rotating speed for intact and inner race bearing damage
were compared, without installing a bearing loader and with installing a bearing loader,
as shown in Figures 2 and 3, respectively. The kurtosis values for the outboard bearing
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housing in the vertical direction at each rotating speed, without installing a bearing load
and with installing a bearing loader, are shown in Table 4.
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Figure 3. Histograms for an inner race damaged bearing with installing a bearing loader.

From Figures 2 and 3, it can be seen that the bars are high for an inner race damaged
bearing for both of the loading conditions. At all rotating speeds, the frequency of the inner
race damaged bearing data is high as compared to the intact bearing data. The kurtosis
values shown in Table 4 are also high in the case of an inner race damaged bearing for all
rotating speeds. As the kurtosis values give a better idea of vibration energy at damage;
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therefore, the histograms and kurtosis values concluded that the energy at damage-based
approach is an efficient way to detect inner race damage in the rolling bearing.

Table 4. Averaged kurtosis values for an inner race defect.

Rotating Speed (RPM)
Without Installing a Bearing Loader With Installing a Bearing Loader

Intact Bearing Damaged Bearing Intact Bearing Damaged Bearing

1002 2.319673 10.890377 1.609728 3.221563
1500 2.518273 4.783087 1.803017 2.406770
2400 4.293731 4.232281 1.659314 2.114533
3000 2.661141 4.211987 1.920782 3.395726

4.2. Outer Race Damage

In order to analyze the outer race damage, an outer race damaged bearing was
placed, and the intact bearing was removed from outboard bearing housing. The vibration
data were acquired through accelerometers at 1002, 1500, 2400, and 3000 RPM rotating
speed. The histograms for all rotating speeds, without installing a bearing loader and
with installing a bearing loader, were formulated. The intact bearing and outer race
damaged bearing’s histogram in the vertical direction of the outboard bearing housing
were compared without installing a bearing loader and with installing a bearing loader, and
the results are presented in Figures 4 and 5, respectively. The kurtosis was also calculated
at each rotating speed, without installing a bearing loader and with installing a bearing
loader, in the vertical direction of the outboard bearing housing, as shown in Table 5.

Table 5. Averaged kurtosis values for an outer race defect.

Rotating Speed (RPM)
Without Installing a Bearing Loader With Installing a Bearing Loader

Intact Bearing Damaged Bearing Intact Bearing Damaged Bearing

1002 2.319673 5.728271 1.609728 2.449496
1500 2.518273 3.234788 1.803017 2.350686
2400 4.293731 2.457544 1.659314 2.953900
3000 2.661141 2.400164 1.920782 2.522863

The vibration data for an outer race damaged bearing are more scattered as compared
to those for the intact bearing, since the width and height of the bars for an outer race
damaged bearing are greater in Figures 4 and 5. The outer race damage is significantly
visible in histograms for all rotating speeds and for both of the loading conditions. The
bars are high for an outer race damaged bearing because the damaged bearing produces
high vibrations, as it has high damage energy. The kurtosis values are also high for an
outer race damaged bearing, as shown in Table 5, except at 2400 RPM without installing a
bearing loader; this may be due to nonlinearities of the simulator. The histograms, along
with the kurtosis values, revealed that this is an effective approach in detecting an outer
race damage in the rolling bearing.

4.3. Ball Defect

These experiments were performed by replacing the intact bearing at outboard bearing
housing with a bearing that has damaged balls. The ball damaged experiments were per-
formed at 1002, 1500, 2400, and 3000 RPM rotating speed. The intact bearing’s histogram
and ball damaged bearing’s histograms were computed at each speed on the vibration data
recorded with the help of accelerometers mounted on the inboard bearing housing and
outboard bearing housing in the horizontal and vertical direction. The vertical direction his-
tograms at the outboard bearing housing for intact and ball damaged bearing are only shown
without installing a bearing loading and with installing a bearing loader in Figures 6 and 7,
respectively. At each rotating speed, the kurtosis values were computed in both directions,
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but only the horizontal direction kurtosis values are shown in Table 6, as this shows the ball
damage more clearly.
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Table 6. Averaged kurtosis values for a ball defect.

Rotating Speed (RPM)
Without Installing a Bearing Loader With Installing a Bearing Loader

Intact Bearing Damaged Bearing Intact Bearing Damaged Bearing

1002 2.319673 11.60388 1.609728 18.42259
1500 2.518273 8.712126 1.803017 57.00807
2400 4.293731 42.89402 1.659314 52.58134
3000 2.661141 28.87041 1.920782 38.31863

Figures 6 and 7 reveal that the vibrations are high in case of a ball damaged bearing as
compared to the intact bearing. Due to the defect, the bearing produces greater vibrations
that result in high bars in the histograms, showing that the damage energy can be a good
indicator of faults in roller bearings. The histograms for ball damage, without installing
a bearing loader and with installing a bearing loader, are almost the same for all rotating
speeds, but the histograms with installing a bearing loader have very high bars due to
the fact that with the installation of a bearing loader, the load on the damaged bearing
increases, which increase the vibrations. Table 6 clearly shows the high kurtosis values for a
ball damaged bearing, as the kurtosis is a measurement of the thickness or heaviness of the
tails of a distribution, so it can be said that a ball damaged bearing produces high vibration,
which results in high kurtosis values. The histograms and kurtosis values revealed that it is
an effective method in detecting the ball fault at an early stage in a roller bearing.

4.4. Combination Defect

For the analysis of the combination defect, an intact bearing was removed, and a
combination damaged bearing was mounted in the outboard housing. The vibration data
were recorded at four rotating speeds: 1002, 1500, 2400, and 3000 RPM, by mounting the
accelerometers at the outboard and inboard bearing housings in the horizontal and vertical
direction. The comparisons of histograms for intact and combination damaged bearing
have been performed at each rotating speed, with the same two operating conditions. In this
study, only the vertical direction outboard bearing housing’s histograms, without installing
a bearing loader and with installing a bearing loader, have been shown in Figures 8 and 9,
respectively, because they better interpret the fault. The vertical direction outboard bearing
housing’s kurtosis values for all speeds have also been calculated and are shown in Table 7.

Table 7. Average kurtosis values for a combination defect.

Rotating Speed (RPM)
Without Installing a Bearing Loader With Installing a Bearing Loader

Intact Bearing Damaged Bearing Intact Bearing Damaged Bearing

1002 2.319673 38.96501 1.609728 8.019885
1500 2.518273 28.0766 1.803017 7.212048
2400 4.293731 12.66049 1.659314 4.472537
3000 2.661141 4.883097 1.920782 4.926638

The histograms for a combination damage, shown in Figures 8 and 9, also depict the
same results as the other damages, as it must be the same since we use a combination
damaged bearing that is a combination of inner race, outer race, and ball defects. The
vibration bars are high for all rotating speeds, and the vibration data are scattered for a
damaged bearing without installing a bearing loader, and with installing a bearing loader.
The presence of high amplitude vibrations in Figures 8 and 9 for a damaged bearing
concluded that histograms, along with the kurtosis values, are highly effective in detecting
the roller bearing faults. Without installing the bearing loader, the bars are not much more
prominent for a damaged bearing due to the fact that vibrations generated at a smaller load
have low amplitudes. The kurtosis values for combination damaged bearings are also high
at all rotating speeds, as shown in Table 7. The histograms depicting the vibration data and
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kurtosis values clarify the thickness of this vibration data. Hence, the vibration energy at
damage-based statistical approach is an excellent technique for the detection of faults in
roller bearings.
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The comparison of all kurtosis values for all types of damages, without installing a
bearing loader and with installing a bearing loader, has also performed in this study, and
is shown in Figures 10 and 11, respectively. The kurtosis values shown in Tables 4–7 are
used for this comparison. The comparison revealed that the kurtosis values for all types
of damages are high as compared to intact bearing, and the results of without installing
a bearing loader (Figure 10) give a better understanding of the concept of the vibration
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energy at damage-based statistical approach. The results shown in Figure 11 are not clear,
but the ball damaged bearing’s kurtosis values are higher at each rotating speed.
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5. Conclusions

From the above discussion, the following conclusions can be drawn:

1. The vibration bars are high for all rotating speeds, and vibration data are scattered
for each damaged bearing for both of the loading conditions—without installing a
bearing loader and with installing a bearing loader—due to the fact that the damaged
bearing produces high vibrations, as it has high damage energy.

2. The kurtosis values are also high for each damaged bearing and all rotating speeds.
3. The vibration data for an outer race damaged bearing are more scattered as compared

to the intact bearing, since the width and height of the bars for an outer race damaged
bearing are greater.

4. For some data, without installing the bearing loader, the bars are not prominent for
a damaged bearing due to the fact that vibrations generated at a smaller load have
lower amplitudes.

5. Due to the defect, damaged bearings produce greater vibrations, resulting in high
bars in histograms and showing that the damage energy can be a good indicator to
detect faults in roller bearings.

6. As the kurtosis values give a better idea of vibration energy at damage, thus, the
histograms and kurtosis values revealed that the energy at damage-based approach is
an efficient way to detect damages in the rolling bearing.

7. The comparison of all kurtosis values for all types of damages, without installing a
bearing loader and with installing a bearing loader, revealed that the kurtosis values
for all types of damages are high as compared to intact bearings, and the results regard-
ing the condition of without installing a bearing loader provide a better understanding
of the concept of the vibration energy at damage-based statistical approach.

8. These results are based on the simulator; the real bearing fault detection could be
more difficult due to the noise coming from different devices. However, this novel
methodology can be helpful in detecting damages at early stages.
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Abbreviations

ALIF adaptive local iterative filtering
BPFI ball pass frequency inner
BPFO ball pass frequency outer race
BSP ball spin frequency
CNN convolutional neural network
DAQ data acquisition system
DOF degrees of freedom
EPST extended phase space topology
FTF fundamental train frequency
Hz hertz
IMDE improved multiscale dispersion entropy (IMDE)
MFS machinery fault simulator
mRMR max-relevance min-redundancy
REB rolling element bearings
TGP turned, ground, and polished
VR vibrational resonance
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19. Karioja, K.; Lahdelma, S.; Litak, G.; Ambrożkiewicz, B. Extracting periodically repeating shocks in a gearbox from simultaneously
occurring random vibration. In Proceedings of the 15th International Conference on Condition Monitoring and Machinery Failure
Prevention Technologies, CM/MFPT, Nottingham, UK, 10–12 September 2018; pp. 456–464.

20. Ho, D.; Randall, R.B. Optimisation of Bearing Diagnostic Techniques Using Simulated and Actual Bearing Fault Signals. Mech.
Syst. Signal Process. 2000, 14, 763–788. [CrossRef]

http://doi.org/10.1080/17517575.2018.1554190
http://doi.org/10.3390/s18113789
http://doi.org/10.1016/j.jmapro.2018.10.016
http://doi.org/10.1080/17517575.2018.1442934
http://doi.org/10.1007/s12206-018-1103-y
http://doi.org/10.1115/1.4040041
http://doi.org/10.1016/j.knosys.2018.09.004
http://doi.org/10.1016/j.measurement.2018.05.031
http://doi.org/10.3390/e20120926
http://doi.org/10.1007/s40430-018-1502-0
http://doi.org/10.1016/j.ymssp.2018.06.033
http://doi.org/10.1177/0954406218761487
http://doi.org/10.1177/1687814015624834
http://doi.org/10.1177/0954406218805510
http://doi.org/10.1177/1687814018810935
http://doi.org/10.1016/j.cogsys.2018.03.002
http://doi.org/10.1016/j.ymssp.2018.05.011
http://doi.org/10.1006/mssp.2000.1304


Appl. Sci. 2022, 12, 8541 21 of 21

21. Randall, R.B.; Antoni, J.; Chobsaard, S. The Relationship between Spectral Correlation and Envelope Analysis in the Diagnostics
of Bearing Faults and Other Cyclostationary Machine Signals. Mech. Syst. Signal Process. 2001, 15, 945–962. [CrossRef]

22. Antoni, J.; Randall, R.B. A Stochastic Model for Simulation and Diagnostics of Rolling Element Bearings with Localized Faults. J.
Vib. Acoust. Trans. ASME 2003, 125, 282–289. [CrossRef]

23. Antoni, J. Cyclic spectral analysis of rolling-element bearing signals: Facts and fictions. J. Sound Vib. 2007, 304, 497–529. [CrossRef]
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