Uncertainty Quantification for Infrasound Propagation in the Atmospheric Environment
Abstract
:1. Introduction
2. Physical Model of Infrasound Propagation
3. Sobol Index for Sensitivity Analysis of the Tau-p Model
3.1. Sobol Sequence Mathematical Principle
3.2. Mathematical Principles of Sobol Sensitivity Analysis
3.3. Pseudocode for Tau-p Model Sensitivity Analysis
Algorithm 1: Pseudocode for tau-p model sensitivity analysis. |
Input: , ; |
Output: , ; |
1: initialize: ; |
2: while ; |
3: Compute: R using Equation (2) |
4: Compute: using Equation (15) |
5: Compute: using Equation (20) |
6: |
7: end |
3.4. Flow Chart of Uncertainty Quantification Technique for the Infrasound Propagation Model
4. Quantitative Results Presentation and Analysis Based on the Actual Atmospheric Data
4.1. Sobol Sampling to Generate Atmospheric Profile Curves
4.2. Uncertainty Quantification Analysis for the Infrasound Propagation Distance
4.3. Uncertainty Quantification Analysis for the Maximum Height of Infrasound Propagation
4.4. Uncertainty Quantification Analysis for the Travel Time of Infrasound Propagation on a Phase Loop
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
c | static sound speed at the receiving point |
unit vector along the direction of wind speed | |
wind speed along the direction of infrasound propagation | |
meridional wind | |
zonal wind | |
specific heat ratio | |
T | thermodynamic temperature |
m | atmospheric molar mass |
R | universal gas constant |
azimuth angle | |
elevation angle of emission | |
z | altitude |
surface altitude | |
maximum altitude of infrasound propagation | |
characteristic function | |
p | ray parameter |
output computed from the infrasound physical model (tau-p model) | |
vector of uncertain parameters | |
() | m-th atmospheric environmental parameter |
partial variance | |
independent Sobol sample sets from | |
first-order Sobol index for the m-th uncertain atmospheric environmental | |
parameter | |
Var | variance symbol |
mathematical expectation symbol | |
second-order Sobol index | |
set of all variables except | |
total Sobol index |
References
- Raspet, R.; Hickey, C.J.; Koirala, B. Corrected Tilt Calculation for Atmospheric Pressure-Induced Seismic Noise. Appl. Sci. 2022, 12, 1247. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Y.; Chen, J. Noise Attenuation Based on Wave Vector Characteristics. Appl. Sci. 2018, 8, 672. [Google Scholar] [CrossRef]
- Gonzalez, A.; Calderon, J. An Overview of the Seismic Elastic Response Spectra and Their Application According to Mexican, U.S., and International Building Codes. Appl. Sci. 2022, 12, 3472. [Google Scholar] [CrossRef]
- Li, J.; He, M.; Cui, G.; Wang, X.; Wang, W.; Wang, J. A Novel Method of Seismic Signal Detection Using Waveform Features. Appl. Sci. 2020, 10, 2919. [Google Scholar] [CrossRef]
- Mutschlecner, P.J.; Whitaker, R.W. Infrasound from earthquakes. J. Geophys. Res. Atmos. 2005, 110, D01108. [Google Scholar] [CrossRef]
- Freret-Lorgeril, V.; Bonadonna, C.; Corradini, S.; Donnadieu, F.; Guerrieri, L.; Lacanna, G.; Marzano, F.S.; Mereu, L.; Merucci, L.; Ripepe, M.; et al. Examples of Multi-Sensor Determination of Eruptive Source Parameters of Explosive Events at Mount Etna. Remote Sens. 2021, 13, 2097. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D.; Lu, Z. Remote Sensing of Volcanic Processes and Risk. Remote Sens. 2020, 12, 2567. [Google Scholar] [CrossRef]
- Batubara, M.; Yamamoto, M.y. Infrasound Observations of Atmospheric Disturbances Due to a Sequence of Explosive Eruptions at Mt. Shinmoedake in Japan on March 2018. Remote Sens. 2020, 12, 728. [Google Scholar] [CrossRef]
- De Angelis, S.; Diaz-Moreno, A.; Zuccarello, L. Recent Developments and Applications of Acoustic Infrasound to Monitor Volcanic Emissions. Remote Sens. 2019, 11, 1302. [Google Scholar] [CrossRef]
- Le Pichon, A.; Blanc, E.; Hauchecorne, A. Infrasound Monitoring for Atmospheric Studies; Springer Science & Business Media: Berlin/Heidelbeg, Germany, 2010. [Google Scholar]
- Schimmel, A.; Hübl, J. Automatic detection of debris flows and debris floods based on a combination of infrasound and seismic signals. Landslides 2016, 13, 1181–1196. [Google Scholar] [CrossRef]
- Modrak, R.T.; Arrowsmith, S.J.; Anderson, D.N. A Bayesian framework for infrasound location. Geophys. J. Int. 2010, 181, 399–405. [Google Scholar] [CrossRef]
- Blom, P.S.; Marcillo, O.; Arrowsmith, S.J. Improved Bayesian Infrasonic Source Localization for regional infrasound. Geophys. J. Int. 2015, 203, 1682–1693. [Google Scholar] [CrossRef]
- Sobol, I.M. On the distribution of points in a cube and the approximate evaluation of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 1967, 7, 784–802. [Google Scholar] [CrossRef]
- Sobol, I.M. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1993, 1, 407–414. [Google Scholar]
- Sobol, I.M. On sensitivity estimation for nonlinear mathematical models. Mat. Model. 1990, 2, 112–118. [Google Scholar]
- Sobol, I. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 2001, 55, 271–280. [Google Scholar] [CrossRef]
- Zhuang, Y.; Luo, S.; Easa, S.M.; Zhang, M.; Wang, C. Mechanical Performance of Curved Link-Slab of Simply Supported Bridge Beam. Appl. Sci. 2022, 12, 3344. [Google Scholar] [CrossRef]
- Evans, M.; Swartz, T. Approximating Integrals via Monte Carlo and Deterministic Methods; OUP Oxford: Oxford, UK, 2000; Volume 20. [Google Scholar]
- Wilson, D.K.; Pettit, C.L.; Ostashev, V.E.; Vecherin, S.N. Description and quantification of uncertainty in outdoor sound propagation calculations. J. Acoust. Soc. Am. 2014, 136, 1013–1028. [Google Scholar] [CrossRef]
- Prikaziuk, E.; van der Tol, C. Global Sensitivity Analysis of the SCOPE Model in Sentinel-3 Bands: Thermal Domain Focus. Remote Sens. 2019, 11, 2424. [Google Scholar] [CrossRef]
- Morcillo-Pallarés, P.; Rivera-Caicedo, J.P.; Belda, S.; De Grave, C.; Burriel, H.; Moreno, J.; Verrelst, J. Quantifying the Robustness of Vegetation Indices through Global Sensitivity Analysis of Homogeneous and Forest Leaf-Canopy Radiative Transfer Models. Remote Sens. 2019, 11, 2418. [Google Scholar] [CrossRef]
- Wang, X. Uncertainty Quantification and Global Sensitivity Analysis for Transient Wave Propagation in Pressurized Pipes. Water Resour. Res. 2021, 57, e2020WR028975. [Google Scholar] [CrossRef]
- Gilquin, L.; Bouley, S.; Antoni, J.; Le Magueresse, T.; Marteau, C. Sensitivity analysis of two inverse methods: Conventional beamforming and Bayesian focusing. J. Sound Vib. 2019, 455, 188–202. [Google Scholar] [CrossRef] [Green Version]
- Garcés, M.A.; Hansen, R.A.; Lindquist, K.G. Traveltimes for infrasonic waves propagating in a stratified atmosphere. Geophys. J. Int. 1998, 135, 255–263. [Google Scholar] [CrossRef]
- Jones, R.M.; Gu, E.S.; Bedard, A., Jr. Infrasonic Atmospheric Propagation Studies Using a 3-D Ray Trace Model. In Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, USA, Meteor. Soc. P. Citeseer. 2004, Volume 2. Available online: https://cires1.colorado.edu/events/rendezvous/2007/posters/I3B.pdf (accessed on 10 May 2021).
- Lonzaga, J.; Waxler, R.; Assink, J.; Talmadge, C. Modelling waveforms of infrasound arrivals from impulsive sources using weakly non-linear ray theory. Geophys. J. Int. 2015, 200, 1347–1361. [Google Scholar] [CrossRef]
- Drob, D.P.; Garcés, M.; Hedlin, M.; Brachet, N. The temporal morphology of infrasound propagation. Pure Appl. Geophys. 2010, 167, 437–453. [Google Scholar] [CrossRef]
- Arrowsmith, S.J.; Whitaker, R.; Taylor, S.R.; Burlacu, R.; Stump, B.; Hedlin, M.; Randall, G.; Hayward, C.; ReVelle, D. Regional monitoring of infrasound events using multiple arrays: Application to Utah and Washington State. Geophys. J. Int. 2008, 175, 291–300. [Google Scholar] [CrossRef]
- Shang, C.; Teng, P.; Lyu, J.; Yang, J.; Sun, H. Infrasonic source altitude localization based on an infrasound ray tracing propagation model. J. Acoust. Soc. Am. 2019, 145, 3805. [Google Scholar] [CrossRef] [PubMed]
- Landau, L.; Lifshitz, E. The Classical Theory of Fields; Addison-Wesley: Cambridge, UK, 1951. [Google Scholar]
- Antoni, J. A Bayesian approach to sound source reconstruction: Optimal basis, regularization, and focusing. J. Acoust. Soc. Am. 2012, 131, 2873–2890. [Google Scholar] [CrossRef]
- Le Gall, Y.; Dosso, S.E.; Socheleau, F.X.; Bonnel, J. Bayesian source localization with uncertain Green’s function in an uncertain shallow water ocean. J. Acoust. Soc. Am. 2016, 139, 993–1004. [Google Scholar] [CrossRef]
- Wang, R.; Yi, X.; Yu, L.; Zhang, C.; Wang, T.; Zhang, X. Infrasound Source Localization of Distributed Stations Using Sparse Bayesian Learning and Bayesian Information Fusion. Remote Sens. 2022, 14, 3181. [Google Scholar] [CrossRef]
- Sabatini, R.; Bailly, C.; Marsden, O.; Gainville, O. Characterization of absorption and non-linear effects in infrasound propagation using an augmented Burgers’ equation. Geophys. J. Int. 2016, 207, 1432–1445. [Google Scholar] [CrossRef]
- Sabatini, R.; Marsden, O.; Bailly, C.; Gainville, O. Three-dimensional direct numerical simulation of infrasound propagation in the Earth’s atmosphere. J. Fluid Mech. 2019, 859, 754–789. [Google Scholar] [CrossRef] [Green Version]
T | min | −1.8359 | 5.49439 | −0.00181 | 0.20020 | −8.048 | 299.09 |
max | −1.8363 | 5.49549 | −0.00180 | 0.20060 | −7.889 | 330.57 | |
min | 9.880 | −4.377 | 0.000655 | −0.03674 | 0.511 | −18.52 | |
max | 9.882 | −4.376 | 0.000657 | −0.03666 | 0.521 | 6.17 | |
min | 1.0201 | −4.410 | 0.000639 | −0.0355 | 0.665 | −18.40 | |
max | 1.0203 | −4.409 | 0.000640 | −0.0353 | 0.679 | 11.04 | |
m | min | −0.000308 | 0.01608 | 27.51 | |||
max | −0.000307 | 0.01612 | 30.41 | ||||
min | 6.3877 | −0.000378 | 1.37 | ||||
max | 6.4005 | −0.000377 | 1.43 |
T | m | ||||
---|---|---|---|---|---|
S | 0.3768 | 0.2684 | 0.3528 | 0.0016 | 0.0004 |
0.3533 | 0.2649 | 0.3814 | 0.0003 | 0.0001 |
T | m | ||||
---|---|---|---|---|---|
S | 0.8496 | 0.0095 | 0.0727 | 0.0659 | 0.0033 |
0.8563 | 0.0093 | 0.0847 | 0.0490 | 0.0007 |
T | m | ||||
---|---|---|---|---|---|
S | 0.2685 | 9.7098 | 0.0045 | 0.6301 | 0.0960 |
0.3396 | 2.6454 | 0.0036 | 0.5771 | 0.0795 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Yi, X.; Wang, R.; Zhang, C.; Wang, T.; Zhang, X. Uncertainty Quantification for Infrasound Propagation in the Atmospheric Environment. Appl. Sci. 2022, 12, 8850. https://doi.org/10.3390/app12178850
Yu L, Yi X, Wang R, Zhang C, Wang T, Zhang X. Uncertainty Quantification for Infrasound Propagation in the Atmospheric Environment. Applied Sciences. 2022; 12(17):8850. https://doi.org/10.3390/app12178850
Chicago/Turabian StyleYu, Liang, Xiaoquan Yi, Ran Wang, Chenyu Zhang, Tongdong Wang, and Xiaopeng Zhang. 2022. "Uncertainty Quantification for Infrasound Propagation in the Atmospheric Environment" Applied Sciences 12, no. 17: 8850. https://doi.org/10.3390/app12178850
APA StyleYu, L., Yi, X., Wang, R., Zhang, C., Wang, T., & Zhang, X. (2022). Uncertainty Quantification for Infrasound Propagation in the Atmospheric Environment. Applied Sciences, 12(17), 8850. https://doi.org/10.3390/app12178850