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Featured Application: The comparison carried out in this paper through different Machine Learn-
ing and Deep Learning models defines the most appropriate techniques to forecast the rooftop
photovoltaic production.

Abstract: The increasing trend in energy demand is higher than the one from renewable generation, in
the coming years. One of the greatest sources of consumption are buildings. The energy management
of a building by means of the production of photovoltaic energy in situ is a common alternative to
improve sustainability in this sector. An efficient trade-off of the photovoltaic source in the fields of
Zero Energy Buildings (ZEB), nearly Zero Energy Buildings (nZEB) or MicroGrids (MG) requires
an accurate forecast of photovoltaic production. These systems constantly generate data that are not
used. Artificial Intelligence methods can take advantage of this missing information and provide
accurate forecasts in real time. Thus, in this manuscript a comparative analysis is carried out to
determine the most appropriate Artificial Intelligence methods to forecast photovoltaic production
in buildings. On the one hand, the Machine Learning methods considered are Random Forest (RF),
Extreme Gradient Boost (XGBoost), and Support Vector Regressor (SVR). On the other hand, Deep
Learning techniques used are Standard Neural Network (SNN), Recurrent Neural Network (RNN),
and Convolutional Neural Network (CNN). The models are checked with data from a real building.
The models are validated using normalized Mean Bias Error (nMBE), normalized Root Mean Squared
Error (nRMSE), and the coefficient of variation (R2). Standard deviation is also used in conjunction
with these metrics. The results show that the models forecast the test set with errors of less than
2.00% (nMBE) and 7.50% (nRMSE) in the case of considering nights, and 4.00% (nMBE) and 11.50%
(nRMSE) if nights are not considered. In both situations, the R2 is greater than 0.85 in all models.

Keywords: convolutional neural network; deep learning; extreme gradient boost; forecasting;
machine learning; neural networks; photovoltaic power; random forest; recurrent neural network;
standard neural network; support vector regressor

1. Introduction

Most greenhouse gas emissions are linked to energy use [1]. Energy necessities have
a growing trend mainly due of two factors. On the one hand, there is a better quality of
life, i.e., a longer life and, as a consequence, a demographic increase [2]. On the other hand,
there is a definite trend towards a field with greater use of electric and electronic devices,
with larger screens, better resolutions or connectivity [3].

In spite of inconveniences generated in recent years by the pandemic in the energy
sector, generation from renewable sources is expected to have a growing trend [4]. Nev-
ertheless, the increase in energy necessities is rising faster than renewable energy sources
trends [5]. As a consequence, energy use is expected to come from conventional sources
in short term. The basis for addressing emissions and achieving regulatory compliance is
a dual strategy that incentivizes the spread and creation of renewable resources and other
zero-emission technologies [6].
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Buildings in residential and industrial sectors correspond to 40%, these being respon-
sible for 36% of emissions [7]. A sustainable solution to reduce emissions in the building
sector is the use of distributed energy. Continuous improvement in efficiency and costs
promotes the use of rooftop photovoltaic production [8]. This technology has great potential
as less than 10% of building rooftops use this energy source. Moreover, it is estimated that
it is possible to generate a quarter of current energy necessities [9].

Zero Energy Buildings (ZEB) [10], nearly Zero Energy Buildings (nZEB) [11], or
Micro Grids (MG) [12] are some of the current approaches on which research efforts on
photovoltaic solar production in buildings. All of them converge on a common goal, the
reduction of the energy necessities of the building from the grid. This allows a reduction in
greenhouse gas emissions from a flexible use of energy and greater energy efficiency from
a priority renewable source approach [13].

Solar photovoltaic production depends on environmental conditions, so it does not
generate constantly over time. Furthermore, there are periods of communication failures
or in the photovoltaic panels themselves. In this way, the monitoring and forecasting of
photovoltaic systems is of vital importance for efficient management in the previously
presented fields, i.e., ZEB, nZEB, and MG [14].

Nowadays there is wide access to information. Specifically, photovoltaic inverters
extract several variables, i.e., self-consumption, injection, tension, voltage, efficiency, active
power, etc., that are constantly generated and are not usually employed beyond the infor-
mation that is provided to consumers. These data can be combined with information that
can be extracted from weather conditions to generate accurate models. An energy system
that can efficiently recognize and manage these data is the basis for development in the
direction of greenhouse gas reduction.

Artificial Intelligence techniques take advantage of this large amount of data [15]. This
technology is capable of creating a model that adjusts the necessities of the system in real
time. Although, as time increases, data increase. This enables models made using Artificial
Intelligence techniques to fit better and more efficiently to energy necessities over time [16].
Furthermore, these techniques can be important in preventive maintenance, since through
forecasting it is possible to detect faults in the system [17].

The most common branch of Artificial Intelligence is patter recognition. Correspond-
ing to the most employed methodologies to Machine Learning [18] and Deep Learning [19].
These are recognized for their accurate extraction of models in the field of energy, among
others [20]. On the one hand, the most common Machine Learning techniques are Ran-
dom Forest (RF), Extreme Gradient Boosting (XGBoost), and Support Vector Regression
(SVR) [21]. On the other hand, the Deep Learning models are Standard Neural Network
(SNN), Recurrent Neural Network (RNN), and Convolutional Neural Network (CNN) [22].

All the previously mentioned models have the characteristic that they can be used
to forecast a labeled objective variable (Supervised Learning). On the one hand, Machine
Learning techniques selected are the most commonly used. These are simple models that
require little computational cost in the modeling stage and that work well with small
amounts of data. Nevertheless, as the amount of data increases, their accuracy is affected
since they tend to have overfitting problems. On the other hand, Deep Learning techniques
are a subbranch of Machine Learning, i.e., these can model the same kind of problems as
Machine Learning techniques. The main characteristic is that they use Neural Networks
to reproduce the patterns. Due to the complexity that the neural networks infer they
need a longer computational time to model. However, the flexibility they offer makes the
models very tight, especially with large amounts of data. Despite the differences in the
computation times of both techniques, when testing or forecasting in new conditions, the
results are instant [23,24].

There are several fields where Machine Learning and Deep Learning techniques
have enormous importance in the nowadays development, such as additive manufactur-
ing [25–28], environment [29–31], autonomous driving [32–34], or image recognition [35–37],
which exalts the impact of the techniques presented. Furthermore, all the models previously
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presented can be used in the forecast of photovoltaic production due to their characteristics.
In fact, several researchers have performed analysis in this field using, p.eg., SVR [38],
SNN [39], or CNN [40]. Nevertheless, there is not general knowledge about the capacities
and possibilities of these techniques, which limits their use.

Thus, in this manuscript is intended to carry out a comparative analysis of the different
Machine Learning and Deep Learning models, i.e., RF, XGBoost, SVR, SNN, RNN, and
CNN, to determine the most appropriate techniques to forecast photovoltaic production.
The use of this type of techniques is crucial to cover the gap in energy and economic stability
in development of projects in which renewable energy sources are present. Thus, benefiting
the knowledge in the field of management systems in buildings where the photovoltaic
source is utilized, i.e., ZEB, nZEB, and MG.

In order to ensure the reliability of the models, a seed has been used. In the training
process, standstills in local minima have been avoided by using a training process based
on mini batch gradient descent with cross-validation applying the Adam optimizer. To
ensure an adequate adjustment of the Artificial Intelligence methods, in a previous step
to the modeling, a preparation stage has been carried out, in which data cleaning, data
mining, and scaling techniques have been applied.

The content of this paper is organized as follows: the employed methodology to
compare the different Artificial Intelligence models is explained in Section 2; the case study,
and the specific characteristics of the models carried out are presented in Section 3; the
evaluation of the models to forecast the photovoltaic power consumption is shown in
Section 4; the inferred meaning of the study is presented in Section 5; and the conclusions
are outlined in Section 6.

2. Application and Assessment of Models

An effective structure in the applied methodology allows the realization of a reliable
comparison of the different Artificial Intelligence models. Thus, in the first part of this
section, the techniques applied to obtain suitable data are pointed out. The models are
introduced in the subsequent part focusing on the exposition of the cost function, i.e., the
function to be minimized. This allows to obtain accurate results in each of the models.
Finally, the metrics used to carry out the comparative analysis with certainty are presented.

2.1. Data Preparation

Data preparation is a crucial stage to obtain an ensemble of information suitable
for the Artificial Intelligence methods that are intended to be used in this paper. Real
data measured through the sensors is usually incomplete or has multiple errors in the
measurement stage because of system failures [41]. The accuracy of Artificial Intelligence
methods increases if several conditions are met. Therefore, this section deals with three
steps, preprocessing, scaling, and feature engineering.

Data cleaning and organization of data is carried out in preprocessing. Duplicate and
outlier data are detected at this this stage. Brief periods of inconsistencies are corrected
using data scrubbing techniques [42]. The set of independent variables is selected consider-
ing the relationship between each of them and the objective variable. These must contain
a high-quality data, e.g., with a validity of at the least of 95%. A characteristic of Artificial
Intelligence models with respect to statistics is that they allow the incorporation of missing
values, to make the forecast. Thus, wrong data are retained to ensure data continuity and
improve forecast reliability [43].

In general, without consistency in the data, it is not possible to obtain high performance
results. The application of scaling is basic to establish data in a similar range. In this
way, Artificial Intelligence methods can better match the importance of each variable
through the computation of weights to obtain models with better convergence and precision.
Furthermore, with the application of scaling, versatility is granted to the models made,
allowing them to be used in other study cases [44,45]. In this manuscript different types
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of scaling are evaluated, such as normalization in the range [0, 1], and the division by the
maximum and mean of the series.

Finally, data mining techniques have been applied to aggregate features with potential
to forecast the goal variable through domain knowledge and the use of mathematics and
statistics. Obtaining this new set of variables allows a better adjustment to the problem due
to their inherent relationship with the target variable [46,47]. Temporal variables have been
extracted by means of feature engineering techniques. Sine and cosine functions have been
applied to these new variables since the improvement in the efficiency of the model has
been verified.

2.2. Modeling

The training process has been carried out using different Artificial Intelligence tech-
niques. The reliability of the photovoltaic production forecast is studied by comparing
several Machine Learning and Deep Learning methods. The learning technique used is
mini-batch gradient descent with cross-validation. This allows, on the one hand, to avoid
the convergence standstill in local minima, and, on the other, to guarantee the independence
of each training split, reducing the possibilities of overfitting issues [48].

The cost function differs depending on the learning technique used. The selection
of the technique is based on the way the model learns to reproduce the training data.
There are two possibilities, imposing a constraint on a threshold, or through the iterative
adjustment of the learning parameters through the minimization of the error between the
obtained result with respect to the real values. Consisting of the first of them to the training
carried out by the SVR model, and the second, to the rest of the models. Depending on
the modeling options of the latter, it is possible to differentiate between decision trees
techniques, represented by RF, and XGBoost, or Neural Networks, i.e., SNN, RNN, and
CNN. Figure 1 presents the phase diagram for the application of the cost function according
to the method to be used.
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Figure 1. Phase diagram for the application of the Artificial Intelligence methods according to the
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2.2.1. Optimization Carried out by Threshold Limitation

These type of technique maps the training data to approximate the regression line by
means of a hyperplane considering a threshold, boundary lines, and is mainly represented
by SVR models. In contrast to the other models, which seek to minimize the error between
the forecast and the objective variable, this model seeks to contain the data in the boundary
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lines [49]. Thus, the cost function does not consider the loss function and is evaluated by
adjusting the weights of the independent variables, Θj, Equation (1).

J =
∑m

j=0 Θ2
j

2
+ c ∑n

k=1|ξk| (1)

where, m is the number of independent variables, c is a hyperparameter that represents
the regularization, and ξk, is the slack margin [50]. The representation of this model can be
seen in Figure 2.
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Figure 2. Configuration of a Support Vector Regression model.

2.2.2. Optimization Carried out by Parameters Adjustment

The general purpose of this models is to have the minimum error that these have in
the forecast of the objective variable. The mean squared error is selected as the loss function,
l(yk, ŷk), to assess the accuracy of the models, Equation (2).

l(yk, ŷk) = ∑n
k=1

(ŷk − yk)
2

n
(2)

where, n is the number of samples, ŷk is the forecast variable at time k, and yk is the objective
variable at time k.

• Decision trees

RF model consists of the synchronized operation of several unrelated decision trees.
Training process is made through bagging. This technique ensures the independence of
each of the decision trees and reduces the sensibility of the model to data variations [51,52].
The cost function of this model, J, depends on the complexity of each of the decision trees,
ω( ft), in addition to the loss function, Equation (3).

J = ∑n
k=1 l(yk, ŷk) + ∑t

j=1 ω
(

f j
)

(3)

where t refers to the evaluated decision tree. The final result is weighted by the number of
decision trees. Figure 3 shows a representative version of the random forest models.
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The main problem with the RF model is that it has decision trees without a good
forecast, known as weak learners [53]. XGBoost model face this issue through additive
learning. With this technique, the learning process considers time steps prior to forecasting
the current value. This generates a modification in the cost function, which is commonly
represented as a second-order expansion of the Taylor series, Equation (4). Thus, it is
possible to obtain an accurate optimization of the problem quickly [54].

J(it) = ∑n
k=1

[
l
(

yk, ŷ(it−1)
k

)
+ gk· ft(xk) +

1
2

hk· f 2
t (xk)

]
+ ω( ft) (4)

where, it is the considered iteration, ft(xk) is the definition of the t-tree, gk is the first partial
derivative of the loss function with respect to ŷk, and hk is the second partial derivative of
the loss function with respect to ŷk. Figure 3 also captures the decomposition of this model.

• Neural Networks

Deep Learning models have been configured using the bottleneck composition, where
the number of hidden neurons decreases as the number of hidden layers increases [55].
Patterns are extracted by means of the interconnection of the different sets of neurons. The
Deep Learning models propagate information from the input layer to the output layer
through these hidden interconnections [56]. The cost function in these models is directly
governed by the loss function, Equation (5).

J = l(yk, ŷk) (5)

The SNN model is the basic configuration. In this model, neurons in one layer are
fully connected to the previous layer. This type of layer is also known as dense layer. The
other configurations, i.e., RNN model and CNN model, are commonly applied together
with the SNN model. Thus, both models are used as the first hidden layers to extract
important information. Then, the model changes and has several dense layers, typical of
SNN modeling. The typical configuration of Deep Learning models is shown in Figure 4.

The RNN model is a derivative of the SNN model that retains the important informa-
tion from previous time steps, i.e., it has memory. LSTM (Long Short-Term Memory) is
the best known type in the RNN modeling. This presents a series of internal mechanisms,
gates, that regulate the flux of information that must be retained or forgotten [57,58]. Due
to the memory fact, the RNN model is more complex than the SNN model as it has more
parameters to train.
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The CNN model is also a derivative of the SNN model. This keeps important details
and avoids irrelevant information. This is due to the fact that CNN model applies con-
volutions to the data through a kernel. In contrast to SNN and RNN models, the kernel
is common to each set of neurons [59,60]. Thus, CNN model has a lower quantity of
parameters to train. The multidimensionality of the output coming from the convolution is
resolved by applying a flattening layer since the SNN needs a 1D input [61].

2.3. Error Assesment

To carry out a comparative study of the performance of Artificial Intelligence models,
several metrics have been computed. These have been evaluated together with its standard
deviation (sd). The bias of the variable to be forecast is obtained with the normalized Mean
Bias Error (nMBE), Equation (6). Positive values indicate underestimation and negative,
overestimation.

nMBE = ∑n
k=1

ŷk − yk
n

/ymax (6)

where, ymax is the maximum value of the objective variable.
The measurement of how spread out are these residuals are computed with the

normalized Mean Squared Error (nRMSE). It is considered an excellent error metric for
numerical predictions. This gives an indication of the model’s ability to forecast the overall
load shape that is reflected in the data, Equation (7), which is strictly positive and the
results decrease as the error approaches zero.

nRMSE =

√
∑n

k=1
(ŷk − yk)

2

n
/ymax (7)

The coefficient of determination (R2) indicates how close the forecast values are to
the regression line of the objective values, Equation (8). It is a common metric to evaluate
numerical predictions. Its values are limited in the range [0, 1], where higher values mean
that the forecast variable matches the objective variable and lower ones do not.

R2 =
∑n

k=1(yk − ŷk)
2

∑n
k=1(yk − y)2 (8)

where, y is the mean value of the objective variable.
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3. Case Study

The Artificial Intelligence models described in previous section have been validated
with photovoltaic production data collected from a single-family dwelling located in the
state of Maryland, United States [62,63]. The photovoltaic installation faces south and has
a nominal power of 10.24 kW. Nevertheless, the photovoltaic power data are collected once
the inversion has been made, which has an efficiency of 93%. Thus, the maximum useful
power is 9.52 kW, so this value has been selected to normalize the metrics.

The measurements correspond to hourly data divided into 2 periods of 1 year, from
July 2013 to July 2014, and from February 2015 to February 2016. The composition of
features selected to validate the methodology presented above are irradiance, as an inde-
pendent variable, and photovoltaic production, as a dependent variable. The quality of
the data is excellent, with a validity of 98.95% in irradiation, and 96.91% in photovoltaic
production, once the data cleaning process has been applied.

With knowledge of the domain and through the data cleaning process with a functional
approach to the data set in weekly periods, inconsistent data have been corrected, i.e., data
with structural errors, and missing data has been repaired in periods where the gap consists
of a maximum of 3 h. Duplicate and irrelevant data have also been removed. With data
mining techniques the temporal variables: hour of the day, day of the week and day of
the year have been extracted. After several runs of the analysis, mean normalization is
the one that better fits the objective variable. Consequently, this type of normalization is
shown in the results section. To retain the information provided by the wrong data and
ensure data continuity, one hot encoding has been used. Figure 5 graphically shows the
main configuration used for forecasting with the Artificial Intelligence methods.
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Artificial Intelligence methods are carried out of the 10-fold cross-validation technique.
In order to reproduce and compare the results, a seed has been applied. The data division
is 95% training, where 90% corresponds to the train split and 5% to the validation split, and
the remaining 5% is test. The hyperparameters used to perform the training process are
100 epochs and a batch size of 64. The optimizer used is the adaptive movement estimation
algorithm, Adam, with a learning rate of 0.001.

The Deep Learning models are made using bottleneck composition. The SNN model
is composed of 4 dense layers of 100, 75, 50, and 25. Its activation functions are Linear
except for the last hidden layer and the output layer, whose activation functions are ReLU.
Short-term memory in the RNN model is set to 6 time steps, i.e., 6 h. In this model, the first
hidden layer corresponds to the LSTM with 64 neurons. The rest of the model is composed
of dense layers with 40 and 20 neurons. On the one hand, the activations functions of
the LSTM layer are the typical ones. On the other hand, the linear activation function is
selected for the first dense layer and the rest of layers are ReLU. The convolution layer in
the CNN model has 64 filters with a kernel of 3. Padding is not considered and the stride is
1. After the convolutional layer, a flattening layer is applied for the imposition of two dense
layers. The number of neurons and the activations functions are the same as the considered
in the RNN model.
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4. Results

This section discusses the affinity of the use of the different Artificial Intelligence
methods developed to forecast photovoltaic production. The characteristics of the pho-
tovoltaic system in the building studied and the general information of the generated
models are detailed in the previous section. The mean errors obtained by means of the
cross-validation technique in each of the splits, i.e., training, validation (dev), and testing,
are shown in Table 1.

Table 1. Average error obtained with the cross-validation method in different Artificial Intelli-
gence methods.

Split Metric RF XGBoost SVR SNN RNN CNN

Train

nMBE 0.41% 0.45% 0.81% 0.45% −0.07% 0.39%
sd nMBE 0.02 0.02 0.04 0.04 0.06 0.04
nRMSE 1.88% 2.51% 4.01% 3.99% 6.51% 3.85%

sd nRMSE 0.02 0.02 0.04 0.05 0.07 0.04
R2 0.99 0.99 0.98 0.98 0.94 0.98

Dev

nMBE 1.44% 1.37% 0.90% 0.50% −0.18% 0.40%
sd nMBE 0.06 0.07 0.04 0.04 0.07 0.04
nRMSE 6.28% 6.73% 3.91% 3.55% 7.03% 3.70%

sd nRMSE 0.07 0.07 0.04 0.04 0.07 0.04
R2 0.94 0.93 0.97 0.97 0.94 0.97

Test

nMBE 1.80% 1.43% 1.81% 1.13% −1.24% 0.83%
sd nMBE 0.05 0.06 0.03 0.03 0.07 0.03
nRMSE 5.67% 6.09% 3.16% 3.54% 7.30% 3.50%

sd nRMSE 0.06 0.07 0.02 0.04 0.08 0.04
R2 0.95 0.94 0.98 0.98 0.92 0.98

Furthermore, even though RF y XGBoost models appear to generate accurate results,
these are not good. It can be shown from the nRMSE metric that the forecast in validation
set, also in the test set, has a large gap with respect to the training set. So, it can be concluded
that the convergence of these models is not adequate since there is an overfitting in the
results. Consequently, these models cannot be considered as a good model to forecast
photovoltaic production.

Finally, the other three models, SVR, SNN, and CNN, generate quite good results.
These fit in all sets. The CNN model stands out, which, due to the extraction of patterns
from convolutions, has a regular and precise results. Thus, it can be said that this model
is the best for forecasting photovoltaic production. SVR and SNN are also adjusted, but
with the results of the metrics that are shown, it is not possible to conclude which is the
best between the two.

Solar irradiation is zero by definition at night, so there is no photovoltaic production in
this period. Therefore, it can be though that nights are an irrelevant period in the forecast of
photovoltaic production. The metrics previously analyzed in Table 1 may have erroneous
results since it is possible that the models are forecasting perfectly, or not, the nights. Table 2
shows the results of the models without nighttime consideration to evaluate their accuracy
in the relevant periods.

As can be verified with Table 2, the considerations previously adopted with Table 1
can be confirmed. The RNN model is not particularly good; RF and XGBoost models are
overfitting; CNN is the best model; and SNN, and SVR are good models but not as good
as the CNN model. Observing Table 2, it can be concluded that SVR model is better than
SNN model due to the consistency in its results. Thus, the SVR model will have better
fits in irregular periods. Furthermore, the fact of considering the entire period does not
significantly affect the results. All consideration can allow modeling to be more robust to
possible data changes due to continuity and experience.



Appl. Sci. 2022, 12, 8769 10 of 15

Table 2. Averaged error obtained with the cross-validation method in different Artificial Intelligence
methods without night consideration.

Split Metric RF XGBoost SVR SNN RNN CNN

Train

nMBE 0.60% 0.53% 0.10% 0.77% −0.09% 0.25%
sd nMBE 0.02 0.03 0.05 0.05 0.09 0.04
nRMSE 2.44% 3.15% 4.59% 5.04% 8.82% 3.76%

sd nRMSE 0.02 0.03 0.05 0.05 0.07 0.04
R2 0.99 0.99 0.97 0.97 0.91 0.98

Dev

nMBE 2.14% 1.99% 0.13% 0.90% −0.42% 0.24%
sd nMBE 0.08 0.08 0.04 0.04 0.10 0.04
nRMSE 8.04% 8.82% 4.42% 4.58% 9.62% 3.76%

sd nRMSE 0.08 0.09 0.04 0.04 0.08 0.04
R2 0.93 0.90 0.97 0.97 0.91 0.98

Test

nMBE 3.53% 2.89% 1.81% 2.63% −2.77% 0.81%
sd nMBE 0.07 0.09 0.04 0.05 0.11 0.03
nRMSE 8.28% 8.97% 4.30% 5.37% 11.11% 3.52%

sd nRMSE 0.08 0.09 0.04 0.04 0.09 0.04
R2 0.93 0.92 0.98 0.97 0.88 0.98

As determined, SVR, SNN, and CNN are the most appropriate models to forecast
photovoltaic production. The differences between the consideration or not of the nights
are not significant a priori since the models maintain the results obtained with the metrics.
Then, Figure 6 graphically shows the adjustments in the train splits, and Figure 7, in test
split. In both figures, the cases were selected in a couple of random periods considering the
night predictions.

Figure 6 highlights the good adjustments generated by SVR, SNN, and CNN models
in the training split in both conditions, smooth (a), or changing (b). As can be seen, the
SVR model is the one that has periods with greater accuracy at the times that photovoltaic
power occurs, i.e., during the days, as can be seen from 10 a.m. to 2 p.m. in both figures,
i.e., (a) where the mean errors are −0.91% in SVR, −2.66% in SNN, and −0.75% in CNN,
and (b), with mean errors of −0.26% in SVR, 2.42% in SNN, and 0.86% in CNN. However,
SVR model underpredicts night periods, the error of which is around 1.50%. In contrast,
the SNN and CNN models have a greater regularity in the forecast, not generating errors
during nights.
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As can be seen in Figure 7, the adjustments of the SVR, SNN, and CNN models are not
so good in the test set, generating underpredictions. So, as can be seen in (a), from 10 a.m.
to 3 p.m., where the mean errors are 3.05% in SVR, 3.49% in SNN, and 2.78% in CNN, and
in (b), from 1 p.m. to 4 p.m., with mean errors of 4.08% in SVR, 5.87% in SNN, and 4.47%
in CNN, neither model fits the real data perfectly. In this case, i.e., the test set, the SVR
continues to underpredict the nights, where the mean error is 1.50%, meanwhile the other
two models continue having no error. The SNN model has slightly worse forecasts than
SVR and CNN models during nights.

5. Implication of the Study Associated with Practice and Theory

Current trends indicate that the installation of renewable power generation will have
a slower increase than the energy demand in the coming years. The building sector
represents a large percentage of energy consumption and, consequently, of emissions.
Rooftop photovoltaic production is a commonly employed method to improve efficiency
and sustainability in buildings. This technology has great potential due to the increasing
improvement in its efficiency while its costs are, in comparison with others, lower. More-
over, the impact on the reduction of greenhouse gasses is enormous since it is estimated
that it is possible to generate a quarter of current energy necessities.

Photovoltaic energy depends on the varying conditions of the day. Furthermore, there
may be periods in which the information recorded is not correct. So, there are not always
adequate data of the energy production to optimize its use in the building. In current
rooftop photovoltaic systems, a large amount of unused data is recorded. The constant
generation of data is very useful for Artificial Intelligence methods, which are capable of
generating accurate forecasts in real time. These forecasts can also provide information on
the state, enabling preventive maintenance and increasing the lifetime of the system.

Obtaining good forecasts of photovoltaic power through Artificial Intelligence tech-
niques is key in the development of projects related to this source of renewable origin. The
set of Artificial Intelligence techniques is suitable for making reliable and adjusted models.
In addition, due to their characteristics, these models learn as more data is introduced,
i.e., as time passes. In this way, the study of these models infers an increase in stability
and a reduction in the difficulties that may arise, such as the management of photovoltaic
resource in ZEB, nZEB, and MG.

6. Conclusions

The realization of this research can be the basis for guiding emission reduction regula-
tions. Thus, this directly affects research in which rooftop photovoltaic production is often
used to increase the sustainability and efficiency of energy consumption in buildings, such
as ZEB, nZEB or MG. Thus, by carrying out this manuscript, different Machine Learning
and Deep Learning models have been studied at the same time to detect which are the
best options to predict photovoltaic power. The conclusions can be summarized in the
following points:

• The most suitable models for forecast photovoltaic production are SVR, SNN, and CNN.
• The RF, XGBoost, and RNN models are not recommended to be used in the photo-

voltaic production forecasting
• The SNN and CNN models can fit with or without night consideration, CNN model

being the best option.
• In the case of avoiding nights, SVR model is a very good option. It is also possible to

use the RNN or CNN models.
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