Special Issue on Data Preprocessing in Pattern Recognition: Recent Progress, Trends and Applications
Funding
Acknowledgments
Conflicts of Interest
References
- Rendón, E.; Alejo, R.; Castorena, C.; Isidro-Ortega, F.J.; Granda-Gutiérrez, E.E. Data Sampling Methods to Deal With the Big Data Multi-Class Imbalance Problem. Appl. Sci. 2020, 10, 1276. [Google Scholar] [CrossRef]
- Duan, H.; Wei, Y.; Liu, P.; Yin, H. A Novel Ensemble Framework Based on K-Means and Resampling for Imbalanced Data. Appl. Sci. 2020, 10, 1684. [Google Scholar] [CrossRef]
- Rangel-Díaz-de-la Vega, A.; Villuendas-Rey, Y.; Yáñez-Márquez, C.; Camacho-Nieto, O.; López-Yáñez, I. Impact of Imbalanced Datasets Preprocessing in the Performance of Associative Classifiers. Appl. Sci. 2020, 10, 2779. [Google Scholar] [CrossRef]
- Gul, H.; Javaid, N.; Ullah, I.; Qamar, A.M.; Afzal, M.K.; Joshi, G.P. Detection of Non-Technical Losses Using SOSTLink and Bidirectional Gated Recurrent Unit to Secure Smart Meters. Appl. Sci. 2020, 10, 3151. [Google Scholar] [CrossRef]
- Guzmán-Ponce, A.; Valdovinos, R.M.; Sánchez, J.S.; Marcial-Romero, J.R. A New Under-Sampling Method to Face Class Overlap and Imbalance. Appl. Sci. 2020, 10, 5164. [Google Scholar] [CrossRef]
- Rivera, G.; Florencia, R.; García, V.; Ruiz, A.; Sánchez-Solís, J.P. News Classification for Identifying Traffic Incident Points in a Spanish-Speaking Country: A Real-World Case Study of Class Imbalance Learning. Appl. Sci. 2020, 10, 6253. [Google Scholar] [CrossRef]
- González, M.; Cano, J.R.; García, S. ProLSFEO-LDL: Prototype Selection and Label- Specific Feature Evolutionary Optimization for Label Distribution Learning. Appl. Sci. 2020, 10, 3089. [Google Scholar] [CrossRef]
- Valero-Mas, J.J.; Castellanos, F.J. Data Reduction in the String Space for Efficient kNN Classification Through Space Partitioning. Appl. Sci. 2020, 10, 3356. [Google Scholar] [CrossRef]
- Homocianu, D.; Plopeanu, A.P.; Florea, N.; Andrieș, A.M. Exploring the Patterns of Job Satisfaction for Individuals Aged 50 and over from Three Historical Regions of Romania. An Inductive Approach with Respect to Triangulation, Cross-Validation and Support for Replication of Results. Appl. Sci. 2020, 10, 2573. [Google Scholar] [CrossRef]
- Niu, H.; Khozouie, N.; Parvin, H.; Alinejad-Rokny, H.; Beheshti, A.; Mahmoudi, M.R. An Ensemble of Locally Reliable Cluster Solutions. Appl. Sci. 2020, 10, 1891. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, J.S.; García, V. Special Issue on Data Preprocessing in Pattern Recognition: Recent Progress, Trends and Applications. Appl. Sci. 2022, 12, 8709. https://doi.org/10.3390/app12178709
Sánchez JS, García V. Special Issue on Data Preprocessing in Pattern Recognition: Recent Progress, Trends and Applications. Applied Sciences. 2022; 12(17):8709. https://doi.org/10.3390/app12178709
Chicago/Turabian StyleSánchez, José Salvador, and Vicente García. 2022. "Special Issue on Data Preprocessing in Pattern Recognition: Recent Progress, Trends and Applications" Applied Sciences 12, no. 17: 8709. https://doi.org/10.3390/app12178709
APA StyleSánchez, J. S., & García, V. (2022). Special Issue on Data Preprocessing in Pattern Recognition: Recent Progress, Trends and Applications. Applied Sciences, 12(17), 8709. https://doi.org/10.3390/app12178709