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Abstract: Global networking, growing computer infrastructure complexity and the ongoing migration
of many private and business aspects to the electronic domain commonly mandate using cutting-
edge technologies based on data analysis, machine learning, and artificial intelligence to ensure
high levels of network and information system security. Transparency is a major barrier to the
deployment of black box intelligent systems in high-risk domains, such as the cybersecurity domain,
with the problem getting worse as machine learning models increase in complexity. In this research,
explainable machine learning is used to extract information from the CIC-IDS2017 dataset and to
critically contrast the knowledge attained by analyzing if–then decision tree rules with the knowledge
attained by the SHAP approach. The paper compares the challenges of the knowledge extraction
using the SHAP method and the if–then decision tree rules, providing guidelines regarding different
approaches suited to specific situations.

Keywords: cybersecurity; knowledge extraction; explainable artificial intelligence (XAI); Shapley
additive explanations (SHAP); decision tree; if–then rules

1. Introduction

Every day, we are witnessing an increasing number of attacks on networks and
information systems aimed at stealing data, causing reputation harm, impeding work,
and gaining a material advantage. Global networking, increasing computer infrastructure
complexity, and the continuous migration of many private and business aspects to the
electronic domain make the task of maintaining network and information system security
increasingly demanding, necessitating the use of cutting-edge technologies based on data
analysis, machine learning, and artificial intelligence. Cybersecurity refers to the practice
of protecting and restoring network and information systems from actions that violate the
basic security requirements of data confidentiality, integrity, availability, and authenticity.
Such systems frequently rely on a large set of manually defined rules that either block or
allow a packet (or multiple packets) to propagate through the network. This manually
defined rule-based approach necessitates a significant amount of effort to maintain and
update the existing set of rules. In order to reduce the requirements for manual work and
the number of experts needed to generate and analyze these rules, there is an increased
demand for leveraging machine learning models.

In the last decade, machine learning has seen a significant boost as a result of the
rapid increase in computer power as well as the availability and ability to store large
amounts of data. Today, machine-learning-based systems have outperformed humans in
a variety of domains, which includes the task of defending the cyber domain. Modern
systems for the defense of information and network systems are now routinely integrating
machine learning methods as an additional means of attack detection and prevention of
negative consequences.

One of the possible downsides of this approach is that an increasing adoption of black
box intelligent systems in high-risk environments becomes significantly hampered by the
need for transparency, which is becoming a bigger issue as machine learning models get
more complicated. The explainability and interpretability of machine learning models are
critical for data scientists, researchers, and developers in order to understand the models,
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their value and the accuracy of their findings. Interpretations are needed to investigate
false alarms, identify system biases and errors, and finally to make informed decisions
for future system improvements. The issue of machine learning model transparency has
grown so large that it has resulted in a flood of research papers devoted to the construction
of interpretable and explainable machine learning methods [1–7] (a very detailed review of
interpretable machine learning methods is given in [8]). In the cybersecurity domain, much
of the scientific literature is still devoted to improving model performance [9–16], and the
semantic gap in such models continues to be a major issue. It is important to note that
the terms interpretability and explainability of a machine learning model are often used
interchangeably [17–19] (as will be used in this paper); however, some authors distinguish
between the two terms [20–25] (note: the authors provide different definitions of these two
terms and frequently draw a different boundary between them). In [26], an interpretation
is the mapping of an abstract concept (e.g., a predicted class) into a domain that the human
can make sense of, and an explanation is the collection of features of the interpretable
domain that have contributed for a given example to produce a decision (e.g., classification
or regression).

Figure 1 shows Gartner’s hype cycle for artificial intelligence 2021 [27]. The area of
responsible artificial intelligence, which includes explainable artificial intelligence, is in the
innovation of trigger phase and is expected to reach its plateau of productivity in the next 5
to 10 years.

Figure 1. Gartner hype cycle.

The input of a machine learning model determines the quality of the model’s output.
In other words, the quality and amount of input data are crucial in any machine learning
challenge. The same principle works when it comes to the process of explaining a black box
model. When using high-quality and realistic data, better patterns can be extracted, and
the true state of the system can be obtained. Even though this is a relatively new field of
study, there are already a number of papers in the scientific literature that deal with the use
of explainable machine learning in the domain of cybersecurity. These papers primarily
leverage the KDD Cup 99 [28] and the NSL-KDD datasets [29–32], with their most important
findings being summarized in the continuation of this paragraph. Amarasinghe et al. [29]
present a deep neural network anomaly detection framework that provides explanations of
detected anomalies. Explanations are provided in the form of a list of features, and their
ratings calculated using the layer-wise relevance propagation (LRP) method that indicates
the importance of each feature in a specific classification. The research focuses solely on
denial of service (DoS) attacks, i.e., distinguishes between benign network traffic and DoS
attacks. Mahbooba et al. [28] employ a decision tree and extract if–then rules that are used
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to discover a set of features that separate benign and malignant traffic (binary classification).
The authors calculate feature importance using the entropy measure. Marino et al. [30]
present an adversarial approach for generating explanations of data instances that have been
incorrectly classified. The approach is used to find the least attribute modifications needed
for misclassified data instances to be classified correctly. The size of these modifications
is used to determine the most important attributes that explain why the classification is
incorrect. Such explanations can be applied to a single data instance or to a group of
incorrectly classified data instances, in which case the average attribute modification is
applied. The paper employs two approaches to network traffic classification, linear and
multilayer perceptron classifiers. The authors of [31] describe a deep neural network for
network traffic classification and five algorithms for explaining its results. Shapley additive
explanations (SHAP), local interpretable model-agnostic explanations (LIME), contrastive
explanation method (CEM), ProtoDash, and Boolean decision rules via column generation
(BRCG) are the used explanatory algorithms, and explanations are generated both locally
and globally. The paper performs binary classification. Wang et al. [32] explain the results
of two classifiers, the one-vs-all classifier, and the multiclass classifier, using the SHAP
method. Local explanations attempt to determine why a specific instance is classified in a
particular manner, whereas global explanations identify the most important attributes that
distinguish individual classes.

Both the KDD Cup 99 dataset and the NSL-KDD dataset have significant flaws—
most notably, the obsolescence of attacks in the datasets as well as the synthetic origin of
the datasets. In 2017, the Canadian Institute for Cybersecurity released a new dataset—
CIC-IDS2017. This dataset contains benign network traffic and a wide range of more
contemporary attack scenarios, closely resembling authentic real-world data. This is what
currently makes the CIC-IDS2017 a much better choice when building and explaining
machine learning models in the cybersecurity domain. Several papers already used the
CIC-IDS2017 dataset in the domain of explainable machine learning. Dang [33] uses
explainable machine learning models to improve the performance of the intrusion detection
systems. The author analyzes the extreme gradient boosting (xgboost) model performance
by comprehending feature influence and removing unnecessary features. The author
then compares the performance of model post-explainability-based feature selection to
that of prior-explainability-based feature selection. According to the author, by forcing
explainability, the model becomes more robust, requires less computational power, and
achieves better predictive performance. The author performs feature understanding of
the model using the partial dependence plot (PDP) and SHAP values and is focused on
binary as well as a multiclass classification problem. Szczepanski et al. [34] use a feed
forward artificial neural network to classify the network traffic and use surrogate decision
trees to find the most likely explanations for a classified sample. Das et al. [35] propose a
confident and explainable anomaly detector based on random forest, multilayer perceptron,
and support vector machine classifiers. The authors then interpret the predictions using
the LIME method. The paper mainly focuses on finding the most influential benign and
malign dataset features. Liu et al. [36] propose an interpretable convolutional neural
network based on spatial domain attention. The model can discover and locate specific
malicious packet fields, which can then be interpreted. To improve the model explainability,
Islam et al. [37] incorporate confidentiality, integrity, and availability principles into the
model in the form of newly defined features. In more detail, the author implements a
feature generalizer component that takes the original features of the CIC-IDS2017 dataset
and infuses domain knowledge to produce/re-construct a concise and better interpretable
feature set. The authors then compare the advantages or disadvantages of incorporating
domain knowledge in the experiment using the evaluator component that, using four
different feature configurations, compares the performance of naïve Bayes, artificial neural
network, support vector machine, random forest, extra trees, and gradient boosting models.
Although Bachl et al. [38] are not focused on the explainability of the machine learning
model, they do mention it in one section of their paper. In particular, they show how
visualization techniques from explainable machine learning can be used to detect backdoors
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and problems emerging from the distribution of attack samples in the training dataset.
PDP and accumulated local effects (ALE) are used by the authors to find the backdoors
and incorrect decisions. Callegari et al. [39] concentrate their attention on an explainable
method for classifying internet traffic that can inform practitioners of the results of the
classification. More specifically, their suggested method is based on a multi-objective
evolutionary fuzzy classifier, which, in their opinion, offers a good trade-off between the
resulting classification models’ accuracy and explainability. The experimental results are
obtained using the UniBS and UPC datasets.

Taking into account the information gained from the currently published scientific
papers, our research is the first to use explainable machine learning to extract information
from the CIC-IDS2017 dataset and to critically compare the challenges of the knowledge
extraction process while analyzing if–then decision tree rules and while using the SHAP
approach. The paper discusses the benefits and drawbacks of if–then decision tree rules
and the rules produced by the SHAP method, and it makes recommendations for which
approach to use in particular circumstances.

The remainder of this paper is structured as follows. Section 2 presents the proposed
methodology as well as the used dataset. The terminology is introduced, and mathematical
explanations of the used methods follow. Section 3 describes the paper’s findings, and
Section 4 concludes the paper.

2. Materials and Methods
2.1. Methodology

In many domains, the ability to understand the inner workings of a predictive model
is critical. To satisfy this requirement, intrinsically interpretable machine learning models
are commonly used.

These models, however, frequently underperform in terms of prediction and classifi-
cation, making such an approach unsuitable for fields where great precision is necessary.
This becomes a common issue in the cybersecurity domain where both interpretability and
high precision are usually given top priority.

The goal of this paper is to extract knowledge from the CIC-IDS2017 dataset using
the SHAP method, as well as comparing the possibilities of extracting knowledge using
the specified method and by analyzing the decision tree rules. The paper discusses which
approach is more appropriate in specific situations, as well as the advantages and disadvan-
tages of both approaches. To allow for the direct comparison of the rules extracted with the
SHAP method and the decision tree rules, the SHAP method is implemented on a decision
tree model. Once we demonstrate that the SHAP is sufficient to obtain a global picture
of the model, we can successfully pave the way toward implementing an interpretability
layer over any chosen black box model.

Although SHAP is primarily a local interpretability method, it can also be used to
explain machine learning models globally. This paper will showcase the usage of SHAP
method for global interpretations. Figure 2 outlines the main questions to be answered in
the remainder of this paper, while also emphasizing the type of SHAP plot used to obtain
answers to the questions and hopefully serving as a useful general guideline for opening a
black box model. Henceforth, the proposed methodology can be used in different domains
for opening any type of black box model.
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DETAILED)?
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value constant or does it vary on
the values of other features?

Figure 2. Guidelines for opening the black box model using the SHAP method.

2.2. The CIC-IDS2017 Dataset Description

The CIC-IDS2017 dataset contains data related to benign network traffic and a wide
range of contemporary attack scenarios, closely approximating authentic real-world data.
This dataset was created by the Canadian Institute of Cybersecurity, the data being taken
from a simulation that is considerably closer to how a modern computer network behaves
compared to the older popular datasets from this domain, with the attacks being carried
out with the help of established online tools and tactics. This dataset was hence chosen as
the cornerstone research data for this paper.

The original dataset contains 2,830,743 data instances collected over 5 days and de-
scribed by 79 features (see Table 1). The process of further data preparation was performed
in three main steps: data cleaning, data transformation, and feature selection.

Data cleaning step. Infinity and missing values were removed from the CIC-IDS2017
dataset, which resulted in a dataset reduction of 2867 data instances. Following that,
the zero variance features (Bwd PSH Flags, Bwd URG Flags, Fwd Avg Bytes/Bulk, Fwd Avg
Packets/Bulk, Fwd Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd Avg Packets/Bulk, Bwd Avg Bulk
Rate) were eliminated. After this step, the dataset contained 2,827,876 rows and 70 columns.

Data transformation step. The CIC-IDS2017 dataset contains benign traffic and 14 dif-
ferent types of attacks (DoS Hulk, PortScan, DDos, DoS GoldenEye, FTP-Patator, SSH-Patator,
DoS slowloris, DoS Slowhttptest, Bot, Web Attack Brute Force, Web Attack XSS, Infiltration, Web
Attack Sql Injection, Heartbleed) and is highly imbalanced. The majority benign class has a
prevalence of 80.32% , while the minority heartbleed class has a prevalence of 0.00039%. Due
to the under-representation of certain types of attacks, this paper conflated some of the
classes while removing others altogether. More precisely, DoS Hulk, DoS GoldenEye, DoS
slowloris, and DoS Slowhttptest attacks were merged into the DoS class. FTP-Patator and
SSH-Patator were merged into the Brute Force class. The benign, and port scan attack classes
were held in their original form, and other attack types were removed from the dataset.
The final dataset, therefore, contained benign traffic and 4 classes of attacks—DoS attacks,
DDoS attacks, brute force attacks, and port scan attacks. This dataset was then divided into
a training set and test set (70:30), with random oversampling and random undersampling
being performed on the training part of the dataset for the purposes of class balancing.
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Feature selection step. This paper uses the SHAP feature importance method. The
SHAP feature importance method measures the influence of a feature by comparing the
model prediction with and without the feature, and ranks features with larger absolute
Shapley values as more important. The method is consistent and accurate [40], and does
not overestimate the importance of continuous or high-cardinality categorical variables as
native tree-based feature importance methods do. The method chose 12 most important
features: Destination Port, Bwd Packet Length Min, Init_Win_bytes_backward, Subflow Fwd
Bytes, Packet Length Mean, min_seg_size_forward, Bwd Packets/s, PSH Flag Count, Fwd Header
Length.1, Init_Win_bytes_forward, Flow IAT Mean, and Total Length of Fwd Packets.

Table 1. Dataset features.

No. Feature No. Feature No. Feature

1 Destination Port 28 Bwd IAT Std 55 Avg Bwd Segment Size
2 Flow Duration 29 Bwd IAT Max 56 Fwd Header Length.1
3 Total Fwd Packets 30 Bwd IAT Min 57 Fwd Avg Bytes/Bulk
4 Total Backward Packets 31 Fwd PSH Flags 58 Fwd Avg Packets/Bulk
5 Total Length of Fwd Packets 32 Bwd PSH Flags 59 Fwd Avg Bulk Rate
6 Total Length of Bwd Packets 33 Fwd URG Flags 60 Bwd Avg Bytes/Bulk
7 Fwd Packet Length Max 34 Bwd URG Flags 61 Bwd Avg Packets/Bulk
8 Fwd Packet Length Min 35 Fwd Header Length 62 Bwd Avg Bulk Rate
9 Fwd Packet Length Mean 36 Bwd Header Length 63 Subflow Fwd Packets
10 Fwd Packet Length Std 37 Fwd Packets/s 64 Subflow Fwd Bytes
11 Bwd Packet Length Max 38 Bwd Packets/s 65 Subflow Bwd Packets
12 Bwd Packet Length Min 39 Min Packet Length 66 Subflow Bwd Bytes
13 Bwd Packet Length Mean 40 Max Packet Length 67 Init_Win_bytes_forward
14 Bwd Packet Length Std 41 Packet Length Mean 68 Init_Win_bytes_backward
15 Flow Bytes/s 42 Packet Length Std 69 act_data_pkt_fwd
16 Flow Packets/s 43 Packet Length Variance 70 min_seg_size_forward
17 Flow IAT Mean 44 FIN Flag Count 71 Active Mean
18 Flow IAT Std 45 SYN Flag Count 72 Active Std
19 Flow IAT Max 46 RST Flag Count 73 Active Max
20 Flow IAT Min 47 PSH Flag Count 74 Active Min
21 Fwd IAT Total 48 ACK Flag Count 75 Idle Mean
22 Fwd IAT Mean 49 URG Flag Count 76 Idle Std
23 Fwd IAT Std 50 CWE Flag Count 77 Idle Max
24 Fwd IAT Max 51 ECE Flag Count 78 Idle Min
25 Fwd IAT Min 52 Down/Up Ratio 79 Label
26 Bwd IAT Total 53 Average Packet Size
27 Bwd IAT Mean 54 Avg Fwd Segment Size

2.3. Decision Tree

Decision tree is a type of supervised machine learning model that learns simple
decision rules inferred from prior data and predicts the class or the value of a target variable.
The decision model is built top-down in the form of a tree structure, beginning with the
root node and progressing to decision nodes and leaf nodes. The root nodes are important
predictors, while the leaf nodes provide the final classification. This paper focuses on
CART decision trees. The CART decision tree algorithm builds a binary decision tree by
performing a greedy top-down search through the given set of training data. The greedy
approach is based on the concept of heuristic problem solving, which involves making the
best local choices at each node to reach the approximation of the global optimum. There are
several functions to measure the quality of a node split. This paper implements the entropy
measure, which is a measure of impurity, disorder, or uncertainty in a given dataset.

One of the greatest advantages of the decision tree model is its simple interpretability—
one needs to follow the path that begins at the root node and ends at the tree’s leaf, while
AND concatenating the rules of all nodes on the path. It is well known that increasing
the tree depth results in better model performance in most cases. When it comes to
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interpretability, increasing the depth of the decision tree reduces the ability to understand
the decision-making rules.

2.4. Interpretable Machine Learning Methods

There are a variety of techniques for delving into the inner workings of models, but
they frequently come with a cost of diminished accuracy. Such a price is usually not ac-
ceptable in the context of cybersecurity, where even minor errors in attack detection can
severely impact system performance and cause massive damage. Therefore, the choice of
interpretability methods in the domain of cybersecurity is limited. This paper implements
the SHAP method to explain machine learning models used to detect cyber attacks. How-
ever, before explaining the SHAP method, it is necessary to define a few essential concepts
needed to comprehend this paper. Intrinsic interpretability refers to machine learning meth-
ods that are interpretable because of their simple structure. Post-hoc interpretability refers to
the use of interpretable methods after model training. Model-specific interpretability meth-
ods are those that are restricted to particular model classes. Model-agnostic interpretability
methods can be used on any machine learning model and are applied after model training
(post-hoc). Local methods explain individual predictions. Global methods explain the entire
model behavior.

Finally, because SHAP connects two local model-agnostic methods, LIME, proposed
in [1], and Shapley values, proposed in [41], it is important to explain all three methods in
more detail.

2.4.1. Shapley Values

Shapley values are a concept borrowed from the literature of cooperative game theory,
and they were originally used to fairly attribute a player’s contribution to the end result of
a game. An assumption is made that a cooperative game exists in which a set of players
works together to achieve some value. Shapley values capture the marginal contribution of
each player to the end result. The method can be used to interpret the machine learning
prediction by assuming that each feature value of the instance is a player in a game where
the prediction is the payout.

Mathematically, the Shapley value is the average contribution of a feature value to the
prediction in all feasible coalitions. The Shapley value for feature j is calculated as follows
(see Equation (1)):

φj = ∑
S⊆N\{j}

|S|!(|N| − |S| − 1)!
|N|! ( fx(S

⋃
{j})− fx(S)), (1)

where

N = set of all features
S = a subset of the features used in the model
fx(S) = a function that gives a prediction for any subset of features

Simply put, the Shapley value for a feature is calculated as follows:

1. Create the set of all possible feature combinations S (called coalitions).
2. Calculate the average model prediction.
3. For each coalition, calculate the difference between the model’s prediction without

feature j and the average prediction.
4. For each coalition, calculate the difference between the model’s prediction with feature

j and the average prediction.
5. For each coalition, calculate how much the feature j changed the model’s prediction

from the average (the difference between the values calculated in steps 4 and 3)—this
is the marginal contribution of a feature j.

6. The Shapley value is the average of all the values calculated in step 5 (i.e., the average
of features’ j marginal contributions).
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It is important to note that when constructing all possible coalitions, the input features
that are not observed in that specific coalition are not removed (because this changes the
input dimension), but are instead replaced with random samples from the training dataset.
The Shapley value calculation is very time consuming. For a set of n features, there are 2n

coalitions (subsets) that should be analyzed in order to compute the Shapley values.

2.4.2. Local Interpretable Model-Agnostic Explanations, LIME

LIME is a concrete implementation of local surrogate models. Surrogate models are
intrinsic interpretable models trained to approximate the underlying black box model’s
predictions. The conclusions about the black box models can then be drawn by interpreting
the surrogate model. Local surrogate models, such as LIME, are focused on explaining
individual predictions.

Mathematically, LIME is described as follows (see Equation (2)):

explanation(x) = argmin
gεG

{L( f , g, πx) + Ω(g)}, (2)

where

g = the explanation model for instance x (e.g., linear regression model).
G = the family of all possible explanations (e.g., all possible linear regression models).
L = the loss function (e.g., mean squared error) used to measure how close the explanation
is to the prediction of the original black box model.
f = the original black box model.
πx = the proximity measure used to define how large the neighborhood around instance x
is that we consider for the explanation.
Ω (g) = the model complexity.

Simply put, LIME investigates what happens to predictions when variations of the data
are fed into a machine learning model. LIME creates a new dataset that contains perturbed
samples as well as the black box model’s predictions for those samples. LIME then trains an
intrinsic interpretable machine learning model on this newly created dataset. The intrinsic
interpretable machine learning model that best approximates the black box model is found
by calculating the Equation (2). The trained intrinsic interpretable machine learning model
can then be used to explain the black box model predictions. To summarize, the goal of local
surrogate models is to replicate the underlying black box model’s predictions as closely as
is feasible while being interpretable.

2.4.3. Shapley Additive Explanations, SHAP

SHAP is a model-agnostic machine learning interpretability method proposed by the
authors Lundberg and Lee [3], and it combines Shapley values and the LIME method. The
main advantage of SHAP is that, inspired by local surrogate models, it allows for a more
computationally efficient estimation of Shapley values when used in machine learning. In
more detail, SHAP explains individual instance predictions by computing the contributions
of each feature to the prediction—each feature can contribute positively (SHAP value
is greater than zero) to the prediction, negatively (SHAP value is less than zero) to the
prediction, or can have no impact on the prediction (SHAP value is zero). Although SHAP
is basically a local interpretable method, it can also be used as a global method. In SHAP,
the Shapley value explanation is represented as a linear model.

Mathematically, SHAP values can be calculated as follows (see Equation (3)):

g(z′) = φ0 +
M

∑
j=1

φj ∗ z′j, (3)

where

g = the explanation model.
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z′ ∈ {0, 1}M = the coalition vector. An entry of 1 means that the corresponding feature
value is “present” and 0 that it is “absent”.
M = the maximum coalition size.
φj = the feature attribution for a feature j for instance x (the approximated Shapley values).

Simply put, the goal of SHAP is to approximate Shapley values in order to reduce the
complexity of calculating them. SHAP takes a data subset and fits a linear regression model
to it (similar to LIME). The variables in this linear regression model are zeros and ones that
represent whether a feature is present or absent, and the output value is the prediction.
Following model training, the linear model’s coefficients can be interpreted as Shapley
value approximations. There are several methods by which this can be achieved, Kernel
SHAP, Tree SHAP, and Deep SHAP. Note: The term SHAP refers to the Kernel SHAP. This
paper implements Tree SHAP, an efficient Shapley value estimation approach used for
tree-based models. Tree SHAP was introduced by [40] as a fast, model-specific alternative
to Kernel SHAP, but it has proven to produce unintuitive feature attributions. Instead of the
marginal expectation, the Tree SHAP method uses the conditional expectation E[ f (x)|xs]
instead of fx(S) in Equation (1). When compared to Kernel SHAP, Tree SHAP reduces the
computational complexity from O(TL2M) to O(TLD2). The parameter T is the number
of trees, L is the maximum number of leaves in any tree and D is the maximal depth of
any tree. For more detail about the algorithm for estimating the conditional expectation
E[ f (x)|xs], the Tree SHAP algorithm and the complexity, see [40].

3. Results

This paper implements a multi-class decision tree classifier. Class 0 represents the
benign network traffic, class 1 DoS attacks, class 2 DDoS attacks, class 3 port scan attacks,
and finally class 4 brute force attacks. The confusion matrix demonstrates the performance
of the decision tree classifier after hyperparameter optimization.

Con f usionMatrix =


680,633 318 69 339 25

16 75,514 6 5 0
5 3 38,224 0 0
35 5 0 47,735 0
2 0 0 0 4174


3.1. SHAP Feature Importance

Figure 3 shows the SHAP feature importance plot for the implemented decision tree.
The global importance of each feature is taken to be the mean absolute SHAP value for
that feature over all given samples. Features with larger absolute SHAP values are globally
more important. In addition to the feature’s global importance, the figure also shows the
relative relevance of each feature for each class (see the length of the bar for each class.
Each class has a different bar color).

The Destination Port, Bwd Packet Length Min, and Init_Win_bytes_backward features
are the three globally most important features in the classification of the network traffic.
Although the Destination Port feature is not among the top five features in the classification
of port scan attacks, it is one of the most important features in the classification of benign
traffic, DoS attacks, DDoS attacks, and brute force attacks. In more detail, the Destination
Port feature is the most important feature in the classification of benign traffic and brute
force attacks, and it is the second most important feature in the classification of DoS
and DDoS attacks. Therefore, the rest of this paper will concentrate on a more in-depth
examination of the Destination Port feature.
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Figure 3. SHAP feature importance plot.

3.2. SHAP Summary Plot

Although the SHAP feature importance plot is very useful, it contains no information
other than the feature importance. To conduct a more detailed analysis, SHAP summary
plots for each class must be examined (see Figure 4). The SHAP summary plot provides
a thorough explanation of a model that incorporates feature importance (note that the
features are sorted by importance for each class) and feature effect. Each instance has
a single dot on each row. The dot’s x position represents the feature’s influence on the
model’s prediction for the instance, and the dot’s color represents the feature’s value for
the instance. To demonstrate density, dots that do not fit on the row pile up. The x-axis is
expressed in log odds.

By examining the Destination Port feature on Figure 4a, one can conclude that benign
traffic is distinguished by high values of that feature. It is worth noting that data instances
with low Destination Port values might also be categorized as benign traffic. In this case,
additional analyses are required since low values of the Destination Port feature are more
typical for another class, which will be explained in the rest of the paper (see dependence
plot section). When analyzing Figure 4b, one can notice that low values of the Destination
Port feature are highly indicative of a DoS attack. What can be argued with even greater
certainty when analyzing Figure 4b is that when the Destination Port feature takes on high
values, it is most often not a DoS attack.

The analysis of the Destination Port feature of the summary plots for the DDoS class
(see Figure 4c) and the port scan class (see Figure 4d) yield similar conclusions. When the
value of the Destination Port feature is low, we are less likely to claim that it is a DDoS attack
instead of a DoS attack (notice the amount of blue on the graph’s left side in Figure 4c).
By examining the Destination Port feature in Figure 4e, it is important to notice that low
values of the Destination Port feature are also indicative of brute force attacks, but further
investigation is required since low values of this attribute are also indicative of another
class. It is important to note that although we only covered the Destination Port feature in
the study, other features are also displayed in the plots to ensure thorough analysis.

Some of the conclusions we reached by analyzing the SHAP summary plots can also
be reached by examining the decision tree’s if–then rules. In particular, the decision tree can
be used to determine which spectrum of values of a given feature is typical for a given class.
In fact, the decision tree can provide a much more detailed understanding of the above.
Using the if–then rules, it is possible to create more granular feature intervals while the
SHAP summary plot “cuts” the samples into two intervals (low, and high feature values).
Regardless of the foregoing, the analysis of if–then rules is both demanding and exhaustive
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if the tree depth is large. There are numerous if–then rules, and the same features and
separation criteria can be repeated multiple times at various depths in the decision tree.
What can be seen in the SHAP summary plots but not in the decision tree’s if–then rules is
how much each feature influences the prediction.
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Figure 4. Summary plots. (a) Benign; (b) Dos; (c) DDos; (d) Port scan; (e) Brute force.

3.3. SHAP Dependence Plot without Interaction Feature

In order to obtain a more detailed insight into the relationship between a specific
port and its impact on predictions, it is important to analyze the dependence plots. SHAP
dependence plots depict the impact of a single feature on the entire dataset. They plot
the value of a feature vs. its SHAP value across many samples. The vertical dispersion of
SHAP values at a single feature value is driven by interaction effects, and another feature is
chosen for coloring to highlight possible interactions. SHAP dependence plots (without
interaction features) for the Destination Port feature are shown on Figure 5. The figure only
displays the ports from the interval [15, 85]. The three most popular ports in the data set,
ports 21, 22, and 80, are intended to be included. The SHAP values of the Destination Port
feature for the values of features 21 and 22 for the benign class are extremely negative
(see Figure 5a). This suggests that these destination port feature values are more likely to
represent attacks than benign network activity. The figure also demonstrates that a very
small proportion of data occurrences can nevertheless be benign (SHAP values are positive).
The absolute value of these SHAP values is incredibly low, and only a tiny fraction of the
data instances have such SHAP values (see the shade of blue). Without further analysis, it
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is impossible to distinguish between benign traffic and an attack when the port takes the
value 80 (see Figure 5a)—notice that there are both positive and negative SHAP values, and
their absolute value is low. Similar to the benign class, if the Destination Port feature takes
the values 21 and 22, it is most likely not a DoS attack (see Figure 5b), nor a DDoS attack
(see Figure 5c). When the port is 80, the situation is exactly the opposite. In this case, there
is a high likelihood of a DoS or DDoS attack. If the port scan class is analyzed, one can
once again conclude that the Destination Port attribute does not carry much information
(see Figure 5d). SHAP values oscillate around zero, and when the Destination Port feature
takes the value 21 or 22, it is impossible, without additional analysis, to determine whether
it is a port scan class or another class. The port value of 80 is not typically associated with a
port scan attack, though it is present in a small proportion of network instances that are
classified as such. If the Destination Port attribute takes the values 21 and 22, there is a high
probability that it is a brute force attack (see Figure 5e). Namely, the SHAP values, in this
case, are extremely positive. Port 80, on the other hand, is not typical for brute force attacks.
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Figure 5. Dependence plots. (a) Benign; (b) DoS; (c) DDoS; (d) Port scan; (e) Brute force.
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Conclusions drawn from analyzing SHAP dependence plots without interaction fea-
ture cannot be drawn from analyzing decision tree if–then rules. Specifically, the decision
tree does not indicate how much the value of a particular feature contributes to the predic-
tion. As previously stated, the if–then rule can be used to determine which value spectrum
of a specific feature is characteristic of a specific class. However, analyzing a concrete value
of a discrete feature is not always possible from the if–then rules of a decision tree. Note
that it is possible for a decision tree to give rules for a specific value of a discrete feature.
However, even if it does, it is quite challenging to locate and analyze each of these rules in
a lengthy list of rules.

3.4. SHAP Dependence Plot with Interaction Feature

Based on the previous analysis, it was concluded that when the port value is 80, the
traffic may or may not be benign (see Figure 5a). In this case, further investigation and
observation of the interaction feature are required. The best interaction feature in this
particular case is the PSH Flag Count, a binary feature that takes the values 0 and 1. Figure 6
shows a SHAP dependence plot of the Destination Port feature combined with the PSH
Flag Count interaction feature for the benign class. If a data instance takes the value of the
Destination Port feature 80, and if, at the same time, the PSH Flag Count feature takes the
value 1, it is most likely benign network traffic. Otherwise, it is most likely some kind
of attack. A similar analysis can be performed for the port scan class. In the case where
the Destination Port attribute takes the values 21 or 22, it may or may not be a port scan
attack (see Figure 5d). The best interaction feature in this case is the Fwd Header Length.1
feature (see Figure 7). High values of this feature indicate that it is not an infiltration attack.
Although there are data instances with a low value of the Fwd Header Length.1 feature that
belong to another class, it is highly likely a port scan attack if the feature takes low values.
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Figure 6. PSH Flag Count/Destination Port interaction for benign network.
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Figure 7. Fwd Header Length.1/Destination Port interaction for port scan attacks.

Finally, it is necessary to analyze what distinguishes different classes if both (or more)
are characterized by the same values of a particular feature.

Ports 21 and 22 were previously identified as being associated with port scan and
brute force attacks. Finding an interaction feature that distinguishes these two classes is
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required. The Fwd Header Length.1 feature is the best interaction feature in this case (see
Figure 8). High values of the Fwd Header Length.1 feature are not typical of port scan attacks
(see Figure 8a), but rather of brute force attacks (see Figure 8b).
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Figure 8. Fwd Header Length.1/Destination Port interaction plots. (a) Fwd Header Length.1/
Destination Port interaction for port scan attacks; (b) Fwd Header Length.1/Destination Port interaction
for brute force attacks.

A similar analysis can be carried out for port 80. Port 80, in particular, is associated with
benign traffic, as well as DoS and DDoS attacks. The min seg size forward interaction feature
is the most effective at distinguishing between DoS and DDoS attacks (see Figure 9). If the
value of the min seg size forward feature is high, it is most likely a DoS attack (see Figure 9a),
and if it is low, it is most likely a DDoS attack (see Figure 9b). If the port value is 80, the
Flow IAT Mean feature best separates benign traffic and DoS attacks (see Figure 10). High
values of the Flow IAT mean feature are characteristic of DoS attacks, while low values are
characteristic of benign traffic. Finally, the best interaction feature for distinguishing DDoS
and benign classes in case the port takes the value 80 is the feature Init_Win_bytes_forward
(see Figure 11). High values of the Init_Win_bytes_forward feature characterize benign traffic
(see Figure 11a), whereas low values of the Init_Win_bytes_forward feature characterize
DDoS attacks (see Figure 11b).
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Figure 9. Min seg size forward/Destination Port interaction plots. (a) Min seg size forward/
Destination Port interaction for DoS attacks; (b) Min seg size forward/Destination Port interac-
tion for DDoS attacks.
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Figure 10. Flow IAT Mean/Destination Port interaction plots. (a) Flow IAT Mean/Destination Port
interaction for benign traffic; (b) Flow IAT Mean/Destination Port interaction for DoS attacks.
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Figure 11. Init Win bytes forward/Destination Port interaction plots. (a) Init Win bytes forward/
Destination Port interaction for benign traffic; (b) Init Win bytes forward/Destination Port interaction
for DDoS attacks.

It is important to note that the SHAP method can identify more interaction features.
Due to the length of the paper, the paper shows only a few.

As previously stated in the decision tree’s if–then rules, it is not possible to determine
how much each feature value influences the prediction. The if–then rules can be used to
identify feature interactions. Features that interact with each other are on the same path in
the tree and are part of the same rule. The process is, however, very time consuming. If the
feature takes on discrete values, that analysis is not always possible. The reason, as before,
is the impossibility of analyzing separate values of a discrete variable in the if–then rules of
a decision tree.

4. Discussion

Achieving satisfactory levels of transparency is a growing problem as machine learn-
ing models become more complex, considerably hindering the deployment of black box
intelligent systems in high-risk domains, such as the cybersecurity domain. A significant
portion of the scientific literature in the field of cybersecurity is still mostly devoted to
enhancing model performance, and the semantic gap in such models continues to pose a
significant challenge. This paper focuses on two main goals: first, to successfully extract
knowledge from a cybersecurity domain dataset, and second, to critically compare the
difficulties encountered during knowledge extraction when evaluating if–then decision
tree rules versus using the SHAP method.

The following conclusions can be drawn from the results of knowledge extraction
methods that should be generally applicable to the cybersecurity domain. First and fore-
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most, the Destination port feature turns out to be the most important feature globally when it
comes to the classification of the network traffic. Furthermore, the Destination port feature is
the most important feature in the classification of benign traffic and brute force traffic, and
is the second most important feature in the classification of DoS and DDoS attacks. Ports 21
and 22 are identified as being closely associated with port scan and brute force attacks. In
this particular case, the Fwd Header Length.1 feature best distinguishes between these two
classes. High Fwd Header Length.1 values are more common in brute force attacks than in
port scan attacks. Port 80 is associated with benign traffic, as well as DoS and DDoS attacks.
In this case, the min seg size forward interaction feature is most effective at distinguishing
between DoS and DDoS attacks, the Flow IAT Mean feature best separates benign traffic
and DoS attacks, and the Init Win bytes forward feature is the best interaction feature for
distinguishing DDoS and benign classes. More precisely, in scenarios involving port 80, the
high value of the min seg size forward feature indicates a high probability of a DoS attack,
while a low value means the attack is most likely DDoS. In the same vein, high values of
the Flow IAT mean feature, again in the case when the destination port takes the value 80,
are indicative of DoS attacks, whereas low values are indicative of benign traffic. Finally,
high Init Win bytes forward values in the combination with the port value 80 characterize
benign traffic, whereas low Init Win bytes forward values characterize DDoS attacks.

If–then decision tree rules provide a very deep understanding of how the classifier
functions, but as the depth of the tree increases, the task of examining the rules becomes
increasingly challenging. Furthermore, if–then rules cannot be used to determine how a
feature affects a prediction, nor to analyze the influence of a discrete feature’s concrete
value. As opposed to if–then decision tree rules, SHAP offers a decent overall view of
a model despite being less comprehensive. In order to gain a deeper understanding of
the model using the SHAP method, it is required to create numerous plots. This paper
highlights the precise steps for approaching the black box model opening process using
the SHAP method (Figure 2). It is important to notice that the level of detail that may be
achieved by if–then rules in a decision tree is still not attainable, even with additional plot
drawing. However, this is sufficient to gain an understanding of what is happening behind
the curtain, which is the goal of machine learning explainability.
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