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Abstract: This paper presents the results of lab-simulated tests on longwall powered supports under
dynamic loading conditions. The tests were carried out on a test site, where the tested prop was
subjected to a dynamic load using a controlled mass falling under gravity onto the support. The
loading on the support was therefore determined based on the weight used and the distance of freefall
before impact. The operating characteristics of the valve were determined, specifying temporary
changes in the pressure and the prop’s dynamic yield rate and total deformation. The research aimed
to determine the operational parameters of the valve to be used in new and improved components
for powered roof supports. One of the most essential elements of the powered roof support hydraulic
system is the safety valve. The results confirm the validity of the concept and the possibility of
applying the tested valve to the developed control system of the prop of the powered roof support.
The forged safety valve has been designed to significantly improve the safety and efficiency of the
powered roof support, especially in conditions of safety hazards.

Keywords: bench research; powered roof support; safety valve; work safety

1. Introduction

Currently, research is being carried out worldwide regarding the development of modern
technologies related to coal mining in open-cast and underground mines [1–3]. Based on
the literature, four main research areas related to coal mining have been defined [4–6]. The
first focuses on machines related to haulage [7–9], and the second is related to coal mining
machines [10–12]. However, in the third area, research problems related to the development
of powered roof supports have been considered [13–15]. The fourth area includes machines
and devices complementary to ongoing exploitation [16–18].

Coal is the primary energy resource in many countries [19–21]. The effective and safe
extraction of hard coal occurs mainly through underground mines’ longwall systems [22–24].
The latest systems [25–27] operate in a fully automated way and are controlled by an electro-
hydraulic system [28–30]. The powered roof support is an essential piece of the equipment
suite needed for longwall mining [31]. It is responsible for the safety of the workforce
and equipment [32–34], and it is also important to move the armored face conveyor and
shearer forward as mining progresses [35–46]. A particular requirement for the powered
roof support [47–49] is to ensure the safety of the excavation [50–52] in case of a violent
coal burst or bump [53,54] (mining-induced seismic event or earthquake).

Under dynamic loading from localized seismicity, the support is able to rapidly yield
whilst maintaining a reactive load in the immediate roof because of the safety valve in
each hydraulic cylinder [55,56]. These are used to control the stiffness and yield in the
cylinder to prevent the overloading and failure of the support [57,58]. The fundamental
parameter characterizing the safety valve is its mass flow rate depending on the supply
pressure [59,60]. Determining such dependence through research is significantly chal-
lenging due to the need for a power source with an MW value through calculations [61].
However, this is burdened with a significant error due to the enormous and rapidly in-
duced dynamics of the flows (Reynolds number > 1 × 106) of the liquid in the valve [62].
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From the converted teaching experience [63] considered in the literature [64] on safety
engineering [65], we have adopted an interactive view [66] to solve technical problems [67].
This allows the adoption of already-described methods for assessing the suitability of
structures [68].

The main task of the powered roof support is to maintain excavation stability. A
typical longwall shield is shown in Figure 1. This is done by transferring the load resulting
from the pressure of the rock layers on the immediate roof through the hydraulic legs into
the floor. Thus, the powered roof support should be able to accommodate quasi-static
and dynamic loads. The essential elements of each powered roof support are the roof, the
stringer, the shield system and the props. Hydraulic props determine the stability and
maintenance of the powered roof support. Protecting the hydraulic prop against adverse
overload is achieved through the safety valve.
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Figure 1. Longwall powered roof support, where: 1—floor base, 2—canopy, 3—lateral shield of
canopy, 4—ceiling support actuator, 5—shield support, 6—lateral shield of shield support, 7—top
lemniscate tie rods, 8—lower lemniscate tie rods, 9—beam of sliding system, 10—leg, 11—wall face
cover, 12—crew walkway cover.

This paper presents research regarding possible damage to the support as a result of
the dynamic loading of the rock mass. Damage to the hydraulic cylinder of the powered
roof support prop (Figure 2) can occur due to this sudden loading in the longwall. The
energy of the rock mass 6 × 106 J had a significant impact on the time of opening the safety
valve. In this case, the resulting crack of the prop and the recorded pressure (Figure 3) in
the sub-piston space showed the following results:

• Insufficient flow rate in the hydraulic system of the prop;
• Its inclination is too high when working in the extraction longwall;
• An overload of the prop due to component defects;
• Incorrect configuration/settings of the control system;
• Too little hydraulic fluid in the piston of the prop;
• Malfunction or failure of the safety valve.
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Figure 3. Recorded pressure during the rock mass shock that caused the rack to fail.

The dynamic phenomenon causing damage to the prop is the sudden shock loading
and movement of rock mass with the energy of 6 × 106 J. Figure 3 shows the operation
of the damaged prop. From the graph, it can be concluded that the time of the load in T1
was 13 s. In T2, this time was 5 s. The course of the dynamic impact of the rock mass in T3
caused its maximum load after 13 s, which was manifested by an increase in the pressure
of the liquid in the under-pistol space to 45 MPa. The time in T4 covers the entire period of
dynamic loading, and is the duration of the phenomenon.

Based on the analysis of the above drawings (Figures 2 and 3), an attempt was made
to analyses the pressure increase in the safety valve during shock loading. The tests used a
hydraulic cylinder (from the powered roof support) loaded using a freefalling mass. Such
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loading systems are commonly used for coal longwall shield testing and are available, for
example, in Poland and the Czech Republic. The research concept and its implementation
required the preparation of an appropriate actuator, measuring and recording equipment,
and a sound methodology. This paper presents the results using this research methodology.
A pressure increase in the safety valve using this method was determined.

2. Materials and Methods

The methodology for determining the mass flows of the hydraulic valve used a ram
bench (dynamic load with a mass impact). The hydraulic valve mass flow, according to
the methodology used, is described by binding the pressure at the valve inlet to the liquid
mass flow through the valve P = f(Q). The characteristics are determined in the position
schematically presented in Figure 5. The impact mass (1) dynamically loads the standard
prop (7) expanded in the station. The standard prop is connected to the valve (9) and the
converter of the pressure and displacement of the actuator rod (5). The dynamic loading of
the actuator by the impact of the mass causes an increase in pressure in the under-piston
space. Then, the valve’s flow opens, and liquid flows out of the valve connected to the
actuator. We recorded the pressure under piston P(t) and a slip as a function of time l(t).
We obtained high values of the P(t) and l(t) functions based on the recorded actuator slips.
Knowing the surface of the cylinder of the actuator, we can determine the value of liquid
flow through the valve Q(t) depending on the time from the relation:

Q(t) = l(t) · Ss, m3s−1, (1)

where:

l(t)—clamping speed of the cylinder (derivative of path with respect to time), ms−1;
Ss—cylinder surface of the calibrated cylinder, m2.

The designated functions describing the inlet pressure of the valve P(t) and the mass
flow Q(t) are the basis for determining the desired function describing the flow in the
hydraulic valve P = f(Q). Depending on the technical parameters of the valve, we selected
the actuator (cylinder surface) and the value of the impact energy in such a way as to
obtain the appropriate pressure at the valve inlet and mass flow. Tests to determine the
flow characteristics of the valve were performed in chapter 3 for the adopted valve data.
The piston-type valve (Figure 5) was a circular gasket spring with a diameter of Ø14 mm.
Its opening pressure was 21 MPa.

The authors used a custom designed system to carry out the measurements and record
the test results [69]. The measurement system was built with a control and intermediary
module that allows for pressure and movement measurements with time. It was developed
using a cRIO9030 card from National Instruments. The layout module was equipped with
two different operator interfaces. Communication was via an Ethernet link. The measure-
ment system was connected to a PC, which was equipped with appropriate software made
by LabVIEW environment. The research was conducted at two research centers in TLO
Opava (Czech Republic) and the (Figure 4) Central Mining Institute (Poland).
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Figure 5. Scheme of the testing station, where: 1—impact mass 20,000 kg, 2—slope height, 3—traverse
3300 kg, 4—crosshead locking pin in the stand frame, 5—hydraulic piston rod, 6—impact mass slides,
7—hydraulic stand cylinder with pressure sensor, 8—basis of the position, 9—the valve to be tested
fixed in the bottom of the leg cylinder, 10—foundation of the position, 11—innovative measuring and
recording system, 12—computer PC, 13—hydraulic system under test, 14—pressure sensor.
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3. Results

The safety valve test used to determine its flow characteristics consisted of converting
the kinetic energy loading the prop for the operation of its release (and yield) at the specified
speed of this dynamic loading. The energy transferred during the bench test to the prop also
causes movement when the load no longer impacts this prop. The speed of movement of the
prop piston forces the appropriate flow rate of liquid from the prop sub-piston space. The
safety valve to be tested and the prop shall ensure an adequate liquid flow rate such that the
cylinder does not fail due to over-loading. In the following test results (Figure 6), it is possible
to observe that with a lower the flow rate of liquid through the valve than the flow rate of the
piston forced by the movement of the prop, a greater increase in the pressure of the liquid in
the space under the piston rod of the hydraulic leg will be obtained (Figure 7).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 13 
 

3. Results 

The safety valve test used to determine its flow characteristics consisted of converting 

the kinetic energy loading the prop for the operation of its release (and yield) at the spec-

ified speed of this dynamic loading. The energy transferred during the bench test to the 

prop also causes movement when the load no longer impacts this prop. The speed of 

movement of the prop piston forces the appropriate flow rate of liquid from the prop sub-

piston space. The safety valve to be tested and the prop shall ensure an adequate liquid 

flow rate such that the cylinder does not fail due to over-loading. In the following test 

results (Figure 6), it is possible to observe that with a lower the flow rate of liquid through 

the valve than the flow rate of the piston forced by the movement of the prop, a greater 

increase in the pressure of the liquid in the space under the piston rod of the hydraulic leg 

will be obtained (Figure 7). 

 

Figure 6. Recorded pressure waveform on valve input P(t) and retraction of the hydraulic cylinder 

piston rod l(t). 

Figure 6. Recorded pressure waveform on valve input P(t) and retraction of the hydraulic cylinder
piston rod l(t).

Based on the recorded progress shown in Figures 6 and 7, the actuator clamping speed
was determined as the slip difference (derivative). After multiplication by its surface, the
flow in relation to time was obtained per the relationship (1). The averaged values made
it possible to determine the dependence of pressure on the values of computational time
flows according to the relations (1), as shown in Figure 8.
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The value of the flows for the individual pressures listed is used to assess the load
resistance of the powered roof support as a derivative of the rock mass shock. After testing,
the valve remained tight and retained its functionality. Characteristics of the valve opening
and closing pressure are shown in Figure 9. Based on the above, it can be concluded that
even at very high impact energies, there is some delay in the opening of the safety valve.
During this time, there is a large increase in the pressure of the liquid in the under-piston
space of the prop. This increase in the pressure of the liquid can destroy the powered roof
support during the rock mass tremors during its rapid expansion in load on the powered
roof support, due to overloading.
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4. Discussion

The dynamic testing of the safety valve was carried out with the hydraulic prop using
this valve. During the tests, the prop was dynamically loaded. Its protection against
damage due to dynamic load relies on limiting the pressure increase in the hydraulic
medium inside the prop’s cylinder caused by this load by the valve opening quickly at
the preset yield load. The test consisted of lowering the ram from a certain height, and
hitting the traverse under which the prop is located (Figure 10). In this type of test, the
weight of the traverse may have a decisive influence on the test results (Figure 11). The
basic instantaneous load of the prop manifests as momentary forces and inertia forces.
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(1) drop height 20 cm, (2) drop height 30 cm, (3) drop height 40 cm, (4) drop height 50 cm, (5) drop
height 60 cm, (6) drop height 70 cm.
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Figure 11. Performance characteristics of the prop, including safety valve loaded with an impact
mass freely falling from the following heights, where: 1—drop height 20 cm, 2—drop height 30 cm,
3—drop height 40 cm, 4—drop height 50 cm, 5—drop height 60 cm, 6—drop height 70 cm.

The prop with the safety valve yields under the influence of kinetic energy load. The
slip in the prop is more prominent with a larger flow area in the safety valve under test and
a smaller flow resistance. The prop’s slip and the safety valve’s opening time determine
the liquid’s average pressure in the under-piston space of the stand during the opening of
the valve. Accordingly, the flow rate of the liquid through the valve, and its flow resistance,
can be determined (Table 1). When the pressure of the liquid exceeds the strength of the
cylinder, the prop is destroyed (Figures 2 and 3). The safety valve (Figure 5) connected to
the under-piston space of the prop is intended to prevent an excessive increase in fluid
pressure in this space.

Table 1. Flow value occurring in the safety valve.

Height of Drop
(m)

Energy of
Impact Mass

Eu (kJ)

Maximum
Pressure (bar)

Leg
Slide (m)

Flow Value Q(t)
(m3s−1)

0.2 58.8 280 0.02 50
0.3 78.4 480 0.03 75
0.4 98.1 550 0.04 100
0.5 117.7 605 0.05 125
0.6 137.3 610 0.06 150
0.7 156.9 620 0.07 175

The kinetic energy transferred by the ram to the tested prop is converted. This is
partially for the operation of the prop’s slip due to the opening of the tested safety valve,
and partly for the elastic energy of the cylinder. The rest of the energy is dissipated due
to vibrations in the test stand and resulting shocks. At some time after the impact, the
movement of the ram is inhibited, which equates to the loss of the ram’s kinetic energy. The
prop’s slip occurs only during ram impacts, causing the safety valve to open. The energy of
the ram on the test site or the roof of the mining excavation transferred to the prop may
also cause its slip when the load no longer acts on this prop.

The speed of movement of the prop piston forces the appropriate flow rate of liquid
from the prop sub-piston space once the preset pressure has been exceeded. The pressure
relief valve must ensure that the flow rate is such that the pressure of the liquid in the
under-piston space of the prop at the moment of impact cannot rise too rapidly, so the speed
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at which the valve release mechanism opens is very important. The following test results
(Figures 6 and 7) show that with a lower flow rate of liquid through the valve than the flow
rate of the piston forced by the movement of the prop, a greater increase in the pressure
of the liquid in the space under the piston rod of the hydraulic prop will be obtained. On
the basis of the above, it can be concluded that even at very high impact energies, there
is some delay in the opening of the safety valve, during which there is a sufficiently large
increase in the pressure of the liquid in the under-piston space of the prop. This increase in
the pressure of the liquid can cause the destruction of the powered roof support during the
rock mass tremors during its rapid increase in load on the powered roof support.

5. Conclusions

When performing site tests, one should be aware of the difference between the natural
conditions and the conditions of the site tests. In the case of testing a prop with a safety
valve, the difference between the dynamic load occurring in the mine excavation and the
dynamic load on the test site should be assessed. In underground conditions, the dynamic
weight of the roof on the powered roof support is usually greater than its load capacity. In
comparison, the weight of the ram (20,000 kg) of the prop is smaller than the nominal load
capacity. In addition, the steel ram’s elasticity and the prop’s foundation differ significantly
from the elasticity of the roof rocks and the footwall of the excavation. The speed of the
prop load capacity and the powered roof support’s load capacity in the excavation at the
moment of tremor is also different. Dynamic load in the mining excavation or on the test
site causes an increase in the pressure of the liquid in its under-piston space. This increase
in liquid pressure is greater the higher the kinetic energy loads on the prop is.

In the longwall complex, the task of the powered roof support is to protect the workers,
machines and devices implementing the coal extraction process. It is required of the
powered roof support structure, and of the hydraulic prop, that they can carry the dynamic
and static loads resulting from the pressure of the rock mass. The impact of the rock mass on
the prop (Figure 3) can be assumed as dynamic, which is the result of processes occurring
in the rock mass through exploitation.

The bench tests carried out on the prop and the safety valve under dynamic load
allowed us to determine the operating range of the safety valve. Bench tests confirm the
correct operation of the valve for the adopted test site parameters. The resulting valve
opening pressure characteristic was 21.3 MPa. In contrast, the valve closure characteristics
were obtained at 19.7 MPa. Both characteristics are shown in Figure 9. As a result, the valve
protects the prop against dynamic load. This is important for limiting the effects of rock
mass shock. Referring to the impact of rock mass operation on the powered roof support,
the adopted parameters of the safety valve operation are insufficient.
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