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Abstract: Breast cancer is the second most dominant kind of cancer among women. Breast Ultra-
sound images (BUI) are commonly employed for the detection and classification of abnormalities
that exist in the breast. The ultrasound images are necessary to develop artificial intelligence (AI)
enabled diagnostic support technologies. For improving the detection performance, Computer Aided
Diagnosis (CAD) models are useful for breast cancer detection and classification. The current ad-
vancement of the deep learning (DL) model enables the detection and classification of breast cancer
with the use of biomedical images. With this motivation, this article presents an Aquila Optimizer
with Bayesian Neural Network for Breast Cancer Detection (AOBNN-BDNN) model on BUI. The
presented AOBNN-BDNN model follows a series of processes to detect and classify breast cancer on
BUI. To accomplish this, the AOBNN-BDNN model initially employs Wiener filtering (WF) related
noise removal and U-Net segmentation as a pre-processing step. Besides, the SqueezeNet model
derives a collection of feature vectors from the pre-processed image. Next, the BNN algorithm
will be utilized to allocate appropriate class labels to the input images. Finally, the AO technique
was exploited to fine-tune the parameters related to the BNN method so that the classification
performance is improved. To validate the enhanced performance of the AOBNN-BDNN method,
a wide experimental study is executed on benchmark datasets. A wide-ranging experimental analysis
specified the enhancements of the AOBNN-BDNN method in recent techniques.

Keywords: ultrasound images; Aquila Optimizer; Bayesian Neural Network; breast cancer;
medical images

1. Introduction

Despite substantial technological advancements, cancer detection at an initial stage
remains a challenging one, and present cancer detection methods are time-consuming,
expensive, complex, and uncomfortable [1]. Growths in organic electronic materials with
optical imaging modalities, improvised models of different optical properties, optical
biosensors, and biocompatibility are auspicious approaches for initial cancer detection
and that of other diseases. Latest imaging techniques are compiled with the progression
of ultrasound, positron emission tomography (PET), computed tomography (CT), and
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magnetic resonance imaging (MRI) for enhanced diagnosis of cancer and treatment which
will help screen patients more accurately [2]. Developments in optical biosensors or organic
electronics help in the segregation between healthy and cancer cells and the remodeling
point-of-care gadgets can be used in cancer diagnosis [3]. Presently, utilizing ultrasound
approaches for cancer detection depends on the experience of the clinician, particularly for
the measurements and marks of cancers. To be specific, a clinician generally makes use of
ultrasound instruments for cancer recognition by identifying a good angle for a clear vision
of cancer displayed on the screen, and after continuing investigation fixing this for a longer
period by utilizing one hand, with the other hand marking and measuring the cancers on
the screen [4,5]. It becomes a tough task, because slight shaking of the hand which holds
the probe may have a significant influence on the quality of breast ultrasound imagery;
depending on this, computer-aided automated detection technologies are in high demand
to locate regions of interest (ROIs), i.e., cancers, in breast ultrasound images [6].

Many researchers have involved computer-aided diagnosis (CAD) methods for breast
cancer detection; such methods invoke the usage of Bayesian networks, artificial neural
networks (ANN), k-means clustering, decision trees (DT), and fuzzy logic (FL) [7,8]. How-
ever, some of the authors have applied CAD techniques with DOT for diagnosing breast
cancer. In recent times, convolutional neural networks (CNNs) have proved to be effective
in distinguishing between malignant and benign breast lesions [9]. In comparison with
classical techniques, CNNs eliminate the stages involved in feature extracting of an image;
on the other hand, they provide images straight to the network which could automatically
study discriminatory features [10]. CNN architecture was specifically adapted to have the
benefit of 2D structures for input images.

This article introduces an Aquila Optimizer with Bayesian Neural Network for Breast
Cancer Detection (AOBNN-BDNN) model on BUI. The presented AOBNN-BDNN model
follows a series of processes to detect and classify breast cancer on BUI. To accomplish this,
the AOBNN-BDNN model initially employs Wiener filtering (WF) related noise removal
and U-Net segmentation as a pre-processing step. Besides, the SqueezeNet model derives
a collection of feature vectors from the pre-processed image. Next, the BNN method was
utilized for allocating suitable class labels to the input images. Finally, the AO technique
can be employed to fine-tune the parameters relevant to the BNN method so that the
classification performance will be enhanced, showing the novelty of our work. To validate
the enriched performance of the AOBNN-BDNN algorithm, a wide experimental study is
executed on a benchmark dataset.

The rest of the paper is organized as follows. Section 2 offers a brief survey of breast
cancer classification using ultrasound images. Section 3 elaborates on the proposed model
and Section 4 validates the performance of the proposed model. Lastly, Section 5 concludes
the study.

2. Related Works

Hijab et al. [11] present a DL technique for managing this issue. The trained data,
which has numerous images of malignant and benign cases, has been employed for training
a deep CNN. Three training techniques were devised: a baseline technique in which the
CNN structure can be well-trained from scratch, a TL method in which the pretrained
VGG16 CNN structure can be additionally well-trained with the ultrasound imagery, and a
finely tuned learning method in which the DL variables were optimally tuned to overcome
overfitting. Kalafi et al. [12] introduce a novel structure for classifying breast cancer (BC)
lesions with an attention module in an adapted VGG16 structure. The implemented
attention system will enhance the feature discrimination among the target and background
lesions in ultrasound. The author devises a novel ensemble loss function, which can be a
grouping of the logarithm and binary cross-entropy of hyperbolic cosine loss, to enhance
the method discrepancy among labels and classified lesions.

Lee et al. [13] devised a channel attention module including multiscale grid average
pooling (MSGRAP) for segmenting BC sections accurately in ultrasound imagery. The
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author establishes the efficiency of the channel attention elements by adding MSGRAP for
semantic segmentation and advances a new semantic segmentation network including the
presented attention modules for segmenting BC regions accurately in ultrasound images.
Whereas a standard convolutional function does not use global spatial data on input and
just uses small local data in a kernel belonging to a convolution filter, the presented attention
component permits utilization of global as well as local spatial data. Xie et al. [14] develop a
technique called Domain Guided-CNN (DG-CNN) for incorporating margin data, a feature
defined in the consensus for radiotherapists for diagnosing tumors in breast ultrasound
(BUS) imagery. In DG-CNN, attention maps which emphasize marginal regions of cancers
were initially produced and combined through various techniques into the networks.

Zhu et al. [15] attempted to advance an automated technique for distinguishing thyroid
and breast lesions in ultrasound images with the help of deep CNNs (DCNN). To be specific,
the author modeled a generic DCNN structure including TL and similar architectural
variable settings for training methods for thyroid and BC (BNet and TNet) correspondingly,
and to test the feasibility of these GA with an ultrasound image accumulated from medical
practice. In [16], an RDAU-NET (Residual-Dilated-Attention-Gate-UNet) method was
introduced and used for segmenting the cancers in BUS imagery. The method depends on
the classical U-Net, but plain neural components were substituted by residual elements to
enhance edge data and overcome the network performance deprivation issue linked with
the deep network system. To raise the receptive domain and obtain more characteristic
data, dilated convolutions can be utilized for processing the feature maps acquired from
the encoder phases.

3. The Proposed Model

In this study, a new AOBNN-BDNN algorithm was modelled for the recognition
and classification of breast cancer on BUI. The suggested AOBNN-BDNN model follows
a series of processes to detect and classify breast cancer on BUI. At the initial stage, the
WF-based noise removal and U-Net segmentation is a pre-processing step. In addition, the
SqueezeNet model derives a collection of feature vectors from the pre-processed image.
Finally, the AO with the BNN method can be utilized to allocate suitable class labels to the
input images. Figure 1 depicts the overall process of the AOBNN-BDNN approach.
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3.1. Image Pre-Processing

At the initial stage, the AOBNN-BDNN algorithm applies WF-based noise removal
and U-Net segmentation as a pre-processing step. The WF technique carries out 2D adaptive
noise removal filtering using a window size of 3× 3 that eliminates the blur generated in
Gaussian smoothing [17]. As a result, images are restored without noise. The local mean
(µ) and variance (σ2) of every pixel can be defined as follows.

µ =
1

NM ∑
n1,n2εθ

α(n1, n2) (1)

σ2 =
1

NM ∑
n1,n2εθ

α2(n1, n2)− µ2 (2)

Next, the WF can be defined as follows:

b(n1, n2) = µ +

(
σ2 − β2)

σ2 (α(n1, n2)− µ) (3)

where b(n1, n2) refers to a recovered image, θ refers to the N ×M local neighborhood of
every pixel in a scaled input image and β2 stands for the noise variance.

Next, the preprocessed images are passed onto the U-Net architecture to perform the
segmentation process. This is a fundamental structure in the medical imaging automation
society and has massive applications in the domain. The network structure consists of
contractive and expansive paths [18]. The contracting path involves numerous patches
of convolution with a filter size of 3 × 33 × 3 and unity strides in both directions, after
the ReLU layer. Next, it draws data from the feature vector through up-convolution, and
generates, through a consecutive operation, an output segmenting map, and from the
contractive path, through cropping and copying. The building block of this architecture is
the operation connecting both paths. This connection enables the network to accomplish a
precise dataset from the contractive path, therefore producing the segmentation mask for
the output.

3.2. Feature Extraction Using SqueezeNet

After pre-processing, the SqueezeNet model derives a collection of feature vectors from
the pre-processed image. SqueezeNet is a lightweight and efficient CNN mechanism [19].
Using this model, we accomplish a 50× reduction in module size in comparison with
AlexNet, while exceeding or meeting the top-1 and -5 accurateness of AlexNet. The
SqueezetNet module accomplishes remarkable outcomes with a small number of variables.
There are two significant portions of CNN: classification and feature extraction. The
extracted feature was employed for the precise image classification. Especially, these two
portions of CNN accomplish the primary operation of CNN. The feature extraction of
CNN encompasses convolution and sampling layers. The filtering of convolution layers is
applied to diminish the noise in an image; later, the features of the image were enhanced.
The convolution process was completed between the presentation layer convolutional
kernel layer and the upper layer feature vector. Lastly, the activation function of CNN
decides the computation of the convolution process. The effectiveness of training a NN was
noticeable while applying the cost function (Z), which indicates the proportion between
the reached output and trained instance [20].

Z =
−1
m ∑[x ln a(1− x) ln(1− β)] (4)

In Equation (4), m characterizes the trainable dataset amount, x denotes the foreseeable
value, and β indicates the original values in the resulting layer.

The activation function role is a major portion of the classification technique with
weighting the result of the CNN method and transmission kernel size. The ReLU activation
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function is in the middle of the commonly applied activation function. It is exploited from
almost every CNN method for setting each negative value corresponding to zero. The zero
setting inhibits several nodes contributed by the learning algorithm. An additional function,
called ELU and LReLU, offers a slightly negative value and was hardly employed in the
classification technique. ReLU activation function shows optimal results when compared to
the LReLU activation function from the classification that is applied in this technique [21].
The ReLU activation function can be arithmetically formulated in the subsequent equation.

ReLU(x) = max(0; x) (5)

This is more commonly applied in embedded settings; it involves distinct models of
compression techniques. For example, 3× 3 convolution kernels in the proposed technique
are replaced by 1× 1 convolution kernels. By using these techniques, the variable number
for the individual convolution function is minimalized through a factor of 9. Furthermore,
the 3× 3 convolution kernel is reduced and down-sampling is hindered in the network.
As a result, the suggested technique reduces the computation efforts and the number of
trained variables. For that reason, it is practicable to establish SqueezeNet in memory
constraint hardware devices. In contrast with the contemporary AI model, we perceived
that SqueezeNet has a minimal variable amount; consequently, it is the better choice for
robot vacuum applications. Inappropriately, the model size (viz., 6.1 MB) was higher in
comparison with the memory space existing in the robot vacuum.

3.3. Image Classification Using BNN

During the classification process, the BNN model is utilized to allocate proper class
labels to the input images. The BNN is a kind of probability distribution through network
weight, immediate advantages being the fully probabilistic treatment, therefore the ap-
proximation of uncertainty in prediction [22]. Here, we consider previous knowledge or
p0(W) distribution of the weight and evaluate the posterior weight distribution p(W|D)
afterward regarding the D dataset and it can be assessed by

p(W|D) =
p(D|W)p0(W)

p(D)
(6)

In Equation (6), p0(W) refers to prior weight distribution, generally an isotropic
Gaussian, and p(D) represents the normalized distribution constant. In these settings,
prediction is performed by the posterior from Equation (6):

p(Y∗|X∗, D) =
∫

p(Y∗|, X∗,W)p(W|D)dW (7)

In this study, the uncertainty arises because of sampling the batch normalization (BN)
and dropout weight, and prediction can be performed through averaging T forwarded
passes through the network:

p(Y∗|X∗, D) =
1
T

T

∑
t=1

p(Y∗|X∗, D,Wt) (8)

The network layer (max pool, BN) is presented as follows [23].

1. Batch Normalization is a process to accelerate network training via decreasing the
internal covariate shift (which defines the variations in the distribution of activation
unit because of parameter changes) performed by normalizing the hidden layer
activation through an evaluated µβ and σβ from every mini-batch.

2. Dropout is a regularization method, also regarded as a Bayesian methodology: the
process eliminates part of the network in a random fashion which makes the weight
stochastic quantity: Ŵ =W ⊗ α, where α ∼ Bernoulli(p),W refers to the first weight
of the network, and ⊗ denotes the direct product using binary vector randomly.
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The network can be trained by theW dropout and it has a stochastic gradient descent,
resulting in robustness and uncertainty.

3.4. Parameter Optimization

Finally, the AO technique is utilized to fine-tune the parameters related to the BNN
method so that the classification performance will be improved [24]. The AO technique
simulates AO’s social activity for catching their prey. AO is a population-based optimized
approach, related to other meta-heuristic systems, which start with establishing a primary
population X with N agents. The subsequent formula is utilized for executing this process.
Figure 2 demonstrates the flowchart of the AO technique.

Xij = r1 ×
(
UBj − LBj

)
+ LBj, i = 1, 2, Nj = 1, 2, . . . , Dim (9)

In Equation (9), UBj and LBj demonstrate the restrictions of searching space. r1 ∈ [0, 1]
implies the arbitrary value and Dim denotes the dimensional of agents. In the AO approach,
the following step is to perform exploration and exploitation until the optimal solution is
established [25]. Two stages exist in exploitation and exploration. The Xb optimal agent and
(X) the average of agents are applied in the exploration, and it is mathematically expressed
in the following:

Xi(t + 1) = Xb(t)×
(

1− t
T

)
+ (XM(t)− Xb(t) ∗ rand), (10)

XM(t) =
1
N

N

∑
i=1

X(t), ∀j = 1, 2, . . . , Dim (11)

The exploration stage can be controlled using ( 1−t
T ) in Equation (10). The maximal

amount of generations is represented as T. The exploration stage applies the Levy flight
(Levy(D)) distribution as well as Xb to upgrade the solution as follows:

Xi(t + 1) = Xb(t)× Levy(D) + XR(t) + (y− x) ∗ rand, (12)

Levy (D) = s× u× σ

|v|
1
β

, σ =

Γ(1 + β)× sine
(

πβ
2

)
Γ
(

1+β
2

)
× β× 2(

β−1
2 )

 (13)

In Equation (13), s = 0.01 and β = 1.5. u and v indicate the arbitrary values. XR
refers to arbitrarily selected agents. Additionally, y and x refer to two variables utilized for
stimulating the spiral shape:

y = r× cos(θ), x = r× sin(θ) (14)

r = r1 + U × D1, θ = −ω× D1 + θ1, θ1 =
3× π

2
(15)

In Equation (15), ω = 0.005 and U = 0.00565. r1 ∈ [0, 20] stands for an arbitrary value.
The initial method utilized to improve the agent in the exploitation stage depends on Xb
and XM, comparable to exploration as follows:

Xi(t + 1) = (Xb(t)− XM(t))× α− rnd + (UB× rnd + LB)× δ (16)

In Equation (16), UB = (UB− LB), α, and δ refer to the exploitation adjustment
parameter. rnd ∈ [0, 1] denotes a random number. The agent is upgraded by Xb, Levy, and
the quality function QF in the next exploitation phase:

Xi(t + 1) = QP× Xb(t)− GX− G2 × Levy(D) + rnd× G1 (17)

GX = (G1 × X(t)× rnd)
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QP(t) = t
2×rnd( )−1
(1−T)2 (18)

Moreover, G1 denotes the motion applied to track the optimum individual solution, as
follows:

G1 = 2× rnd( )− 1, G2 = 2×
(

1− t
T

)
(19)

In Equation (19), rnd refers to a random number. Furthermore, G2 indicates a variable
decreased from two to zero as follow:

G2 = 2×
(

1− t
T

)
(20)
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The AO method derives a fitness function (FF) to exhibit the better performance of the
classification. It defines a positive integer to characterize the improved performance of the
solution candidate. In this study, the reduction of classification error rate was regarded as
the FF, as follows.

f itness(xi) = Classi f ierErrorRate(xi)

= number o f misclassi f ied samples
Total number o f samples ∗ 100

(21)

4. Results and Discussion

The experimental validation of the AOBNN-BDNN method is tested using the breast
ultrasound image dataset [26]. It contains a total of 780 images with three class labels, as
shown in Table 1.
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Table 1. Dataset details.

Class No. of Images

Benign 437
Malignant 210
Normal 133
Total Number of Images 780

Figure 3 exhibits the confusion matrices created by the AOBNN-BDNN algorithm
on the applied data. On the entire dataset, the AOBNN-BDNN method has recognized
429 samples as benign, 210 samples as malignant, and 132 samples as normal. Simul-
taneously, on 70% of training (TR) data, the AOBNN-BDNN technique has recognized
311 samples as benign, 135 samples as malignant, and 92 samples as normal. Concurrently,
on 30% of testing (TS) data, the AOBNN-BDNN method has recognized 118 samples as
benign, 75 samples as malignant, and 40 samples as normal.
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Table 2 and Figure 4 portray a brief classification outcome of the AOBNN-BDNN
method on the entire dataset. The results implied that the AOBNN-BDNN method has
effectually recognized all three classes. For instance, the AOBNN-BDNN model has iden-
tified benign class samples with accuy of 98.85%, precn of 99.77%, recal of 98.17%, Fscore
of 98.96%, and MCC of 97.68%. Moreover, the AOBNN-BDNN algorithm has identified
Malignant class samples with accuy of 98.97%, precn of 96.33%, recal of 100%, Fscore of
98.13%, and MCC of 97.46%. Furthermore, the AOBNN-BDNN technique has identified
normal class samples with accuy of 99.87%, precn of 100%, recal of 99.25%, Fscore of 99.62%,
and MCC of 99.55%.
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Table 2. Result analysis of the AOBNN-BDNN approach with different measures under the entire dataset.

Entire Dataset

Class Labels Accuracy Precision Recall F-Score MCC

Benign 98.85 99.77 98.17 98.96 97.68
Malignant 98.97 96.33 100.00 98.13 97.46
Normal 99.87 100.00 99.25 99.62 99.55
Average 99.23 98.70 99.14 98.91 98.23

Table 3 and Figure 5 display a detailed classification outcome of the AOBNN-BDNN
algorithm on 70% of TR data. The results denoted the AOBNN-BDNN methodology has
effectually recognized all three classes. For example, the AOBNN-BDNN technique has
identified benign class samples with accuy of 98.53%, precn of 99.68%, recal of 97.80%, Fscore
of 98.73%, and MCC of 97.02%. Additionally, the AOBNN-BDNN approach has identified
Malignant class samples with accuy of 98.72%, precn of 95.07%, recal of 100%, Fscore of
97.47%, and MCC of 96.67%. Besides, the AOBNN-BDNN technique has identified normal
class samples with accuy of 99.82%, precn of 100%, recal of 98.92%, Fscore of 99.46%, and
MCC of 99.35%.
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Table 3. Result analysis of the AOBNN-BDNN approach with various measures under 70% of
TR data.

Training Phase (70%)

Class Labels Accuracy Precision Recall F-Score MCC

Benign 98.53 99.68 97.80 98.73 97.02
Malignant 98.72 95.07 100.00 97.47 96.67
Normal 99.82 100.00 98.92 99.46 99.35
Average 99.02 98.25 98.91 98.55 97.68

Table 4 and Figure 6 exhibit brief classification results of the AOBNN-BDNN technique
on 30% of the TS dataset. The outcomes implied that the AOBNN-BDNN approach has
effectually recognized all three classes. For example, the AOBNN-BDNN methodology
has identified benign class samples with accuy of 99.57%, precn of 100%, recal of 99.16%,
Fscore of 99.58%, and MCC of 99.15%. along with that, the AOBNN-BDNN algorithm has
identified Malignant class samples with accuy of 99.57%, precn of 98.68%, recal of 100%,
Fscore of 99.34%, and MCC of 99.03%. In addition, the AOBNN-BDNN methodology has
identified normal class samples with accuy of 100%, precn of 100%, recal of 100%, Fscore of
100%, and MCC of 100%.
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Table 4. Result analysis of the AOBNN-BDNN approach with various measures under 30% of
TS data.

Testing Phase (30%)

Class Labels Accuracy Precision Recall F-Score MCC

Benign 99.57 100.00 99.16 99.58 99.15
Malignant 99.57 98.68 100.00 99.34 99.03
Normal 100.00 100.00 100.00 100.00 100.00
Average 99.72 99.56 99.72 99.64 99.39

The training accuracy (TA) and validation accuracy (VA) obtained by the AOBNN-
BDNN methodology on the test dataset is established in Figure 7. The experimental
result denoted the AOBNN-BDNN algorithm has reached higher values of TA and VA. In
Particular, the VA is greater than TA.
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The training loss (TL) and validation loss (VL) obtained by the AOBNN-BDNN ap-
proach on the test dataset are displayed in Figure 8. The experimental outcome represented
that the AOBNN-BDNN method has exhibited minimal values of TL and VL. To be specific,
the VL is lesser than the TL.
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A clear precision-recall analysis of the AOBNN-BDNN technique on the test dataset is
represented in Figure 9. The figure inferred the AOBNN-BDNN technique has resulted in
enhanced values of precision-recall values in every class label.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 19 
 

A clear precision-recall analysis of the AOBNN-BDNN technique on the test dataset 

is represented in Figure 9. The figure inferred the AOBNN-BDNN technique has resulted 

in enhanced values of precision-recall values in every class label. 

 

Figure 9. Precision-recall curve analysis of AOBNN-BDNN methodology. 

A brief ROC study of the AOBNN-BDNN method on the test dataset is shown in 

Figure 10. The outcomes signified that the AOBNN-BDNN methodology has displayed 

its capability in classifying distinct classes on the test dataset. 

Table 5 provides an overall comparative inspection of the AOBNN-BDNN method 

with recent approaches [11]. Figure 11 renders a brief study of the AOBNN-BDNN 

method with existing models in terms of ����� and �����. The experimental outcomes 

reported the betterment of the AOBNN-BDNN model. With respect to ����� , the 

AOBNN-BDNN model has attained increased �����  of 99.56% whereas the SEODTL-

BDC, ESD, LSVM, ESKNN, FKNN, and LD methods have obtained reduced ����� of 

99.18%, 98.89%, 98.41%, 97.55%, 96.93%, and 97.41% respectively. In addition, with regard 

to �����, the AOBNN-BDNN method has achieved increased ����� of 99.72% whereas 

the SEODTL-BDC, ESD, LSVM, ESKNN, FKNN, and LD algorithms have gained reduced 

����� of 98.18%, 98.11%, 97.87%, 98.27%, 97%, and 98.05% correspondingly. 

Table 5. Comparative analysis of AOBNN-BDNN approach with existing methodologies. 

Methods Precision Recall Accuracy F-Score 

AOBNN-BDNN 99.56 99.72 99.72 99.64 

SEODTL-BDC 99.18 98.18 99.12 98.14 

ESD model 98.89 98.11 99.07 98.88 

LSVM model 98.41 97.87 98.73 98.29 

ESKNN model 97.55 98.27 97.70 98.61 

FKNN algorithm 96.93 97.00 97.42 96.93 

LD algorithm 97.41 98.05 97.92 96.99 

Figure 9. Precision-recall curve analysis of AOBNN-BDNN methodology.

A brief ROC study of the AOBNN-BDNN method on the test dataset is shown in
Figure 10. The outcomes signified that the AOBNN-BDNN methodology has displayed its
capability in classifying distinct classes on the test dataset.

Table 5 provides an overall comparative inspection of the AOBNN-BDNN method
with recent approaches [11]. Figure 11 renders a brief study of the AOBNN-BDNN method
with existing models in terms of precn and recal . The experimental outcomes reported the
betterment of the AOBNN-BDNN model. With respect to precn, the AOBNN-BDNN model
has attained increased precn of 99.56% whereas the SEODTL-BDC, ESD, LSVM, ESKNN,
FKNN, and LD methods have obtained reduced precn of 99.18%, 98.89%, 98.41%, 97.55%,
96.93%, and 97.41% respectively. In addition, with regard to recal , the AOBNN-BDNN
method has achieved increased recal of 99.72% whereas the SEODTL-BDC, ESD, LSVM,
ESKNN, FKNN, and LD algorithms have gained reduced recal of 98.18%, 98.11%, 97.87%,
98.27%, 97%, and 98.05% correspondingly.

Table 5. Comparative analysis of AOBNN-BDNN approach with existing methodologies.

Methods Precision Recall Accuracy F-Score

AOBNN-BDNN 99.56 99.72 99.72 99.64
SEODTL-BDC 99.18 98.18 99.12 98.14
ESD model 98.89 98.11 99.07 98.88
LSVM model 98.41 97.87 98.73 98.29
ESKNN model 97.55 98.27 97.70 98.61
FKNN algorithm 96.93 97.00 97.42 96.93
LD algorithm 97.41 98.05 97.92 96.99
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Figure 12 offers a comparative examination of the AOBNN-BDNN method with
existing models with accuy and Fscore. The experimental outcomes reported the betterment
of the AOBNN-BDNN method. With accuy, the AOBNN-BDNN algorithm has gained
increased accuy of 99.72% whereas the SEODTL-BDC, ESD, LSVM, ESKNN, FKNN, and
LD methodologies have reached reduced accuy of 99.12%, 99.07%, 98.73%, 97.70%, 97.42%,
and 97.92%, correspondingly. Additionally, concerning Fscore, the AOBNN-BDNN method
has received increased Fscore of 99.64% whereas the SEODTL-BDC, ESD, LSVM, ESKNN,
FKNN, and LD methodologies have gained reduced Fscore of 98.14%, 98.88%, 98.29%,
98.61%, 96.93%, and 96.99%, correspondingly.
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Figure 12. Accuy and Fscore analysis of the AOBNN-BDNN approach with existing methodologies.

Finally, a classification time (CT) inspection of the AOBNN-BDNN model with recent
models is carried out in Table 6 and Figure 13. The attained values implied the ESKNN
method has shown poor results with a higher CT of 2.28 min. In the meantime, the ESD
and FKNN methods have obtained slightly reduced outcomes with closer CT of 2.28 min
and 2.24 min, respectively.

Table 6. Classification time analysis of AOBNN-BDNN approach with recent algorithms.

Methods Classifification Time (min)

AOBNN-BDNN 1.01
SEODTL-BDC 1.18
ESD model 2.28
LSVM model 1.95
ESKNN model 2.80
FKNN algorithm 2.24
LD algorithm 1.75
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In addition, the LSVM and LD models have accomplished moderately reduced CT
of 1.95 min and 1.75 min, respectively. However, the AOBNN-BDNN model has gained
maximum outcome with minimal CT of 1.01 min. Therefore, the experimental values
guaranteed that the AOBNN-BDNN method was found to be an effective tool compared to
other approaches.

5. Conclusions

In this study, a new AOBNN-BDNN method was developed for the recognition and
classification of breast cancer on BUI. The suggested AOBNN-BDNN method follows a
series of processes to detect and classify breast cancer on BUI, primarily the WF-based
noise removal and U-Net segmentation as a pre-processing steps. Besides, the SqueezeNet
model derives a collection of feature vectors from the pre-processed image. Next, the BNN
method is utilized to allocate suitable class labels to the input images. Finally, the AO
technique is utilized to fine-tune the parameters related to the BNN algorithm so that the
classification performance will be improved. To validate the enhanced performance of the
AOBNN-BDNN method, a wide-ranging experimental analysis has been conducted on the
benchmark dataset. An extensive experimental analysis stated the enhancements of the
AOBNN-BDNN method over recent approaches with maximum accuracy of 99.72%. In
the future, advanced DL models can be designed to enhance breast cancer classification
performance. Besides, the proposed model can be tested on a real-time large-scale dataset
in the future.
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