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Abstract: The pantograph is the main noise source of high-speed trains, of which the middle and
upper parts of the pantograph account for about 50% of the whole noise energy. Taking CRH380BL
pantograph as the basic prototype, three aerodynamic noise reduction measures of opening, slotting,
and airfoil are introduced to build a new pantograph, and their aeroacoustic performances are
comprehensively investigated through large eddy simulation (LES) and Ffowcs Williams–Hawkings
(FW-H) equation method. The research results show that the open upper and lower arms (ULA)
can reduce the downstream vorticity intensity and vortex structure scale, which in turn reduces the
noise source intensity, thus reducing their radiated noise by approximately 1.1 dBA. The slotted
ULA reduce the size of the rear vortex structure but increase the vorticity intensity, so it is difficult
to effectively control their radiated noise. The airfoil bow head reduces the vorticity intensity and
vortex structure scale behind it, and avoids periodic vortex shedding, thereby reducing its noise
source intensity, thus reducing its radiated noise by about 1.2 dBA.

Keywords: pantograph; aerodynamic noise; large eddy simulation; optimal design

1. Introduction

Existing research shows that when the train speed is greater than 300 km/h, the
proportion of aerodynamic noise source energy to total noise source energy is about
50% [1–3]. The pantograph is one of the main aerodynamic noise sources. Pantographs are
composed of bars of different scales and inclination angles, which induce complex flow
field phenomena such as layer/turbulence boundary layer separation, vortex streets, flow
transitions, and large separation turbulence, and become significant noise sources [4,5].

In terms of pantograph region aerodynamic noise characteristics and generation
mechanism, the acoustic wind tunnel test results of Andreas Lauterbach and others [5]
show that the pantograph has obvious wind-blown sound characteristics, and its far-
field radiated noise has Strohal number similarity. Siano et al. [6] calculated the closed
pantograph aerodynamic noise for 300 km/h using SAS and acoustic boundary elements
and pointed out that vortex shedding is the main formation mechanism of pantograph
aerodynamic noise. Sun et al. [7] and Lee et al. [8] both analyzed the aerodynamic noise
contribution rate of pantograph components and obtained some accurate conclusions, for
example, the high-frequency noise mainly originated from the bow head. Holmes et al. [9]
studied the sound generation mechanism of the external convex cavity deflector around
the pantograph and found that the transverse vortex dislodged from the cavity guide edge
hit the cavity with the edge and generated a strong fluctuating pressure inside the cavity.
In terms of pantograph aerodynamic noise optimization measures, the main focus is on
optimizing the rod aerodynamic shape, adding deflector structures, etc. Kurita T. [10] et al.
explored in detail the acoustic characteristics of the guide edge shape, its cross-sectional
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shape, and the inclination angle of the pantograph deflector, and designed a new low-noise
deflector with a decreasing 2 dB. Takaishi et al. [11] and Ikeda et al. [12,13] all pointed out
that suitable bow-head struts can destroy its vortex street, thus effectively suppressing its
radiated noise. Zhang Ya-dong et al. [14] showed that the noise radiated from an open
pantograph is 3.4 dBA lower than that of a closed one. Rho et al. [15] used the LES, FW-H
equation, and genetic algorithm-based Kriging model to optimize the cross-sectional shape
of the bow head, and the optimal cross-sectional shape of the bow head with optimal
aerodynamic/acoustic characteristics was obtained. The optimized effect of 26% drag
reduction and 2 dB noise reduction was achieved. Liu Xiao-wan et al. [16] numerically
investigated the flow/acoustic field characteristics of a cylindrical rod with different angles
of attack and incoming flow velocities and found that the higher the angle of attack, the
lower the peak sound pressure level and frequency of aerodynamic noise. Sun et al. [7]
pointed out that optimizing the shape of the deflector can effectively suppress the cavity
radiation noise. Kim et al. [17] simplified the pantograph and sinking platform into a
cylinder and a concave cavity, respectively, discussed the influence of the position of the
cylinder installation and the rounding angle of the guide edge on the aerodynamic noise
and obtained the following conclusions: the backflow length of the cavity and the vortex
are significantly reduced during the growth of the circular angle from 0 to a certain angle,
and the total radiated aerodynamic noise, total resistance and total lateral force are also
significantly reduced; increasing the distance between the guide edge and the cylinder
can effectively suppress the mutual interference behavior between the shear flow and the
cylinder, thus reducing the peak sound pressure level.

At present, the research on the mechanism of aerodynamic noise in the pantograph area
has a relatively clear understanding, and the measures mainly focus on adding deflectors
on both sides of the pantograph to isolate the noise radiation, or installing the pantograph
in the cavity to reduce the incoming speed at the bottom, or carrying out aerodynamic noise
reduction design for the shape of the rod [18–20], or laying sound-absorbing materials on
the back of the arm to achieve noise reduction, with less discussion of the applicability
of various aerodynamic noise reduction design methods in the pantograph area such as
openings, slotting and airfoil.

The middle and upper part of the pantograph is composed of typical rod structures
such as the upper arm rod, lower arm rod, and bow head, which can become a strong
aerodynamic noise source under high-speed airflow, and is located at a higher position,
making it difficult to take effective measures to cut off the noise propagation. 330 km/h
speed class real vehicle tests show that the contribution of the pantograph to the radiated
noise of high-speed trains is more than 10% [21], among which the contribution of the
middle and upper part of the pantograph to its radiated noise is more than 50%. Therefore,
this paper takes CRH380BL as the base model and adopts three types of aerodynamic noise
reduction designs for it, namely, opened, slotted and airfoiled, respectively, to determine
their applicability for ULA according to their respective noise reduction principles, and
noise reduction magnitudes, and then obtain a new pantograph with better aerodynamic
acoustic performance.

2. Aerodynamic Noise Optimization

The complex geometric characteristics of the pantograph make its aerodynamic noise
mechanism to be complicated. Existing studies show that the pantograph flow field
structure includes: the strong vorticity flow, the vortex street, and the different scale
single-legged hairpin vortex [21].

These flow structures originate from the rod. Therefore, the noise reduction for the
rods can effectively reduce the noise in this region. The principle of noise reduction for
the rod includes: restraining the separation of airflow; reducing the vortex shedding
intensity and adjusting the vortex shedding frequency; reducing the mixing intensity
of airflow; restraining the mutual interference strength of members. Considering the
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geometric and flow field structural characteristics of ULA, this paper adopts three noise
reduction measures of opening, slotting, and airfoil to reduce its noise, as shown in Figure 1.
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Figure 1. Schematic diagram of the optimized scheme in the upper part of the pantograph.
(a) Opened ULA. (b) Slotted ULA. (c) The airfoil bow head. (d) Dimension description.

Figure 1a shows the opened ULA. The hole diameter is 20 mm, the vertical spacing
between different holes is 20 mm, and the holes are horizontally oriented. There are 8 holes
in the upper arm and 10 holes in the lower arm.

Figure 1b shows the slotted ULA. The groove is 11.55 mm wide and 10 mm deep, and
the edge width between grooves is 23.2 mm

Figure 1c shows the airfoil bow. Its section is 57.33 mm long and 23.45 mm high.

3. Numerical Calculation Model

When trains are operated under open line conditions, the actual running state of
the train on the ground is usually simulated by relative motion. The calculation do-
main is shown in Figure 2. The size of the calculation area should ensure that the flow
field is fully developed. The upstream of the flow field should be no less than 8 times
the characteristic height, and the downstream of the flow field should be no less than
16 times the characteristic height. The characteristic height here refers to the distance of
the top surface of the train from the ground. These parameters can significantly reduce the
influence of the boundary on the flow field. The size of the calculation area used in this
study is 400 × 30 × 20 m, which fully meets the requirements. The boundary conditions
taken by each surface of the calculation domain are shown in Table 1.
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Figure 2. Train calculation domain.

Table 1. The facets of the computational domain.

Face ABCD Face BFGC, AEHD, CGHD Face ABFE Face EFGH

Speed inlet Symmetric boundaries Sliding Ground Pressure outlet

The numerical simulation calculation of the train flow field is divided into steady-state
and unsteady-state calculations. The steady-state calculation is based on the pressure-based
implicit solution method. SST− kω model is chosen for the turbulence model. The SIMPLE
algorithm is used for the pressure-velocity coupling, and standard discrete format is used
for the pressure, and the second-order windward discrete format is used for the momentum,
turbulent kinetic energy, and turbulent kinetic energy dissipation rate. For the unsteady state
calculation, the steady-state flow field is used as the initial flow field, the turbulence model
is LES, and the sub-grid model is the Smagorinsky model. The PISO method is chosen for
pressure-velocity coupling. The time step is taken as 5 × 10−5 s, and a total of 10,000 time
steps are calculated. All calculations were completed in Wuxi Supercomputing Center. The
calculation software is ANSYS fluent. For further details of the numerical model, see articles
(Vortex structures and aeroacoustic performance of the flow field of the pantograph’ and
‘Adaptability of Turbulence Models for Pantograph Aerodynamic noise simulation’).

The calculation conditions are shown in Table 2.

Table 2. Calculated working conditions.

Computational Models Scaling Ratio Vehicle Speed

Opened
1:8 350 km/hSlotted

Airfoil

The grid schematic is shown in Figure 3.
The calculation model grid parameters are shown in Table 3. In Table 3, y+ is calculated

by Equation (1).

y+ =
U∗y

υ
(1)

where U∗ =
√

τω/ρ is the wall friction velocity, τω is the wall shear stress, y is the distance
from the centroid of the first layer of mesh to the wall, υ is the kinematic viscosity coefficient.
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Table 3. Table of calculation grid parameters.

Models Volume Grid
Number (Billion)

Total Surface Grid
Number (Million)

Pantograph
Surface Grid

Number (Million)

Whole Vehicle
Surface y+

Average Value

Pantograph
Surface y+

Average Value

Opened 1.91 1365 313 0.92 0.85
Slotted 1.92 1298 326 0.91 0.82
Airfoil 1.91 1325 309 0.93 0.82

According to Table 3, y+ of the car body and the pantograph are both less than 1. This
indicates that the grid can describe the airflow behavior of the viscous bottom layer. This is
also an important source of aerodynamic noise. Therefore, the grid in this paper can be
used to calculate the aerodynamic noise in the pantograph area.

4. Flow Field Fluctuation Performance

Figures 4–6 compare the original model and the optimized model, showing the veloc-
ity amplitude, vorticity amplitude, and Q-value distribution clouds on the longitudinal
symmetry surface, respectively.
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According to the original model in Figures 4–6, it can be seen that the middle and
upper regions of the pantograph have typical flow field structural characteristics: the
middle of the pantograph is located in the strong vortex shear flow separated by the convex
plate, which makes the vorticity amplitude around this region larger, and thus changes
the periodic vortex shedding characteristics of the existing flow field in this region; the
upstream of the upper part of the pantograph is a high-speed low vorticity region, while the
downstream is a low-speed strong vorticity region, and shows periodic vortex shedding.

According to Figures 4–6, the optimized model with respect to the original model
leads to the following conclusions:

(1) The opened ULA increase their rear airflow velocity and their upstream rear vorticity
intensity, but reduce their downstream rear vorticity intensity and their rear vorticity
structure scale;

(2) The slotted ULA increase the vorticity intensity around them;
(3) The airfoil bow head reduces the intensity of the vorticity behind the bow head and

the vortex structure size, making the flow field smoother.

5. Aerodynamic Noise Source Performance

The time root mean square of the fluctuating pressure on the pantograph surface can
reflect its sound source intensity [21]. Equation (2) is the calculation of fluctuating pressure.
Equation (3) is the calculation of the time root mean square of fluctuating pressure.

p′ = p− p (2)

where p is the transient pressure, p′ is the fluctuating pressure, p is the time average of
the transient.

dpdt−rms =

√√√√∫
T
(p′)2dt

T
(3)

where T is the sample time.
Figure 7 qualitatively compares the dpdt−rms distribution around the pantograph

between the original model, the opened model, the slotted model, and the airfoil model.
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According to Figure 7, compared with the original model, the following conclusions
can be drawn:
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(1) The opened ULA lightly increases the noise source intensity on the windward side,
but significantly reduces the noise source intensity on the leeward side;

(2) The slotted ULA both increases the noise source intensity on the windward and
leeward sides;

(3) The airfoil model significantly reduces the noise source intensity and the distribution
area of the strong noise source on the bow head.

Equation (4) is the sound power calculation formula of an equivalent sound source [21].

Wsource ∝
(∫

S

∂

∂t
p(y)dS(y)

)2
=

(
∂

∂t

∫
S

p(y)dS(y)
)2

(4)

In this equation: Wsource denotes the equivalent sound power of the sound source;
“y” is the vector of the sound source; ∂p(y)

∂t is the train surface fluctuation pressure time
gradient; “S” is the noise source area.

Figure 8 shows the proportion of the three improved models relative to the original model.
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Figure 8. Histogram of equivalent sound power comparison between optimized solutions in the
upper and middle parts of the pantograph.

According to Figure 8, the opened model and the airfoil model can effectively reduce
the equivalent sound power of the pantograph region and weakly reduce the equivalent
sound power of the whole vehicle; the slotted model significantly increases the equivalent
sound power in the pantograph region, while increasing the equivalent sound power of
the whole vehicle.

6. Far-Field Radiated Noise Performance Evaluation

In order to investigate the far-field noise, the receiver points are arranged longitu-
dinally along the train. They are 25 m away from the central axis of the train and 3.5 m
high from the ground. The arrangement range of the receiver points is [0 105] m, and the
adjacent receiver points are separated by 7 m. The receiver points were arranged as shown
in Figure 9. As can be seen from Figure 9, the first receiver point is located at the nose-tip
of the train, and the other receiver points are numbered in the order of flow. The train is
located between receiver point 1 and receiver point 13, and the pantographs are located
between receiver points 7 and 9, respectively.
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Figure 9. Sound receiver point layout diagram.

Figure 10 quantitatively compares the sound pressure level distribution curves be-
tween them. Compared with the original model, the opened model and the airfoil model
can reduce the far-field noise of the whole vehicle and the pantograph, especially for the
receiver points near the pantograph, however, the slotted model increases the far-field
noise of the whole vehicle and the pantograph. This is because the opening can increase the
airflow through the rod, thereby increasing the air velocity in the leeward area of the rod,
and reducing the pressure in the leeward area of the rod, so that the airflow separation is
backward. Delayed airflow separation can significantly reduce the intensity of aerodynamic
excitation in this area, and then reduce the intensity of sound sources and the distribution
area of strong sound sources.
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In summary, both the opened model and the airfoil model can effectively suppress
the aerodynamic noise of the middle and upper part of the pantograph, which can reduce
1.1 dBA, 1.2 dBA of the pantograph region, and can reduce 0.7 dBA, 0.8 dBA of the whole
vehicle, respectively. The slotted model is difficult to effectively control the aerodynamic
noise around the pantograph.

7. Conclusions

The opened ULA can suppress the aerodynamic noise in the upper and middle regions
of the pantograph, which can reduce the far-field noise of the pantograph region by about
1.1 dBA, or can reduce the far-field noise of the whole vehicle by about 0.7 dBA.

The airfoil bow head can also suppress the aerodynamic noise in the upper and middle
regions of the pantograph, which can reduce the far-field noise in the pantograph region by
about 1.2 dBA, or reduce the far-field noise of the whole vehicle by about 0.8 dBA.

Slotted ULA enhances the aerodynamic noise in the pantograph mid-upper region.
It should be noted that optimizing the location and scale of the opened ULA and the

airfoil bow head can further suppress the airflow interference of various components, so as
to obtain the maximum noise reduction effect.
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