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Abstract: Generative adversarial networks (GAN), which are fueled by deep learning, are an efficient
technique for image reconstruction using under-sampled MR data. In most cases, the performance
of a particular model’s reconstruction must be improved by using a substantial proportion of the
training data. However, gathering tens of thousands of raw patient data for training the model in
actual clinical applications is difficult because retaining k-space data is not customary in the clinical
process. Therefore, it is imperative to increase the generalizability of a network that was created using
a small number of samples as quickly as possible. This research explored two unique applications
based on deep learning-based GAN and transfer learning. Seeing as MRI reconstruction procedures
go for brain and knee imaging, the proposed method outperforms current techniques in terms of
signal-to-noise ratio (PSNR) and structural similarity index (SSIM). As compared to the results of
transfer learning for the brain and knee, using a smaller number of training cases produced superior
results, with acceleration factor (AF) 2 (for brain PSNR (39.33); SSIM (0.97), for knee PSNR (35.48);
SSIM (0.90)) and AF 4 (for brain PSNR (38.13); SSIM (0.95), for knee PSNR (33.95); SSIM (0.86)). The
approach that has been described would make it easier to apply future models for MRI reconstruction
without necessitating the acquisition of vast imaging datasets.

Keywords: image reconstruction; MRI; GANs; transfer learning; deep learning

1. Introduction

Magnetic Resonance Imaging (MRI) is a non-ionizing imaging technique used in
biomedical research and diagnostic medicine. A strong magnetic field and Radio Frequency
(RF) pulses are the foundational elements of MRI. An image is created when antennas
placed near the area of the body being examined absorb hydrogen atom radiation, which
is present in abundance in all living things. Due to the greater soft-tissue contrast and
non-invasive nature of MRI, it is commonly utilized to identify diseases. MRI, on the other
hand, has a severe problem in that it takes a long time to acquire sufficient data in k-space.
In order to address this issue, k-space imaging approaches with insufficient sampling have
been proposed. Compressed sensing [1] and parallel imaging [2] are two commonly used
reconstruction approaches for obtaining artifact-free images.

Numerous research organizations and well-known MRI scanner manufacturers are
accelerating MRI acquisition. Hardware techniques such as several coils are utilized to
sample k-space data in parallel [3]. One of the two main approaches is used in commercial
MRI scanners [4] to reconstruct a picture from the coils’ under-sampled k-space data. To
be more precise, aliased pictures produced by partial k-space conversion are combined
into a single coherent image via the Sensitivity Encoder (SENSE) [5]. The inverse Fourier
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transform (IFT) is calibrated using GRAPPA [6], which uses information from signals
in the complex frequency domain. These techniques are examined by [7], along with a
hybrid approach that combines the advantages of SENSE with the GRAPPA method’s
resilience to some flaws. Figure 1, is a summary of data from the PubMed results for “GPU
reconstruction” from 2004 to 2020.
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Notable is the fact that deep learning reconstructions have notably shorter reconstruc-
tion times while maintaining higher image quality [8,9]. Using a convolutional neural
network, the authors of [10] were able to determine the mapping between zero-filled (ZF)
images and their corresponding fully-sampled data (CNN). Iterative processes from the
ADMM algorithm were used to develop a novel deep architecture for optimizing a CS-
based MRI model [11]. In [11], they recreated under-sampled 2D cardiac MR images by
use of a convolutional neural network cascade. In terms of both speed and accuracy, our
strategy was superior to CS approaches. De-Aliasing Generative Adversary Networks
(DAGAN) was proposed by Yang et al. for fast CS-MRI reconstruction in [12]. To keep
perceptual image data in the generator network, an adversarial loss was combined with
a unique content loss. For MRI de-aliasing [10], created a GAN with a cyclic loss. This
network’s reconstruction and refinement are carried out using cascaded residual U-Nets.
In [13], the authors employed an L1/L2 norm and mixed-cost loss of Least Squares (LS)
generator to train their deep residual network with skip connections as a generator for
the reconstruction of high-quality MR images. A two-stage GAN technique, according
to [14], can estimate missing k-space samples while also removing image artifacts. The
self-attention technique was incorporated into a hierarchical deep residual convolutional
neural network by [15] in order to improve the under-sampled MRI reconstruction.

Using the self-attention mechanism and the relative average discriminator (SARA-
GAN), [16] constructed an artificial neural network in which half of the input data is
true, and the other half is false. Research organizations and prominent MRI scanner
manufacturers are working hard to speed up the acquisition of MRI scans. For example,
numerous coils can be used to sample k-space data simultaneously, as demonstrated by
Roemer and colleagues [17]. Under-sampled k-space data generated by the coils are used
to reconstruct a picture in commercial MRI scanners [18]. Both approaches are now being
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applied. If the reader is interested in learning more about how the Sensitivity Encoder
(SENSE) works, we suggest [19]. For example, the GeneRalized Autocalibrating Partial
Parallel Acquisition (GRAPPA), developed in 2002 by Griswold et al., works on complex
frequency domain signals before the IFT. For an overview of these approaches, as well as a
hybrid approach that incorporates the benefits of Sense and Grappa, see [20].

The Compressed Sensing (CS) approach [21] provides efficient acquisition and recon-
struction of the signal with fewer samples than the Nyquist–Shannon sampling theorem
limit when a signal has a sparse representation in a specified transform domain. By select-
ing a tiny portion of the k-space grid, CS is employed for MRI reconstruction [22]. The IFT
of the zero-filled k-space exhibits incoherent artifacts that behave like additive random
noise due to the underlying premise that the under-sampling is random. CS, despite being
a popular technique today, promotes smooth rebuilding, which could lead to the loss of
fine, anatomically significant textural characteristics. Additionally, a sizable amount of
runtime is needed. Recently, various machine learning methods for MRI acceleration were
suggested. In order to reconstruct MRI from under-sampled k-space data, Ravishankar and
Bressler [23] suggested a dictionary-based learning strategy that takes advantage of the
sparsity of overlapping image patches highlighting local structure. Using spatio-temporal
patches to reconstruct dynamic MRI [24], elaborated on this concept. Both [25,26] used
compressed manifold learning based on Laplacian 75 Eigenmaps to reconstruct cardiac
MRI and predict respiratory motion.

A variational network (VN) was created in 2018 by [27] to reconstruct intricate multi-
channel MR data. In [28], they suggested the MoDL architecture to handle the MRI recon-
struction difficulty. Meanwhile, ref. [29] created PI-CNN, which combines parallel imaging
with CNN, for high-quality real-time MRI reconstruction. A method for multi-channel
image reconstruction based on residual complicated convolutional neural networks was
developed by [30] to expedite parallel MR imaging. Reconstructed multi-coil MR data from
under-sampled data was successfully produced by [31] using a variable splitting network
(VS-Net). Sensitivity encoding and generative adversarial networks (SENSE-GAN) were
merged by [32] for rapid multi-channel MRI reconstruction. For the reconstruction of
multi-coil MRI, ref. [33] introduced the GrappaNet architecture. The GrappaNet trained the
model from beginning to end using neural networks in addition to conventional parallel
imaging techniques. Dual-domain cascade U-nets were proposed by [34] for MRI recon-
struction. They showed that dual-domain techniques are superior when reconstructing
multi-channel data channels simultaneously. A summary of different articles regarding
deep learning-based and other models for MRI reconstruction is presented in Table 1.

Training the network parameters and achieving reliable generalization results, all
of the aforementioned approaches require a significant size of the dataset. On publicly
accessible datasets, the majority of earlier investigations have verified their reconstruction
performances. Gathering tens of thousands of multi-channel data points for model training
in clinical applications is challenging, though, because retaining raw k-space data is not a
common clinical flow. The generalization of learned image reconstruction networks trained
on open datasets must therefore be improved. In order to address this issue, numerous
transfer learning studies have been carried out lately.
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Table 1. A summary of different articles regarding deep learning-based and other models for
MRI reconstruction.

Sr. No. Reference Methodology Results Future Directions

1 [35]
Reconstruction of brain MRI

data using a G1M
U-Net model

Reconstruction results are derived
from practical sampling schemes

of accelerated brain MRIs.

Apply to a wide range of
datasets with excellent

fidelity to fully
sample scans.

2 [36]
Use of a GAN with a Cyclic

Loss to Reconstruct
a CS-MRI

In terms of both running time and
image quality, CS-MRI methods

performed noticeably better than
open-source MRI datasets.

The next step in the study
will be to extend Refine

GAN to handle
dynamic MRI.

3 [37]

The inverse problem was
solved using a deep

CNN-based
optimization model.

Discriminative CNN denoiser
creates a versatile, quick, and

efficient image
restoration framework.

_ _ _ _

4 [38]

Image Reconstruction from
Compressively Sensed

Random Measurements
Using Recon Net

Recon Net offers high-quality
reconstructions of simulated and

actual data for various
measurement rates.

_ _ _ _

5 [39]

To resolve problems with
normal-convolutional

inverse, direct inversion and
a CNN are proposed.

Parallel beam X-ray CT
sparse-view network performance

is calculated.

It is possible to address
strategies for

heterogeneous datasets.

6 [40]

CS-based approaches,
especially DLMRI, use a

coordinate-descent algorithm
to optimize.

CNNs were evaluated for their
relevance to the MR image
reconstruction challenge.

The model will directly
address the coil sensitivity

maps’ redundancy.

7 [41]

The Primal-Dual algorithm
for tomographic

reconstruction has
been learned.

For the Shepp–Logan phantom,
they improve peak SNR by 6 dB

over competing approaches.

Capable of using complex
loss functions with learned
reconstruction operators.

8 [42]
Recurrent Neural Networks
are used by RIMs to solve

inverse problems.

The RIM-3task model is
competitive on all noise levels. _ _ _ _

9 [43]
A pre-trained CNN model
was used to augment and
classify brain tumor data.

Before and after data
augmentation, they outperformed
the most sophisticated algorithms

with 90.67 accuracies.

Weight-saving
CNN fine-grained

classification will use
differential

stochastic classification.

10 [44]
Investigate the overfitting
issue using a CapsNet for
classifying brain tumors.

Comparative research with CNN
found their accuracy rate was

86.56%.
Learning rate decreases

with iterations.

In the future, look into how
adding more layers affects

classification accuracy.

11 [45]
A review of medical image

classification using deep
learning approaches.

They explain deep learning
algorithms and how they can be
used for medical imaging, noting

that the learning rate is
proportional to the inverse

of iterations.

To apply the strategies to
the modalities where they
are not employed, more

research is needed.

12 [46] Predicted patient survival
using BraTS2017 and U-NET.

With less computational time,
89.6% accuracy was achieved. _ _ _ _

13 [47]

BRaTS 2013, 2015 used
CNN-based two-path

architecture to separate
brain tumors.

Cascaded input
CNN achieved 88.2% accuracy.

Analysis of various
architectural designs.

Increasing the architecture
layers and data set boosted
the outcomes even more.
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To reconstruct high-quality images from under-sampled k-space data in MRI, ref. [48]
created a unique deep learning approach with domain adaptability. The proposed network
made use of a pre-trained network, which was then fine-tuned using a sparse set of radial
MR datasets or synthetic radial MR datasets. Knoll et al. [49] investigated the effects
of image content, sampling pattern, SNR, and image contrast on the generalizability of
a pre-trained model in order to show the potential for transfer learning using the VN
architecture. To test the ability of networks trained on normal pictures to generalize to T1-
and T2-weighted brain images, ref. [50] suggested a transfer-learning approach. Meanwhile,
assessed the generalization of the results of a trained U-net for the single-channel MRI
reconstruction problem using MRI performed with a variety of scanners, each with a
different magnetic field intensity, anatomical variations, and under-sampling masks.

This study aims to investigate the generalizability of a trained GAN model for recon-
structing an MRI with insufficient samples in the following circumstances:
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Transfer learning for a private clinical brain test dataset using the proposed
GAN model.
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For datasets on the knee and brain with Afs of 2 and 4, transfer learning of the
proposed GAN model is conducted.

2. Method and Material

The formulation of the multi-channel image reconstruction problem for parallel imag-
ing is as follows:

w = PFRI + m (1)

where I is the image we intend to solve, P is the under-sampling mask, w is the col-
lected k-space measurements, m is the noise, F is the Fourier transform and R is the coil
sensitivity maps.

By incorporating past knowledge, CS-MRI constricts the solution space in order to
solve the inverse problem of Equation (1). Furthermore, the optimization problem can be
stated as:

I = mini
1
2
‖PFRi −Y‖2

2
+ λS(i) (2)

where the prior regularization term is denoted by S(i), and the first term reflects data fidelity
in the k-space domain, which ensures that the reconstruction results are consistent with
the original under-sampled k-space data. Term λ is a balance parameter that establishes
the trade-off between the data fidelity term and the prior knowledge. In a specific sparsity
transform domain, S(i) is often an L0 or L1 norm.

Typically, an iterative strategy is necessary to tackle the above optimization issue. The
regularization term S(i), which is based on CNN, can now be used to denote, i.e.,

I = mini
1
2
‖PFRi −Y‖2

2
+ λ‖I − f CNN(Iu|θ)‖

2
2

(3)

Utilizing the training dataset, the model’s parameters can be tuned, and the out-
put of CNN is f CNN(Iu|θ) with the parameters θ. Iu = FH

u w, where H stands for the
Hermitian transpose operation, and also refers to the ZF images that were reconstructed
from under-sampled k-space data. Recently, MRI reconstruction has also incorporated
conditional GAN.

A GAN has a discriminator D and a generator G. Both the discriminator and the
generator need to be trained. The generator G can be taught, through training, to predict the
distribution of the genuine data that are provided and to produce data that will deceive the
discriminator D. Distinguishing between the output of the generator G and the actual data
is the discriminator D’s goal. Then, after training, the generator can be used independently
to generate new samples that are comparable to the original ones.
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The conditional GAN loss was therefore applied to the reconstruction of MRI images,
which is:

minθcmaxθe
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erator need to be trained. The generator G can be taught, through training, to predict the 
distribution of the genuine data that are provided and to produce data that will deceive 
the discriminator D. Distinguishing between the output of the generator G and the actual 
data is the discriminator D’s goal. Then, after training, the generator can be used inde-
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bGAN(θc, θe) = EIt−P
train(It)

[logDθe(It)] EIt−pc(It) [logDθe(Gθc(Iu))] (4)

where It is the fully sampled ground truth, and Iu is the equivalent reconstructed image
produced by the generator. Iu is the ZF image that serves as the generator’s input.

2.1. Datasets

The provincial institutional review committee approved the study, and all subjects
provided their informed consent for inclusion prior to participating in it. The MRI scan-
ning was authorized by the institutional review board (Miu Hospital Lahore). Private
brain tumor MRI datasets were collected from 19 participants utilizing various imaging
sequences. We chose 6 participants at random for network testing and 13 for tuning, which
corresponded to 218 and 91 images, respectively. The “Stanford Fully Sampled 3D FSE
Knees” repository provided the knee datasets used in this inquiry. The raw data were
collected using an 8-coil, 3.0T full-body MR system in conjunction with a 3D TSE sequence
with proton density weighting and fat saturation comparison. For network tuning, we
randomly selected 18 individuals, and for testing, we randomly selected 2 subjects, which
corresponded to 1800 and 200 2D images, respectively.

2.2. Model Architecture

Each of the generator networks had the same design and was based on the proposed
GAN model residual of CNN. Our proposed GAN architecture, which includes a generator
and discriminator, is depicted in Figure 2 in detail. Five convolutional encoding layers
and five deconvolutional decoding layers made up the network, with batch normalization
and leaky-ReLU activation functions following each layer. The final layer of the k-space
network generator G entailed 2 output channels corresponding to real and fake components
(see Figure 3).

The discriminator was made up of nine different blocks of convolution layers, followed
by leaky-ReLU activation functions and batch normalization, and the final stage is a fully
linked layer. The training was conducted using the Adam optimizer (see Figure 4). Using
our proposed GAN model and transfer learning, we were able to recover the undersampled
MRI data for two different circumstances, as shown in Figure 5. The dataset contains
1800 images from 18 participants and 4500 images from 45 subjects for testing. We di-
vided the training and validation datasets during the training procedure. Eighteen photos
were chosen at random for validation during each round. The models in the validation
dataset with the best performance, or those with the highest PSNR, were chosen for further
independent testing.

Using random sampling trajectories for AF = 2 and AF = 4, retroactively, all fully
sampled k-space data were undersampled. We experimented with different filter sizes,
changing the filter sizes according to the pool of our data sample. Figures 3 and 4 show the
details of the architecture. The networks were trained using the Adam [43] optimizer and
the various hyperparameters. The model was trained with an initial learning rate of 10−3,
filter size 3 × 3, Xavier initialization and an 8-batch size with a monotonically decreasing
learning rate over 500 epochs.
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Figure 2. Our proposed GAN architecture, including a generator and discriminator. The generator 
G takes the input ZF and sensitivity map. The details of both generator G and discriminator D are 
discussed and shown below in Figures 3 and 4. 
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Figure 2. Our proposed GAN architecture, including a generator and discriminator. The generator
G takes the input ZF and sensitivity map. The details of both generator G and discriminator D are
discussed and shown below in Figures 3 and 4.
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Figure 5. Transfer learning for a GAN reconstruction model proposed for under-sampled
MRI reconstruction.

3. Results and Discussion

The experiments were carried out in Python3 with the TensorFlow backend. On
a workstation equipped with an NVIDIA GV100GL graphics processor unit (GPU), the
reconstruction methods were executed. PSNR and SSIM were used to evaluate the acquired
reconstruction outcomes.

We experimented with several filter sizes in order to determine the best filter size, and
we ultimately chose the filter size that produced the greatest results on our samples of
public and private data. Three distinct filter sizes, including 3 × 3, 5 × 5 and 7 × 7, were
used. In comparison to other filter sizes, the 3 × 3 filters produced greater results. The
experimental findings on the private brain and public knee datasets with various filter sizes
are shown in Figure 6.

The model produced excellent reconstruction results (PSNR, 37.98; SSIM, 0.97). Then,
using a test dataset made up of just a few hundred images from various domains, we
applied our model to it. The test results of several brain and knee image reconstruction
methods on a private and public dataset are shown in Figures 7–10. As demonstrated by
brain images, the findings of Directly Trained (PSNR, 35.78; SSIM, 0.95) were marginally
superior to those of the Calgary Model (PSNR, 34.73; SSIM, 0.94) and Image Net (PSNR,
34.25, SSIM, 0.92), which had artifacts.
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Figure 7. At AF = 2, Reconstruction results on private brain images. From left to right: (i) Image Net
(IN); (ii) Directly trained (DT); (iii) Calgary Model (CM); (iv) Proposed GAN; (v) ZF. In the second
row: (i) Image net; (ii) Directly Trained; (iii) Calgary Model; (iv) Proposed GAN results of same slices
from brain image dataset after applying transfer learning.
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Figure 8. At AF = 4, Reconstruction results on private brain images. From left to right: (i) Image Net;
(ii) Directly trained; (iii) Calgary Model; (iv) Proposed GAN; (v) ZF. In the second row: (i) Image net;
(ii) Directly Trained; (iii) Calgary Model; (iv) Proposed GAN results of same slices from brain image
dataset after applying transfer learning.
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datasets. The findings indicate that TL from our proposed method may be able to lessen 
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with the same contrasts because brain data were initially used to train the proposed 
model. When the distributions of the training and test datasets were similar, the recon-
struction performance was good. The PSNR and SSIM of the images were significantly 
enhanced after applying transfer learning. This demonstrates that the extra information 
provided by these reconstructions makes fine-tuning more efficient when data are repli-
cated across domains. 
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Figure 9. At AF = 2, Reconstruction results on knee dataset. From left to right: (i) Image Net;
(ii) Directly trained; (iii) Calgary Model; (iv) Proposed GAN; (v) ZF. In the second row: (i) Image net;
(ii) Directly Trained; (iii) Calgary Model; (iv) Proposed GAN results of same slices from knee image
dataset after applying transfer learning.
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Figure 10. At AF = 4, Reconstruction results on knee dataset. Moving left to right: (i) Image Net;
(ii) Directly trained; (iii) Calgary Model; (iv) Proposed GAN; (v) ZF. In the second row: (i) Image net;
(ii) Directly Trained; (iii) Calgary Model; (iv) Proposed GAN results of same slices from knee image
dataset after applying transfer learning.

The outcomes of our proposed GAN model (PSNR, 37.98; SSIM, 0.97) were superior
to those of the other models examined. Our proposed transfer learning model beat other
reconstruction techniques (PSNR, 39.33; SSIM, 0.95). Due to a short training dataset, the DT
image (PSNR = 36.05; SSIM = 0.95) produced artifacts in the associated brain images. The
image net model (PSNR, 34.69; SSIM, 0.92) and CM image (PSNR, 35.25; SSIM, 0.95) had
worse results than the other models.

The results of our proposed GAN model at AF 4 were 37.73 PSNR and 0.96 SSIM.
Image net (PSNR, 34.25; SSIM, 0.92), CM (PSNR, 34.59; SSIM, 0.93) and DT (PSNR, 35.38;
SSIM, 0.95) at AF 4. The image net model performed the worst, the category model
performed marginally better and the directly trained model performed better than both.
Similarly, the performance was enhanced when transfer learning was applied to the same
dataset at AF 4. On the knee dataset, the performance of our proposed GAN was also
better than other models. As compared to the brain image dataset, the knee dataset had
the lowest accuracy of all mentioned models at AF2 and AF 4. On the knee dataset, our
proposed GAN model at AF 2 was 34.63 PSNR and 0.88 SSIM. Image net (PSNR, 32.13;
SSIM, 0.81), Calgary Model (PSNR, 32.24; SSIM, 0.82) and Directly Trained (PSNR, 32.83;
SSIM, 0.85) at AF 2. The Calgary model outperformed the ImageNet model, whereas the
directly trained model outperformed both. The performance was enhanced when transfer
learning was applied to the same dataset at AF 2.
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There were the following results after applying transfer learning: Directly Trained
(PSNR, 33.05; SSIM, 0.86), Image net (PSNR, 32.90; SSIM, 0.81), Calgary Model (PSNR,
32.79; SSIM, 0.84) and proposed GAN model (PSNR, 35.48: SSIM, 0.90).

This study’s key contribution is the development of a transfer learning enhanced GAN
technique for reconstructing numerous previously unreported multi-channel MR datasets.
The findings indicate that TL from our proposed method may be able to lessen variation
in image contrast, anatomy and AF between the training and test datasets. With the brain
tumor dataset, reconstruction image performance was better.

This demonstrates that the best method might be to generate training and test data
with the same contrasts because brain data were initially used to train the proposed
model. When the distributions of the training and test datasets were similar, the recon-
struction performance was good. The PSNR and SSIM of the images were significantly
enhanced after applying transfer learning. This demonstrates that the extra information
provided by these reconstructions makes fine-tuning more efficient when data are replicated
across domains.

Table 2 shows the comparison of different models’ reconstruction results under
AF = 2 for brain and knee images. The directly trained model for brain and knee im-
ages performed better than the Image Net and Calgary model. Our proposed GAN models
beat all other compared methods, having PSNR (37.98) and SSIM (0.96) for brain images
and PSNR (34.63) and SSIM (0.88) for knee images. All compared models perform slightly
less on knee images than on brain images.

Table 2. Quantitative analysis of PSNR and SSIM values acquired from brain and knee test images
using various reconstruction techniques.

Brain Knee

PSNR SSIM PSNR SSIM
ZF 29.12 0.86 30.25 0.80

ImageNet [51] 34.25 0.92 32.13 0.81
Directly Trained [52] 35.78 0.95 32.83 0.85
Calgary Model [53] 34.73 0.94 32.24 0.82

Proposed GAN 37.98 0.96 34.63 0.88

Figure 11 displays the outcomes of reconstruction for knee and brain images at an
AF of 2. The x-axis shows various models, and the y-axis shows the value of PSNR. The
blue color legend depicts the brain images, and the brown color legend depicts the knee.
The proposed GAN model had the highest accuracy (PSNR, 37.98 and 34.63) on brain and
knee images, respectively. ZF and image net had the least PSNR compared to other models.
Figure 12 displays the outcomes of reconstruction for knee and brain images at an AF of
2. There are multiple model counts on the x-axis, and the SSIM value is displayed on the
y-axis. The knee is represented by the brown color legend, and the brain by the blue color
legend. In images of the knee and the brain, the proposed GAN model had the highest
SSIM (0.96 and 0.88, respectively). When compared to other models, ZF and image net had
the lowest SSIM.

Figures 13 and 14 show the reconstruction results at AF 4 for brain and knee images.
Our proposed GAN model showed promising results as compared to the other model.
Results at AF 4, PSNR and SSIM of all compared models in Figures 13 and 14 were slightly
decreased. Furthermore, if we discuss the performance difference at AF 2 and AF 4, the
Proposed GAN model improved PSNR by 1.06% and SSIM by 1.01% at AF 2, as compared
to AF 4.
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After using transfer learning, Table 3 compares the reconstruction outcomes of several
models for pictures of the knee and the brain with AF = 2. Our proposed GAN models beat
all other compared methods by improved PSNR (39.33) and SSIM (0.97) for brain images
and PSNR (35.48) and SSIM (0.90) for knee images. The directly trained model for brain and
knee image performance improved by PSNR (36.05), SSIM (0.95) and PSNR (33.05), SSIM
(0.86) better than the Image Net and Calgary model. All compared models’ performance
increased on knee images than brain images after applying transfer learning.
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Table 3. PSNR and SSIM quantitatively evaluated values for the brain and knee test images acquired
using various reconstruction models after using transfer learning.

Brain Knee

PSNR SSIM PSNR SSIM
ImageNet [51] 34.69 0.92 32.90 0.81

Directly Trained [52] 36.05 0.95 33.05 0.86
Calgary Model [53] 35.25 0.95 32.79 0.84
Proposed GAN-TL 39.33 0.97 35.48 0.90

Reconstruction results for images of the knee and brain at AF = 2 after TL are shown
in Figures 15 and 16. Figure 15 displays the PSNR value-based outcomes of reconstruction,
while Figure 16 shows the SSIM value-based results of reconstruction after applying TL.
The blue color legend depicts the brain images, and the brown color legend depicts the
knee. Proposed GAN model PSNR (37.98 and 34.63), SSIM (0.97 and 0.90), on brain and
knee images, respectively. Calgary model performance PSNR (35.25 and 32.79) and SSIM
(0.95 and 0.84) were slightly better compared to the image net model. Directly trained
model PSNR (36.05 and 33.05) and SSIM (0.95 and 0.84) results for brain and knee images,
respectively. Performance increased by 3.0 % on brain images compared to knee images.
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The reconstruction outcomes for images of the knee and brain at AF 4 are shown in
Figures 17 and 18. In comparison to the other model, the proposed GAN model demon-
strated good results. Additionally, if we compare the performance between AF 2 and AF 4,
the proposed GAN model enhanced PSNR and SSIM at AF 2 compared to AF 4 by 1.20 and
2% percent, respectively.
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Our research shows that when compared to other techniques, the reconstruction’s
image’s distribution produced by transfer learning is more similar to the distribution of
the completely sampled image, which can help with the segmentation and diagnosis of
cancerous tumors. We can also successfully use transferred learning across a range of
anatomies. We discovered that brain tumor samples converged faster than knee datasets.
This might be because only a few transfer learning steps were necessary to achieve the best
results because the brain tumor data were located at similar anatomical locations as the
training data.

As an alternative, we used a fixed training set and a range of iterations to test model-
reconstructed image performance after fine-tuning. It makes sense to draw the conclusion
that performance increases with dataset size. Given that there are essentially no data that
can be collected, we think the current study is more realistic. The outcomes of reconstruction
will be better than using a tiny portion of its own data for training as long as fine-tuning
is carried out, regardless of whether the AF is more or less than its own under-sampling
AF. A model with a low AF should be chosen for TL because both brain and knee data
show that AF = 2 is ideal for fine-tuning. In the future, we will evaluate our transfer
learning method’s reconstruction performance compared to that of existing unsupervised
learning methodologies. The proposed method would facilitate the application of future
MRI reconstruction models without requiring the collection of sizable imaging datasets.

4. Conclusions

This work examines the generalization capabilities of a learned proposed GAN model
for under-sampled multi-channel MR images in terms of the differences across training
and test datasets. Our research demonstrates that the proposed GAN model was used to
analyze private brain images, knee images and images with varying AF while utilizing TL
and a small tuning dataset. As compared to the results of transfer learning for the brain and
knee, fewer training data being used produced superior results, with acceleration factor
(AF) 2 (for brain PSNR (39.33) and SSIM (0.97); for knee PSNR (35.48) and SSIM (0.90)) and
AF 4 (for brain PSNR (38.13) and SSIM (0.95); for knee PSNR (33.95) and SSIM (0.86)). The
proposed method would facilitate the application of future MRI reconstruction models
without requiring the collection of sizable imaging datasets.
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