Shannon Entropy Analysis of Reservoir-Triggered Seismicity at Song Tranh 2 Hydropower Plant, Vietnam
Abstract
:1. Introduction
2. Seismotectonic Settings and Data
3. Shannon Entropy
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rajendran, K.; Harish, C.M. Mechanism of triggered seismicity at Koyna: An assessment based on relocated earthquake during 1983–1993. Curr. Sci. 2000, 79, 358–363. [Google Scholar]
- Nascimento do, A.F.; Cowie, P.A.; Lunn, R.J.; Pearce, R.G. Spatio-temporal evolution of induced seismicity at Acu reservoir, NE Brazil. Geophys. J. Int. 2004, 158, 1041–1052. [Google Scholar] [CrossRef]
- Gupta, H.; Shashidhar, D.; Pereira, M.; Purnachandra Rao, N.; Kousalya, M.; Satyanarayana, H.V.S.; Saha, S.; Babu Naik, R.T.; Dimri, V.P. A new zone of seismic activity at Koyna. India. J. Geol. Soc. India 2007, 69, 1136–1137. [Google Scholar]
- Gupta, H.K.; Rao, N.P.; Roy, S.; Arora, K.; Tiwari, V.M.; Patro, P.K.; Satyanarayana, H.V.S.; Shashidhar, D.; Mallika, K.; Akkiraju, V.V. Investigations related to scientific deep drilling to study reservoir triggered earthquakes at Koyna, India. Int. J. Earth Sci. Geol. Rundsch. 2015, 10, 1511–1522. [Google Scholar] [CrossRef]
- Mikhailov, V.O.; Arora, K.; Ponomarev, A.V.; Srinagesh, D.; Smirnov, V.B.; Chadha, R.K. Reservoir induced seismicity in the Koyna–Warna region, India: Overview of the recent results and hypotheses. Izv. Phys. Solid Earth 2017, 53, 518–529. [Google Scholar] [CrossRef]
- Valoroso, L.; Improta, L.; Chiaraluce, L.; Di Stefano, R.; Ferranti, L.; Govoni, A.; Chiarabba, C. Active faults and induced seismicity in the Val d’Agri area (Southern Apennines, Italy). Geophys. J. Int. 2009, 178, 488–502. [Google Scholar] [CrossRef]
- Braun, T.; Cesca, S.; Kühn, D.; Martirosian-Janssen, A.; Dahm, T. Anthropogenic seismicity in Italy and its relation to tectonics: State of the art and perspectives. Anthropocene 2018, 21, 80–94. [Google Scholar] [CrossRef]
- Reoloffs, E.A. Fault stability changes induced beneath a reservoir with cyclic variations in water level. J. Geophys. Res. 1988, 93, 2107–2124. [Google Scholar] [CrossRef]
- Ellsworth, W. Injection-Induced Earthquakes. Science 2013, 341, 1225942. [Google Scholar] [CrossRef] [PubMed]
- Grigoli, F.; Cesca, S.; Priolo, E.; Rinaldi, A.P.; Clinton, J.F.; Stabile, T.A.; Dost, B.; Fernandez, M.G.; Wiemer, S.; Dahm, T. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective. Rev. Geophys. 2017, 55, 310–340. [Google Scholar] [CrossRef]
- Rajendran, K.; Harish, C.M.; Kumaraswamy, S.V. Re-Evaluation of Earthquake Data from Koyna–Warna Region: Phase I; Report to the Department of Science and Technology; Department of Science and Technology: Trivandrum, India, 1996. [Google Scholar]
- Malik, L.K. Damage Risk Factors for Hydraulic Engineering Structures. Safety Problems; Nauka: Moscow, Russia, 2005. [Google Scholar]
- Guignard, F.; Laib, M.; Amato, F.; Kanevski, M. Advanced Analysis of Temporal Data Using Fisher-Shannon Information: Theoretical Development and Application in Geosciences. Front. Earth Sci. 2020, 8, 255. [Google Scholar] [CrossRef]
- Tang, C. Numerical simulation of progressive rock failure and associated seismicity. Int. J. Rock Mech. Min. Sci. 1997, 34, 249–261. [Google Scholar] [CrossRef]
- Guarino, A.; Garcimartin, A.; Ciliberto, S. An experimental test of the critical behaviour of fracture precursors. Eur. Phys. B 1998, 6, 13–24. [Google Scholar] [CrossRef]
- Lu, C.; Mai, Y.W.; Xie, H. A sudden drop of fractal dimension: A likely precursor of catastrophic failure in disordered media. Philos. Mag. Lett. 2005, 85, 33–40. [Google Scholar] [CrossRef]
- Chelidze, T.; Kolesnikov, Y.; Matcharahvili, T. Seismological criticality concept and percolation model of fracture. Geophys. J. Int. 2006, 164, 125–136. [Google Scholar] [CrossRef]
- Rundle, J.B.; Giguer, A.; Turcotte, D.L.; Crutchfield, J.P.; Donnellan, A. Global seismic nowcasting with Shannon information entropy. Earth Space Sci. 2019, 6, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Taponnier, P.; Peltzer, G.; Armijo, R.; Coward, M.P.; Ries, A.C. On the mechanics of the collision between India and Asia. Collision Tectonics. Geol. Soc. Spec. Publ. 1986, 19, 113–157. [Google Scholar] [CrossRef]
- Fyhn, M.B.W.; Boldreel, L.O.; Nielsen, L.H. Geological development of the Central and South Vietnamese margin: Implications for the establishment of the South China Sea, Indochinese escape tectonics and Cenozoic volcanism. Tectonophysics 2009, 478, 184–214. [Google Scholar] [CrossRef]
- Nam, T.N. The geology of Vietnam: A brief summary and problems. Geosci. Rep. Shizuoka Univ. 1995, 22, 1–10. [Google Scholar]
- Hoai, L.T.T.; Vuong, N.V.; Dong, B.V. Fault and Faulting Characteristics in Relationship with Reservoir Triggered Earthquakes in the Song Tranh 2 Hydropower Plan, Bac Tra My, district, Quang Nam province. NU Hanoi J. Sci. Nat. Sci. Technol. 2014, 30, 21–32, (In Vietnamese, abstract in English). [Google Scholar]
- Hoai, L.T.T.; Vu, P.N.H.; Nguyen, N.D.; Thao, H.T.P.; Vuong, N.V. Tectonic Stress Distribution in the Song Tranh 2 Hydropower Reservoir: Implication for Induced Earthquake. VNU J. Sci. Earth Environ. Sci. 2021, 37, 24–34. [Google Scholar] [CrossRef]
- Thai, A.T.; Purnachandra Rao, N.; Gahalaut, K.; Cao, D.T.; Le, V.D.; Cao, C.; Mallika, K. Evidence that earthquakes have been triggered by reservoir in the Song Tranh 2 region, Vietnam. J. Seismol. 2017, 21, 1131–1143. [Google Scholar]
- Frieden, B.R. Fisher Information, Disorder, and the Equilibrium Distributions of Physics. Phys. Rev. A 1990, 41, 4265–4276. [Google Scholar] [CrossRef]
- Shannnon, C. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Telesca, L.; Lovallo, M. On the Performance of Fisher Information Measure and Shannon Entropy Estimators. Phys. Stat. Mech. Its Appl. 2017, 484, 569–576. [Google Scholar] [CrossRef]
- Devroye, L. A Course in Density Estimation; Birkhauser Boston Inc.: Boston, MA, USA, 1987. [Google Scholar]
- Janicki, A.; Weron, A. Simulation and Chaotic Behavior of Alpha-Stable Stochastic Processes; CRC Press: Boca Raton, FL, USA, 1993; Volume 178. [Google Scholar]
- Troudi, M.; Alimi, A.M.; Saoudi, S. Analytical Plug-in Method for Kernel Density Estimator Applied to Genetic Neutrality Study. EURASIP J. Adv. Signal Process. 2008, 2008, 739082. [Google Scholar] [CrossRef]
- Raykar, V.C.; Duraiswami, R. Fast optimal bandwidth selection for kernel density estimation. In Proceedings of the 2006 SIAM International Conference on Data Mining (SDM), Bethesda, MD, USA, 20–22 April 2006; pp. 524–528. [Google Scholar]
- Telesca, L.; Thai, A.T.; Cao, D.T.; Ha, T.G. Spectral evidence for reservoir triggered seismicity at Song Tranh 2 Reservoir (Vietnam). Pure Appl. Geophys. 2021, 178, 3817–3828. [Google Scholar] [CrossRef]
- Vogel, E.E.; Brevis, F.G.; Pastén, D.; Muñoz, V.; Miranda, R.A.; Chian, A.C.-L. Measuring the seismic risk along the Nazca–South American subduction front: Shannon entropy and mutability. Nat. Hazards Earth Syst. Sci. 2020, 20, 2943–2960. [Google Scholar] [CrossRef]
- Zaliapin, I.; Gabrielov, A.; Wong, H.; Keilis-Borok, V.I. Clustering analysis of seismicity and aftershock identification. Phys. Rev. Lett. 2008, 101, 018501. [Google Scholar] [CrossRef] [PubMed]
- Baiesi, M.; Paczuski, M. Scale-free networks of earthquakes and aftershocks. Phys. Rev. E. 2004, 69, 066106. [Google Scholar] [CrossRef] [PubMed]
- Zaliapin, I.; Ben-Zion, Y. Earthquake clusters in southern California, I: Identification and stability. J. Geophys. Res. 2013, 118, 2847–2864. [Google Scholar] [CrossRef]
- Zaliapin, I.; Ben-Zion, Y. Earthquake declustering using the nearest-neighbor approach in space-time-magnitude domain. J. Geophys. Res. Solid Earth 2020, 125, e53991. [Google Scholar] [CrossRef]
- Durá-Gómez, I.; Talwani, P. Hydromechanics of the Koyna–Warna Region, India. Pure Appl. Geophys. 2010, 167, 183–213. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Telesca, L.; Thai, A.T.; Lovallo, M.; Cao, D.T.; Nguyen, L.M. Shannon Entropy Analysis of Reservoir-Triggered Seismicity at Song Tranh 2 Hydropower Plant, Vietnam. Appl. Sci. 2022, 12, 8873. https://doi.org/10.3390/app12178873
Telesca L, Thai AT, Lovallo M, Cao DT, Nguyen LM. Shannon Entropy Analysis of Reservoir-Triggered Seismicity at Song Tranh 2 Hydropower Plant, Vietnam. Applied Sciences. 2022; 12(17):8873. https://doi.org/10.3390/app12178873
Chicago/Turabian StyleTelesca, Luciano, Anh Tuan Thai, Michele Lovallo, Dinh Trong Cao, and Le Minh Nguyen. 2022. "Shannon Entropy Analysis of Reservoir-Triggered Seismicity at Song Tranh 2 Hydropower Plant, Vietnam" Applied Sciences 12, no. 17: 8873. https://doi.org/10.3390/app12178873
APA StyleTelesca, L., Thai, A. T., Lovallo, M., Cao, D. T., & Nguyen, L. M. (2022). Shannon Entropy Analysis of Reservoir-Triggered Seismicity at Song Tranh 2 Hydropower Plant, Vietnam. Applied Sciences, 12(17), 8873. https://doi.org/10.3390/app12178873