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Abstract

:

Open platform communications (OPC) unified architecture (UA) is a communication standard increasingly used in industrial automation systems to enable the exchanging of control and management data between distributed entities. This paper proposes the design of an OPC-UA agent to enable UA information service and client functionalities in legacy programmable logic controllers (PLCs). The agent runs on a separate machine connected to the PLC using a dedicated link and maintains shared memory for certain variables in the PLC. Based on the periodically synchronized variables, the agent services the OPC-UA information model and executes client function blocks on behalf of the PLC. One important design feature is the remote procedure call of IEC 61131-3-based function blocks using synchronized variables. This allows the standard OPC-UA client functions to be used in existing PLCs which only support numeric types and do not support strings or complex structures. To validate the proposed design, we implement an agent prototype and demonstrate the successful monitoring and control of an industrial robot controller via OPC-UA. Through experiments, we evaluate the performance of UA functions in terms of the latency of read services for an increasing number of items. The evaluation results are believed to provide useful insights into agent-based approaches for integrating legacy PLCs into the OPC-UA framework.






Keywords:


open platform communications; unified architecture; programmable logic controller; remote procedure call; agent












1. Introduction


With the advances of industrial Internet-of-Things (IoT) in recent years, open platform communications (OPC) unified architecture (UA) is attracting attention as a communication technology for automatic monitoring and control between machines. OPC-UA is a communication standard for the exchanging of control and management data between distributed entities in industrial automation systems [1]. It is standardized by IEC 62541 [2] and specifies reliable, secure, and interoperable communication between various automation devices such as programmable logic controllers (PLCs), human–machine interfaces (HMIs), and supervisory control and data acquisition (SCADA) systems. OPC-UA offers numerous advantages [3,4]. Its functionality is platform-independent and scalable. It supports comprehensive information modeling and allows for the design of service architecture with complex hierarchical data structures [5]. Moreover, OPC-UA provides enhanced security for session encryption and authentication.



To use OPC-UA in specific applications, each application domain has an associated companion specification [6]. The OPC-UA for IEC 61131-3 specification presents an information model for PLCs and defines function blocks for using OPC-UA services in PLC programs [7,8]. The information model describes the configuration, resources, tasks, and programs of an IEC 61131-3-based software in terms of OPC-UA objects, variables, and methods, and enables the PLC to be monitored and used by OPC-UA clients. PLCs may also need the OPC-UA client functionality to perform data exchanges horizontally with other PLCs and/or vertically with higher-level machines such as SCADA and HMIs. The specification of an OPC-UA client for IEC 61131-3 defines function blocks as those used for connecting to an external OPC-UA server, accessing data either synchronously using read services or asynchronously using a subscription, and calling methods on remote servers.



Despite the advantages of OPC-UA, there are legacy PLCs with a significant installation base that cannot benefit from the technology [3,9,10,11,12]. This is because they do not support TCP/IP or lack the built-in computational functions required by IEC 61131-3 due to limited hardware or software capabilities. Typically, programs in legacy controllers are written in instruction lists (ILs) or ladder diagrams (LDs) that only support numeric types and do not support string or complex structure types. Even if the PLC has the necessary computing resources, including the OPC-UA, functionality in the PLC can have catastrophic computational side effects. Since PLCs perform real-time control functions, interference by the additional functions must be thoroughly investigated to ensure that the timing constraints of the control functions are satisfied [13,14]. Therefore, the approach of having a dedicated agent running OPC-UA on a separate machine could be a viable solution for these legacy systems.



This paper proposes the design of an OPC-UA agent to enable information service and client functionalities in legacy PLCs. The agent runs on a separate machine connected to the PLC using a dedicated link, and maintains shared memory for certain variables in the PLC. Based on the periodically synchronized variables, the agent services the OPC-UA information model and executes client function blocks on behalf of the PLC. One important design feature is that, using synchronized variables, the agent implements simplified remote procedure calls (RPC) of IEC 61131-3-based function blocks. This allows the standard OPC-UA client API to be used in existing PLCs that do not support strings or complex user-defined structures. To validate the proposed design, we implement an agent prototype and demonstrate the successful monitoring and control of an industrial robot controller via OPC-UA. Through experiments, we evaluate the performance of UA functions in terms of the latency of the read service as the number of items increases.



The remainder of the paper is organized as follows. In Section 2, we describe the OPC-UA specification and the IEC 61131-3 companion profile. In Section 3, we explain the design of an OPC-UA agent for legacy PLCs, and in Section 4, we present the evaluation results. Section 5 provides the conclusions of the paper.




2. Background


2.1. OPC Unified Architecture


OPC-UA defines an information model and a set of abstract services and describes the mapping to implementation technologies, such as binary coding over TCP/IP or XML over HTTP [15,16]. It is therefore platform-independent and supports different stack implementations to interoperate with each other in different programming and runtime environments. The client-side OPC-UA stack provides a programming interface, and the client application requests service by using the interface. The stack then generates and transmits a request message based on the service definition [17]. When the server-side OPC-UA stack receives the message, it replies with a response message containing data provided by the server application.



An information model is defined by nodes and references [3,16,18]. Each node has a set of attributes. A node class describes the node type and specifies the node attributes. Several base node classes are defined in the standard: objects are used to represent real-world entities, and variables and methods typically belong to objects and represent values and services, respectively. A reference describes the relationship between nodes. In OPC-UA, the node hierarchy is called the address space and is application-specific.



The OPC-UA service defines several functions for exchanging data between distributed devices, including service discovery, session establishment, node management, synchronous data access, and asynchronous data update [16]. In OPC-UA, variables are usually modeled as attributes, and read services are primarily used to access the attributes of nodes synchronously. This service allows the client to specify a list of nodes and attributes and perform bulk reads with a request. It is generally the preferred service for reading variables. Another sophisticated method of data collection is to use a subscription service to receive the asynchronous updates of variables. A client creates a subscription with the desired publishing interval and then creates monitored items within the subscription by specifying node and attribute IDs, sampling intervals, and filters. The sampling interval defines how often the server checks for changes to variables and the filter specifies the conditions in which to put the sampled value into the data queue. The values in the queue create notifications in the next publishing cycle. When the server receives a publish request from the client, the notification then generates a response that delivers the updates.




2.2. OPC-UA for IEC 61131-3


A PLC is a computing system for industrial control and automation and has been standardized by IEC 61131 [5]. A PLC replaces the hardware such as relays, timers, and counters in conventional control panels with software. It receives input from sensors, processes control logic, and transmits outputs to external devices such as motor drives. IEC 61131-3 defines the model of PLC software, and describes the software in terms of configurations, resources, tasks, and program organization units (POUs) [19,20,21]. A configuration describes the hardware such as processors and memory and includes one or more resources. A resource can be considered to be a processing facility capable of executing PLC programs. A resource may contain one or more tasks, where a task controls the execution of a program and/or a set of function and function blocks. A task can be executed periodically or when a specified trigger, such as a variable change, occurs. A POU is the basic building block that contains data structures and algorithms. It can be a program, a function, or a function block. Generally, a program consists of functions and function blocks that pass data arguments.



The specification of OPC-UA for IEC 61131-3 defines server and client technologies for enabling OPC-UA communication in PLC software [7,8]. It explains the information model to describe the IEC 61131-3 software architecture and defines important object types that represent tasks, configurations, resources, and POUs. The OPC-UA client specification defines IEC 61131-3-compliant function blocks that allow PLC software to act as an OPC-UA client and communicate with external OPC-UA servers. These technologies enable the platform-independent, scalable, and secure communication of PLCs in industrial automation.



Figure 1 shows the OPC-UA information model for PLCs and depicts the main object types and their relationships. The IEC 61131-3 object types derive from OPC-UA core and device integration (DI)-level object types and include CtrlTaskType, CtrlConfigurationType, CtrlResourceType, and CtrlProgramOrganizationUnitType. The CtrlTaskType object type defines a PLC task with an execution cycle (Interval), scheduler priority (Priority), and trigger event (Single). When a trigger event is set, the task runs on the rising edge of the event regardless of its period. CtrlConfigurationType represents the PLC configuration and includes global variables (GlobalVars) and resources (Resources). CtrlResourceType expresses PLC resource information. It includes global variables, task information (Tasks), and programs (Programs). CtrlProgramOrganizationUnitType defines a POU and represents a program (CtrlProgramType) or function block (CtrlFunctionBlockType). Each object can have an input variable (InputVar), an output variable (OutputVar), or an input and output variable (InOutVar). Relationships between objects are defined by the reference types HasSubType or HasComponent, which represent derivation and containment relationships, respectively. The application-level objects are defined based on the object types.



The client function blocks support essential OPC-UA services, including service discovery, attributes, methods, monitored items, and subscription services. The function blocks for IEC 61131-3 are summarized in Table 1. The function blocks differ from the original OPC-UA API in that they use handles when nodes need to be specified for read and write operations. Taking UA_ReadList as an example, Figure 2 shows a diagram representation of a function block with types and names of input (left), output (right), and in–out (both) arguments.



The use case of function blocks when using UA_ReadList or UA_WriteList to access data on a remote server is shown in Figure 2 [8]. The PLC software first calls UA_Connect to connect to the server and open an OPC-UA session. If it needs the information model, it uses UA_NamespaceGetIndexList to read the namespace, and it calls UA_NodeGetHandleList with the node ID as an argument to acquire the handle of the node to read or write. The UA_ReadList or UA_WriteList function block is then used to perform a read or write operation using the node handle. When the data transfer is complete, UA_NodeReleaseHandleList deallocates the node handle and UA_Disconnect closes the session and terminates the connection.




2.3. Related Works


Thanks to its advantages over its predecessor, OPC Classic, OPC-UA has been used in a variety of industrial applications [4,22,23,24]. It has been used for the autoconfiguration of real-time Ethernet (RTE) systems [22]. A universal device discovery mechanism was introduced, and it was demonstrated that the parameters of an RTE system can be configured automatically. An OPC-UA-based information system was also proposed for condition monitoring [4]. Based on OPC-UA, an extensible architecture has been developed to provide device status information from heterogeneous field devices and sensors to enterprise-level services. A proof-of-concept implementation was presented with a case for the monitoring of devices in a mining environment. Device information collection using OPC-UA was also utilized for the purpose of the optimization of manufacturing processes [23]. OPC-UA was used to model device-level information, and a set of services were constructed to solve a constraint satisfaction problem for production plan computation. Recently, it has been shown that the comprehensive information-modeling capability of OPC-UA can be used to realize the plug and play of cyber–physical system (CPS) components [24]. The hardware implementation of OPC-UA has been proposed to enable OPC-UA support in embedded field devices such as sensors and actuators [25,26]. The extensions of OPC-UA to support representational state transfer (REST), a popular architecture style for distributed applications, have also been studied [27].



In recent years, with increasing interest in time-sensitive networking (TSN), methods of utilizing OPC-UA for real-time communication have been actively studied [28]. A practical implementation of the OPC-UA TSN communication architecture was presented for a manufacturing system [29] and a static timing analysis of OPC-UA pub–sub has been carried out [14]. A simulation study has been conducted for using OPC-UA pub–sub and TSN for field-level hard real-time communication [30], and TSN traffic shaping has been proposed for OPC-UA field devices [31].



Efforts have been made to utilize OPC-UA in legacy devices and various environments [6,9,10,11,16,32,33]. Wrappers and proxies are an approach for migration from OPC Classic to modern OPC-UA systems [10]. An OPC-UA wrapper is a UA server with a Classic client interface which allows UA clients to access a Classic server, whereas an OPC-UA proxy is a UA client with a Classic server interface that allows a Classic client to access a UA server. Some studies have proposed a standalone OPC-UA wrapper to minimize the impact on existing servers and have analyzed the effect of parameters such as number of items, publish interval, and sampling interval on performance [5]. For the integration of legacy devices, an approach using the OPC-UA companion model for ISA95 has been proposed [9]. A new layer based on OPC-UA was designed to map field device data to an ISA95-based information model and ensure the interoperability of an industrial CPS. The implementation of an OPC-UA interface for legacy PLC-based automation systems using a cloud computing service has also been studied [11]. In practice, for application in a specific field, the creation of an OPC-UA companion specification requires a cross-domain collaborative modeling process, which often results in the creation of an inconsistent set of nodes. Studies have shown that model-based development using the Eclipse modeling framework is effective in resolving inconsistencies [33]. In an industrial CPS, model interoperability is crucial to manufacturing intelligence. A recent study proposed an OPC-UA compatible interface to ensure the interoperability of data analytics across heterogeneous devices [6]. The interface is designed to enable the exchange of predictive model markup language (PMML), a domain-independent standard for representing XML-based data analytics models via OPC-UA.



Some works carried out performance evaluation of OPC-UA. The impact of OPC-UA parameters was analyzed for read and subscription services [15], and the assessment of different OPC-UA implementations has been performed in industrial IoT-based measurement applications [32]. Recently, the performance of OPC-UA has been evaluated and compared with MQTT (Message Queuing Telemetry Transport) and CoAP (Constrained Application Protocol) in a study on the performance analysis of IoT protocols [34].



There have been studies to enable OPC-UA in PLCs [11,35]. However, there have been little work done to support OPC-UA in legacy PLCs that lack the functional support or computational resources required for OPC-UA. This study is the first, in our knowledge, to propose an agent architecture that enables the use of OPC-UA client API based on the IEC 61131-3 standard in PLCs that do not support strings or complex user-defined structures [36]. In our work, we present the details of agent design and the results of experimental evaluation using prototype implementations. We believe that this work provides useful insights into agent-based approaches for integrating legacy PLCs into the OPC-UA framework.





3. OPC-UA Agent for Legacy Programmable Logic Controllers


Our agent design consists of three components running concurrently that share memory with each other: the legacy gateway, UA server, and UA client. Figure 3 shows the organization of an OPC-UA agent. The legacy gateway maintains images of certain PLC variables in the shared memory area. It communicates with the PLC and synchronizes the variable values. The UA server manages the IEC 61131-3 information model of the legacy controller and handles service requests from external UA clients. The UA client contains the OPC-UA client stack and is responsible for the remote execution of function blocks [16]. When it receives an RPC request from the PLC, it identifies the requested function block, constructs arguments from the shared variables, and starts executing the corresponding API function in the UA client stack. When the UA client completes the function, it stores the output parameters and return values in the shared memory and prepares the RPC response. The response is later transferred by the gateway to the legacy controller. The client functions in the agent support both the synchronous and asynchronous collection of data from external OPC-UA servers using read and subscription services, respectively.



3.1. OPC-UA Server


For the UA server to access the user variables defined in the PLC program, the agent maps all application variables to the shared memory. While the PLC program is running, the legacy controller periodically sends variable values to the UA agent, and the shared memory is updated accordingly. So, when an external UA client requests synchronous data access such as read or write to the agent, the UA server can immediately access the shared memory to service the request. Similarly, when an external client requests a subscription-based asynchronous update service, the UA server can create monitored items, sample variable values, and generate publish responses, based on the shared memory.



The UA server provides access to the information model and handles various services for external clients. An external client may request runtime information about a PLC program and some variables such as, for example, actual motor positions and I/O data. To create an information model for the PLC, users provide an XML file of the PLC software structure that describes the configuration, resource, task, and POUs. Figure 4 shows an XML example for the PLC software structure and the OPC-UA information model built from it. For instance, the Proj_OPC object instance of CtrlConfigurationType node class in the figure has Resource1 object of CtrlResourceType class, and Resource1 has Task1 (CtrlTaskType) and Main_prog (CtrlProgramType) object instances. The Main_Prog object contains the local variables defined in the PLC program and the Task1 object has the Interval and Priority instances of the controller task. During initialization, the UA server parses the XML file and builds a corresponding IEC 61131-3 information model.




3.2. Legacy Gateway and Shared Memory


The gateway is responsible for maintaining images of certain PLC variables in a shared memory area. In general, PLCs provide a way for external hosts to access PLC variables for monitoring or programming purposes. The legacy gateway uses a dedicated link to communicate with the PLC and synchronizes the shared memory to keep variable values up to date. Shared memory is basically used to read and write node values in the IEC 61131-3 information model and is periodically synchronized with the PLC memory. In addition, the shared memory in our design stores the input and output parameters of UA function blocks, and is used collaboratively by the agent and PLC during the RPC process.



For external access, some PLCs support standard protocols such as EtherNet/IP, Profinet, or Modbus TCP/ UDP [24,37], while others have proprietary communication links and manufacturer-specific protocols. To address the diversity issue, we define a gateway messaging protocol that is used to communicate with the agent in a platform-independent manner.



Figure 5 shows the structure of a gateway message. The byte at offset 0 is the message type, and the values of 0 and 1 mean “write to” and “read from” the PLC, respectively. The byte at offset 1 determines the memory type: type 0 means the integer memory, while type 1 means the memory for floating-point numbers. The data address of the message indicates the address from which to start reading or writing in the shared memory. The data size at offset 6 is the number of data items, which is followed by data to be read or written in the message. Depending on the target PLC, the gateway protocol is implemented using a specific networking mechanism. It is noteworthy that the agent is designed to service more than one PLC if it has sufficient memory.




3.3. OPC-UA Client and RPC


In IEC 61131-3-based systems, users can write OPC-UA client codes using either textual programming languages such as structured text (ST) and instruction list (IL), or graphic languages such as the ladder diagram (LD), function block diagram (FBD), and structured flow chart (SFC) [5]. Legacy PLCs usually accept a single program file for execution and require a translator to convert the IEC 61131-3 code files into a PLC-executable program. Figure 6 shows the procedure. Many legacy controllers support only numeric variable types, i.e., bool, integer, and real types, and do not support derived or complex types such as array or structure. To support the parameters of types other than numeric types, the translator in our design generates VAR_INPUT.json during the conversion process and stores input values for such non-numeric parameters of OPC-UA client functions. For example, the ServerEndPointUrl input in UA_Connect (see Figure 2) specifies the URL or IP address of the OPC-UA server the program will connect to, and the VAR_INPUT.json file stores the address value for ServerEndPointUrl.



The example in Figure 7 shows (a) an OPC-UA client application written in IEC 61131-3 ST and (b) the corresponding program converted into a PLC-executable script. The program receives the target position from an external OPC-UA server and operates a single-axis motor drive connected to the legacy controller. Lines 1-11 in Figure 7a define the variables that will be used in the rest of the PLC procedure. Next, line 14 shows the program calling UA_Connect to create an OPC-UA session with an external server. During the conversion process, the address value for the server URL parameter is inserted into a table for the URL parameters in VAR_INPUT.json. The index of the table entry is stored in the converted program and later used by the UA agent to look up the argument value when UA_Connect is called. When the connection is established, UA_NodeGetHandleList is called and a new handle (_nHdls0) is created for the node that stores the target position (line 17). The legacy controller then reads the target position from the server by calling UA_ReadList and stores it in the _tarPos variable (line 20). The while loop in lines 19–24 repeats until the target position received is greater than 200. Then the UA_ReadList function is no longer called, and the connection with the server is closed using UA_Disconnect.



For the RPC of OPC-UA client functions, a handshaking between the PLC and agent has been defined using shared variables. Each client function λ is associated with two state variables, cmd[λ] and stat[λ] (see Figure 6). The cmd[λ] variable is used by the PLC to command the start and end of λ. The stat[λ] shows the status of λ and can be modified by the agent. If cmd[λ] = 0 and stat[λ] = 0, it means that λ is idle and not being used by the PLC. When PLC wants to call λ, it sets cmd[λ] = 1. The agent then acknowledges the call by setting stat[λ] = 1 and starts executing λ. When λ completes, the agent sets stat[λ] to 2 or 3, to indicate that λ succeeded or failed, respectively. Then, the PLC resets cmd[λ] = 0 to end, calling λ, and the agent confirms this and resets stat[λ] = 0. Figure 7b shows the PLC program and explains RPC handshaking. For λ1 = UA_Connect, the shared variables I100 and I128 represent cmd[λ1] and stat[λ1], respectively (lines 9–10). For λ2 = UA_ReadList, I117 and I145 refer to cmd[λ2] and stat[λ2], respectively. If cmd[λ2] = 0 and stat[λ2] = 0, the input parameters are stored in I277~I279 (lines 16–23). Now, when X2, the variable mapped to an external input device, is set to 1, the agent executes λ2. When λ2 finishes successfully (cmd[λ2] = 1 and stat[λ2] = 2), the target position value (I208) is copied to _tarPos (lines 24–32).





4. Performance Evaluation


This section evaluates the performance of OPC-UA functions by the agent. We investigate the impact of the number of data items requested by external clients on the UA server. We also measure the response time of the UA client function blocks called from legacy PLC programs. Response time is generally defined as the elapsed time from when a client sends a request to when it receives a response from the server. It is mainly used as a measure to evaluate the performance of OPC-UA servers with client–server architecture [5,15]. We conduct the performance evaluation by focusing on the trend of response time according to the number of items included in a request.



For performance evaluation, an experimental setup was configured using a legacy controller, an OPC-UA agent, and a user host to be used as an external OPC-UA server or client as shown in Figure 8. The OPC-UA agent and the user host were set up using open62541, a widely used open-source OPC-UA stack [17,38]. It was chosen because it supports almost all OPC-UA features and can be easily ported to any hardware or software platform [39,40].



4.1. Experimental Setup


When building the OPC-UA system, the user host was configured to have only core namespace nodes, and the agent host was set up to support the information model for IEC 61131-3 and the UA client function blocks shown in Table 1. The legacy controller is an embedded system that runs PLC programs without an operation system. It controls servo motors and handles 20-channel digital I/O. Table 2 summarizes the specifications of the hardware and software used in the experiment. The OPC-UA agent connects to the legacy controller and the external UA server or client over the TCP/Ethernet network.



Based on the OPC-UA agent design, we have defined performance metrics for the OPC-UA server and client as shown in Figure 9. The UA server agent can handle various services for accessing variables in the legacy PLC. One of those services, UA read service, can be used synchronously to access data items by an external UA client. To evaluate the read performance, we define the latency for read service (   L  r e a d    ) and the response time of the UA server agent (   R  s e r v e r   )  .    L  r e a d     means the time from when the external client sends a read request to when the server agent sends a read response.    R  s e r v e r     is defined as the total time required by the OPC-UA server to process the read service. So, the terms    L  r e a d     and    R  s e r v e r     can be calculated as:


   L  r e a d   =  t 4  −  t 1  ,  



(1)






   R  s e r v e r   =  t 3  −  t 2  .  



(2)







The time    t 1    is when the external client sends a UA read request to the agent, and    t 2    and    t 3    represent the time when the agent receives the UA read request, and when it sends the response to the external client, respectively. The    t 4    represents the time the external client receives the response data sent by the UA server in the agent.



In the legacy controller, OPC-UA client function blocks can be executed along with other PLC codes. For the evaluation of client function blocks, we define performance measures considering the execution of RPC-based client functions. The response time of a client function in the legacy controller,    R  f u n c    , is defined as the total time elapsed from when the client function is called in the PLC task until when the RPC response from the OPC-UA agent is delivered back to the PLC task. The time required to execute the client function in the agent,    R  c l i e n t    , means the total time it takes to recognize the call request, process it, and update the result in the shared memory. Similarly,    L  c l i e n t    , the latency for a client function, is defined as the time it takes the UA client agent to receive its response after requesting a service from the external server. So,    R  f u n c    ,    R  c l i e n t     and    L  c l i e n t     are calculated as


   R  f u n c   =   t ′  6  −   t ′  1  ,  



(3)






   R  c l i e n t   =   t ′  5  −   t ′  2  ,  



(4)






   L  c l i e n t   =   t ′  4  −   t ′  3  .  



(5)







The time     t ′  1    is when the cmd[λ]-shared variable for the UA client function requested by the PLC task is set to 1 and     t ′  2    is the time when the OPC-UA client confirms the change of cmd[λ]. The     t ′  3    and     t ′  4    represent the time when the OPC-UA client requests the necessary service to the external server and receives the response from the server, respectively. The time     t ′  5    is when the stat[λ]-shared variable is changed to indicate that the requested function has completed execution, and     t ′  6    is the time when the legacy controller acknowledges the change of the stat[λ]-shared variable by the OPC-UA agent.




4.2. Read Service of OPC-UA Server


To evaluate the design of the OPC-UA server supporting the IEC 61131-3 information model, we first verified the service of the OPC-UA agent using UaExpert from Unified Automation GmbH [41]. It is a full-featured OPC-UA client software that offers a free trial version. Figure 10 shows the information model for a PLC program developed for verification when viewed using the UaExpert client. It can be seen that the information model for the PLC program has been successfully created in compliance with the IEC 61131-3 specification. The information related to the PLC task has been created as the Task1 object instance, and the variables defined in the PLC program are displayed in the Main_prog object instance.



Next, we investigate the latencies for read service and by the OPC-UA server. Let    N  r e a d     denote the number of requested data items when the read service is called by the external client. Figure 11 shows the measurement results for    L  r e a d     and    R  s e r v e r     according to    N  r e a d    . As    N  r e a d     increases,    R  s e r v e r     increases almost linearly overall, while the    L  r e a d     increase is relatively small. In addition, we found that the per-item latency,    L  r e a d    /   N  r e a d    , decreases rapidly as    N  r e a d     grows to 2000. Therefore, given the trend of    L  r e a d    /   N  r e a d    , it turns out that 3000–4000 data items are best suited when an external client requests a read service from the OPC-UA agent.




4.3. OPC-UA Client Function Blocks for IEC 61131-3


To evaluate the OPC-UA client function block, the response time of the client function called from the PLC program was measured. Among the 28 client APIs in Table 1, the function blocks using the number of node items as an input argument were set to have a value of 1000. The legacy controller was programmed to run a single PLC task with a period of 1 ms. To handle the subscription service, the external server must set both the publishing interval and sampling interval. The sampling interval is the rate at which the external server checks the values of monitored items in the subscription. If a publish request is sent from the OPC-UA client agent to the external server after the variable value is changed, the response is delivered to the client in the next publishing cycle. In the experiment, the external server set the publish interval to 500 ms and the sampling interval to 250 ms, respectively.



Table 3 summarizes the measurement results of    R  f u n c     and    R  c l i e n t     for each client function block. The averages of    R  f u n c     for all function blocks were found to be very similar. However, the averages of    R  c l i e n t     were measured to be significantly different depending on the client function. This is because shared memory is updated periodically and    R  f u n c     is strongly affected by the update cycle of shared memory. Therefore, it can be seen that    R  f u n c     can be improved significantly by reducing the update cycle of shared memory. It was also found that the    R  c l i e n t     of UA_Connect, which is used to establish a new connection of an OPC-UA session, is large compared to other function blocks. The response times for UA_MethodGetHandleList, UA_MethodReleaseHandleList, and UA_EventItemOperateList are very small because the functions are executed without communication with the external server.



Among frequently used function blocks, the response time of UA_ReadList, UA_WriteList, and UA_MonitoredItemAddList may vary depending on    N  r e a d    , the number of node items. In particular, it is interesting to analyze the trend of response times,    R  c l i e n t     and    L  c l i e n t     according to the number of items, and discuss the time required for function execution and data exchange with an external server. Figure 12 shows the experiment results. It can be seen that    R  f u n c     is highly affected by the shared memory update cycle because    R  c l i e n t     and    L  c l i e n t     are very small until    N  r e a d     increases to 3000. As    N  r e a d     increases gradually, it takes time to dynamically create the requested nodes and update the response variables before and after executing the client function, so it was observed that    R  c l i e n t     increases as rapidly as    N  r e a d     increases. The latency    L  c l i e n t     of UA_MonitoredItemAddList is always larger than the other two function blocks. This is because more processing is required for data exchange such as for the variables, status, and timestamps, as well as the node list in the subscription service.





5. Conclusions


In this paper, we proposed the design of an OPC-UA agent. By running the OPC-UA server and client functions on a separate machine, the agent allows legacy PLCs to support an OPC-UA-based information service in a seamless and secure manner and to remotely access external OPC-UA servers. The agent is connected to the PLC using a dedicated link and maintains shared memory for specific variables in the PLC. Based on the periodically synchronized variables, the agent serves the IEC 61131-3 information model and executes client function blocks on behalf of the PLC.



Our agent design consists of three components running concurrently that share memory with each other: the legacy gateway, UA server, and UA client. The legacy gateway communicates with the PLC and maintains an image of certain PLC variables in a shared memory area. The UA server manages the IEC 61131-3 information model of legacy controllers and handles service requests from external UA clients. The UA client contains the OPC-UA client stack and is responsible for the RPC of function blocks. The shared memory is periodically synchronized with the PLC memory and is primarily used to read and write node values in the IEC 61131-3 information model. In our design, the shared memory also stores the state of the UA function blocks and their input and output parameters. For the RPC of OPC-UA client functions, each client function is associated with two state variables, and the agent and PLC collaboratively use the variables during RPC handshaking. It is notable that the agent allows standard OPC-UA client functions to be used in PLCs that do not support strings or complex structures. The translator in our design generates a mapping table during the conversion process and stores input values for such non-numeric parameters of OPC-UA client functions in the table. The index of the table entry is stored in the converted program and later used by the UA agent to look up argument values when the client function is called.



Through experiments, we have validated the OPC-UA agent design and evaluated the performance of the OPC-UA server and client of the agent. We evaluated the read service of the OPC-UA server according to the number of nodes and found that the most appropriate number of nodes is about 3000 to 4000 in a single request. In the OPC-UA client, we measured the response time for 28 client APIs and observed the response times and latency depending on the number of nodes for the UA client functions frequently used for data exchange.



In our future research, we will study how to further improve the response time and latency in consideration of legacy controllers with different hardware and software. One of the key findings is that the update cycle of shared memory has a large impact on response time when the number of data items in a read or write is small. We will study a scheme to maximize performance by automatically tuning the configurable parameters of the OPC-UA agent, including the update cycle.
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Figure 1. OPC-UA information model for IEC 61131-3. 
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Figure 2. Use case of OPC-UA client function blocks and diagram representation of UA_Connect and UA_ReadList. 
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Figure 3. Organization of an OPC-UA agent with three concurrently running components: the legacy gateway, UA server, and UA client. 
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Figure 4. XML for the PLC software structure and the OPC-UA information model built from it. 
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Figure 5. Structure of gateway messages used by the gateway messaging protocol for platform-independent communication between OPC-UA agent and PLC. 
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Figure 6. Procedure to convert IEC 61131-3 code files into a PLC-executable program. 
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Figure 7. An OPC-UA client application written in ST and its converted PLC-executable script. 
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Figure 8. Experimental setup used for performance evaluation. 
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Figure 9. Sequence diagrams for the OPC-UA server and client functions by the agent. 
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Figure 10. IEC 61131-3 Information model of a PLC program viewed using UaExpert client program. 
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Figure 11. Average latencies for read service (   L  r e a d   )   and response time of the OPC-UA server (   R  s e r v e r   )   according to the number of data items (   N  r e a d    ) in a single request. 
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Figure 12. Average response times and latencies of UA_ReadList, UA_WriteList, and UA_MonitoredItemAddList according to the number of data items in a single request. 
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Table 1. OPC-UA client function blocks for IEC 61131-3.
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	Function Block Name
	Description





	UA_Connect
	Create a connection of OPC-UA session.



	UA_Disconnect
	Close a connection of OPC-UA session.



	UA_NamespaceGetIndexList
	Acquire a list of indexes for the given namespaces.



	UA_ServerGetUriByIndex
	Acquire the server-URI with a given index.



	UA_ServerGetIndexByUriList
	Acquire a list of indexes for the server-URIs.



	UA_TranslatePathList
	Acquire a list of node IDs for the node paths.



	UA_NodeGetHandleList
	Acquire node handles for the given node IDs.



	UA_NodeReleaseHandleList
	Release a set of node handles.



	UA_NodeGetInformation
	Acquire the node information.



	UA_SubscriptionCreate
	Create a subscription.



	UA_SubscriptionDelete
	Delete a subscription.



	UA_SubscriptionModify
	Modify publish parameters of a subscription.



	UA_SubscriptionProcessed
	Check if monitored items have been published.



	UA_MonitoredItemAddList
	Add nodes for monitored items.



	UA_MonitoredItemRemoveList
	Remove monitored items from a subscription.



	UA_MonitoredItemModifyList
	Modify monitored items.



	UA_MonitoredItemOperateList
	Update the values of monitored items.



	UA_ReadList
	Read values of a list of nodes.



	UA_WriteList
	Write values of a list of nodes.



	UA_MethodGetHandleList
	Acquire handles for method calls.



	UA_MethodReleaseHandleList
	Release method handles.



	UA_MethodCall
	Call a method routine.



	UA_Browse
	Navigate through OPC-UA address space.



	UA_EventItemAdd
	Create events in a subscription.



	UA_EventItemOperateList
	Acquire a list of event information.



	UA_EventItemRemoveList
	Remove events from a subscription.



	UA_HistoryUpdate
	Insert or update data in the historical database.



	UA_ConnectGetStatus
	Acquire the connection status.
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Table 2. Specifications of experimental system.
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System

	
Item

	
Description






	
External OPC-UA system

	
CPU

	
Intel(R) Core(TM) i5-9300H CPU @2.40 GHz




	
Main memory

	
8.00 GB DDR4 DRAM




	
Operating system

	
Windows 11 Pro




	
OPC-UA software

	
open62541 v1.1 by open62541 community project




	
Network

	
Realtek Gaming GbE Family Controller




	
OPC-UA agent

	
CPU

	
Intel(R) Core(TM) i5-8500 CPU @3.00 GHz




	
Main memory

	
8.00 GB DDR4 DRAM




	
Operating system

	
Windows 10 Home




	
OPC-UA software Network

	
open62541 v1.1 by open62541 community project




	
Intel(R) Ethernet Connection(7) I219-V




	
Legacy controller

	
CPU

	
Arm Cortex-R4F-based TI RM46L852 MCU




	
Main memory

	
16 MB flash memory and 32 KB NVRAM




	
Network

	
WIZnet W5300 Ethernet controller
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Table 3. Average response time of OPC-UA client functions.
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Function Block

	
Function Response Time (ms)

(Average, Std. Dev.)




	
     R  f u n c      

	
     R  c l i e n t      






	
Function block without the number of nodes argument

	
UA_Connect

	
79.09, 1.23

	
26.93, 8.09




	
UA_Disconnect

	
79.30, 0.47

	
3.90, 0.63




	
UA_TranslatePathList

	
78.25, 2.72

	
8.10, 1.75




	
UA_NodeGetInformation

	
77.13, 5.44

	
14.57, 5.94




	
UA_SubscriptionCreate

	
75.50, 7.97

	
1.70, 0.56




	
UA_SubscriptionDelete

	
75.05, 8.74

	
14.15, 1.08




	
UA_SubscriptionModify

	
77.28, 6.49

	
2.57, 0.46




	
UA_SubscriptionProcessed

	
74.68, 9.14

	
8.69, 3.59




	
UA_Browse

	
77.82, 6.69

	
5.85, 0.47




	
UA_ConnectGetStatus

	
77.41, 6.76

	
3.67, 1.77




	
UA_NamespaceGetIndexList

	
77.06, 6.41

	
4.20, 2.06




	
UA_ServerGetUriByIndex

	
77.00, 6.16

	
2.65, 0.09




	
UA_ServerGetIndexByUriList

	
75.70, 6.02

	
4.54, 0.40




	
Function block having the number of nodes argument

	
UA_NodeGetHandleList

	
77.05, 6.19

	
3.76, 0.28




	
UA_NodeReleaseHandleList

	
76.20, 7.15

	
2.59, 0.26




	
UA_MonitoredItemAddList

	
77.29, 6.09

	
19.95, 0.89




	
UA_MonitoredItemRemoveList

	
77.47, 6.35

	
17.26, 6.35




	
UA_MonitoredItemModifyList

	
77.50, 6.56

	
27.00, 2.31




	
UA_MonitoredItemOperateList

	
76.80, 6.10

	
7.35, 0.33




	
UA_ReadList

	
76.00, 7.33

	
10.51, 1.87




	
UA_WriteList

	
78.05, 4.70

	
12.31, 0.48




	
UA_MethodGetHandleList

	
77.95, 4.53

	
0.97, 0.26




	
UA_MethodReleaseHandleList

	
78.61, 4.67

	
0.05, 0.02




	
UA_MethodCall

	
77.31, 5.52

	
8.08, 2.25




	
UA_EventItemAdd

	
77.67, 5.89

	
1.59. 0.35




	
UA_EventItemOperateList

	
76.24, 7.92

	
0.06, 0.01




	
UA_EventItemRemoveList

	
76.00, 7.14

	
1.81, 0.16




	
UA_HistoryUpdate

	
76.00, 7.33

	
11.38, 2.58
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23. Error—>_error2)

24, END_WHILE

25. END_IF

26. UA_Disconnect(Execute:=X4, ConnectionHdl:= connHdl, Done=>_done, Busy=> busy, Error=>_etror);
27.end procedure

(a) An OPC-UA client application written in ST.

1.begin procedure 32. END IF
2. VAR 33. 1IFI1117=1 THEN
3. _done:BOOL; 34, IF 1145 =1 THEN
4.  busy:BOOL; 35. _donel :=0;
5. _error:BOOL; 36. _busyl =1;
6. 37. _errorl :=0;
7. _tarPos:REAL; 38. END IF
8. END_VAR 39. END_IF

40. 1FI117=1THEN
9. IFI100=0 THEN 41. IF 1145 =3 THEN
10. IFI128 =0 THEN 42. _donel = 0;
11. 1100 := XO0; 43. _busyl :=0;
12. END _IF 44. _errorl :=1;
13. END_IF 45. END_IF
14. .. 46. END _IF
15. WHILE tarPos <=200 DO 47. P1.EXE := X3;
16. 1IFI117=0 THEN 48. MABSPI;
17. IF 1145 =0 THEN 49. P113 tarPos 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0;
18. 1277 =1; 50. done2 :=P1.DONE;
19. 1278 = _nodeHdls; 51. _busy2 :=P1.BUSY;
20. 1279 := connHdls; 52. _error2 := P1.ERROR;
21. 1117 .= X2; 53. END_WHILE
22, END _IF 54. END IF
23. END _IF 55. IF 1101 =0 THEN
24, 1FI117=1THEN 56. IF 1129 =0 THEN
25. IF 1145 =2 THEN 57. 1101 :=X4;
26. 1117 :=0; 58. 1102 := connHdlIs;
27. _tarPos :=1208; 59. END_IF
28. _donel :=1; 60. END IF
29. _busyl :=0; 61. IF 1101 =1 THEN
30. _errorl :=0; 62. .
31. END IF 63. end procedure

(b) A PLC-executable script converted from the ST code above.
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