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Featured Application: The presented results can be applied in computer analyses of switched net-
works and in the proper estimation of the junction temperature of transistors in such networks.

Abstract: This paper presents a method of fast computations of waveforms of the junction temper-
ature of power SiC-MOSFETs (silicon carbide metal–oxide–semiconductor field-effect transistor)
operating in switched-mode circuits at the steady state. This method makes it possible to use SPICE
(Simulation Program with Integrated Circuits Emphasis) models of the considered transistors given
by the manufacturers. The method of the analysis is described. Using the presented methods and
a compact thermal model, some computations of switch-mode circuits were performed. Typical
switches and DC–DC (direct current to direct current) boost converters, including such transistors
operating at different cooling conditions in a wide range of frequencies of a control signal, are ana-
lyzed. In particular, the influence of the cooling system, load resistance and switching frequency on
the waveforms of the dissipated power and the junction temperature are considered. The obtained
results of computations are compared with the results found using other methods of analysis given
in the literature. The times required to perform computations with the considered methods are
compared. On the basis of the results of the performed analyses, the operating conditions of the
investigated networks, at which ripples of the junction temperature are important, are pointed out.
A short discussion on the limitation of the lifetime of the power MOSFET is also given.

Keywords: power SiC-MOSFETs; junction temperature; self-heating; SPICE; electrothermal analysis;
switched networks; DC–DC converters; computation method

1. Introduction

Power semiconductor devices, particularly power transistors, are commonly used in
switching circuits [1–3]. In these systems, the power p dissipated in transistors changes
strongly as a function of time, and the junction temperature Tj can significantly exceed the
value of the ambient temperature Ta as a result of the self-heating phenomenon [4–6]. In
order to correctly compute the waveforms of the power p(t) and junction temperature Tj(t),
it is necessary to perform electrothermal analyses using electrothermal models [7–9]. The
models mentioned above take into account the influence of mutual interactions between
the temperature Tj and the voltages and currents of the transistor [10–12].

In electrothermal models, compact thermal models describing the dependence of
the junction temperature on the dissipated power p are often used. Transient thermal
impedance Zth(t) is the parameter characterizing the heating process of a transistor in
a specific cooling system [13–15]. In this study transient thermal impedance, junction–
ambient, is considered. The course of Zth(t) is typically described using the sum of the
exponential functions [7,16,17]
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Zth(t) = Rth ·
[

1 −
N

∑
i=1

ai · exp
(
− t

τthi

)]
(1)

where Rth is thermal resistance, ai is the weight coefficients related to thermal time constants
τthi and N is the number of thermal time constants.

In Formula (1), there are thermal time constants τthi characterizing individual com-
ponents of the heat flow path, and their values differ from each other by several orders of
magnitude [17,18]. In the electrothermal analysis of switching circuits, there is a problem of
how to solve the system of differential-algebraic equations, in which there are significant dif-
ferences between the values of the time constants characterizing the electrical and thermal
properties of the analyzed circuit. The differences between these time constants can reach
nine orders of magnitude [4,19], which causes an unacceptable increase in the duration time
of the calculations necessary to obtain the steady state. Therefore, many methods have been
developed that make it possible to shorten this time by applying various simplifications.
Many of these methods are characterized in the paper [4].

For example, the use of the so-called electrothermal averaged models [20] allows the
performance of fast analyses with the omission of time changes in the power dissipated in
semiconductor devices. In the analyses carried out with these models, it is not possible to
accurately determine the peak-to-peak value of ripples of the junction temperature Tj; only
its average value can be determined. When using the accelerated transients analysis [4], the
influence of the shortest and longest thermal time constants on the determined waveforms
Tj(t) is ignored. Therefore, the results of such calculations are not precise.

In the paper [19] an iterative method of electrothermal transient analysis of DC–DC
converters is proposed, in which the calculations are performed iteratively with the use of
SPICE and a program extrapolating the values of voltages, currents and junction tempera-
tures with the use of memoryless convolution algorithms [21]. This method does not require
simplifications, but its practical application requires the preparation of a special program.

Modern constructions of power transistors are characterized by a method of mount-
ing a semiconductor die to the metal base, which causes the occurrence of thermal time
constants in the transient thermal impedance of the transistor of a much lower value, even
up to a dozen microseconds [22]. This may cause the occurrence of thermal cycles, which
adversely affects the reliability of the considered class of transistors [23,24].

On the other hand, the typical values of the control signal period are much shorter than
the thermal time constants for classic power transistors [4,25]. Therefore, in the computer
analyses of switching circuits with these transistors, ripples of the junction temperature are
typically neglected at the steady state [4,26].

Now, more and more popular power semiconductor devices are made of wide bandgap
semiconductor materials [27–30]. In this group the devices made of silicon carbide (SiC) play
an important role. Such devices are characterized by a high value of the maximum allowable
voltage and high switching frequency [28]. In the papers [27–30] much information is given
regarding the possibility of replacing silicon power transistors with such devices made of
silicon carbide.

In this paper, a fast computation method of ripples in the junction temperature of
discrete power SiC-MOSFETs at the steady state is proposed. This method is applied
based on the concept described in [19] but is possible to be implemented by the method
of separated iterations with the SPICE software, without the need to use other programs.
The elaborated method is described and the method of its practical implementation in the
SPICE software is presented on the example of a power SiC-MOSFET. The usefulness of the
proposed method is shown for two circuits: a transistor switch and a boost converter. Some
results illustrating the influence of the cooling conditions of the tested transistor, switching
frequency and load resistance on the waveforms of the power dissipated in this transistor
and its junction temperature are shown and discussed. The investigations were performed
for three different cooling systems of the tested transistor.

Section 2 presents the proposed calculation method and the manner of its implementa-
tion in SPICE. Section 3 contains a description of the analyzed circuits and the considered
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cooling conditions of the tested transistors. Section 4 presents and discusses the obtained
results of the calculations.

2. Computation Method

The methods of electrothermal analyses of electronic networks with the use of SPICE
need a special electrothermal model implemented in this software. On the other hand, the
manufacturers give on their websites the models of their products dedicated for SPICE.
Such models are in the form of subcircuits and they do not take into account the self-heating
phenomenon. The proposed computation method makes it possible to use such models in
computations and obtain a much shorter time of computations.

This method includes the six steps:

(a) Setting the value of the transistor temperature TEMP equal to ambient temperature Ta.
(b) Transient analysis of the tested circuit for a time equal to two periods of the control

signal and registrations of the waveforms of p(t) and Tj(t).
(c) Calculation of the average value of power pavg dissipated in the transistor using the

results of the SPICE computations.
(d) Calculation of the junction temperature Tj value at the steady state using the formula

Tj = Ta + Rth · pavg (2)

(e) Comparing the values of TEMP and Tj. If the difference is bigger than 1 K, TEMP
should be substituted by Tj and then jump to point (b). If this condition is not fulfilled,
jump to point (f).

(f) Waveforms of p(t) and Tj(t) obtained in point (b) correspond to the waveforms of
these quantities at the steady state.

Practical implementation of the proposed method is presented below on the example
of a power SiC-MOSFET offered by ROHM semiconductor [31]. The network representation
of the model of the considered transistor is presented in Figure 1.

In this model, terminals D, G and S represent drain, gate and source of the modeled
transistor, respectively. Controlled current sources G1 and G11 describe DC components
of the drain current. Voltage sources V1, V2, V3, V11 and V12 of zero values are used
to monitor the current flowing through selected branches and used in the description of
selected controlled sources. Resistors R3 and R11 have very high values and they are used
due to the formal requirements of the SPICE software. Linear capacitors C11, C1 and C2
and controlled current sources G2 and G11 represent internal capacitances of the transistor.
Inductor L1 describes the inductance of the source. The output voltages or currents of
the following controlled voltage and current sources E3, E4, E1, G1 and G11 depend on
temperature TEMP. Controlled voltage sources E1 and E2 describe series resistances of the
gate and the drain taking into account an influence of temperature. Controlled voltage
source E11 describes non-linear series resistance of the source. Controlled voltage sources
E3 and E4 are used to calculate the formulas used in the descriptions of other currents or
voltages sources contained in this model. Many of the used controlled voltage and current
sources are described using splines.

In order to perform computations with the use of the proposed method in SPICE,
an input file should be included with the schema of the analyzed network with the tran-
sistor model presented in Figure 1 and the network representation of its thermal model
in the form shown in Figure 2. In this network-controlled current source, pth represents
power dissipated in the transistor, which is equal to the product of drain current iD and
voltage between the drain and the source vDS. Resistors occurring in this network represent
thermal resistance of each component of the heat flow path, whereas capacitors represent
thermal capacitances of these components. Values of these resistors are equal to the product
of thermal resistance Rth and coefficients ai, whereas thermal time constants τthi are equal
to the products of thermal capacitances Cthi and thermal resistances Rthi. Of course, the
number of components Rthi and Cthi as well as their values depend on properties of the
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used cooling system of the tested transistor. Voltage ∆Tj on controlled current source pth
corresponds to an excess of the transistor junction temperature over the ambient one.
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Figure 1. Network representation of the model of a SiC-MOSFET given in [32].
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In the practical analyses the following steps should be performed in order to obtain
the waveform of the transistor junction temperature:

1. At first, a SPICE input file should be formulated. In this file the option TEMP should
be equal to the ambient temperature given in Celsius degrees and the initial conditions
of capacitors’ voltages in the thermal model should be equal to zero.

2. Next, the transient analysis of the tested network is performed with the final time
equal to two periods of a stimulating signal.

3. After this analysis, the average value pavg of the power dissipated and the peak-to-
peak value Tjpp of ∆Tj are calculated using a graphical post-processor of SPICE for the
time equal to the doubled period of the stimulating signal.

4. Next, the average value Tjavg of the transistor junction temperature at the steady state
is estimated using the Formula (2).

5. If the value of TEMP differs from the difference Tjavg − Tjpp/2 more than 1 ◦C, the
algorithm should jump to point 6, otherwise, the results obtained in point 2 correspond
to the steady state and the algorithm stops.

6. The SPICE input file is modified. In this file the value of TEMP equal to the difference
between Tjavg and Tjpp/2 is set and the algorithm jumps to point 1.
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3. Investigated Circuits

Two circuits are selected for the tests of the usefulness of the elaborated algorithm.
The first is a power MOSFET switch, the diagram of which is shown in Figure 3a, and the
other is a boost converter, the diagram of which is shown in Figure 3b.
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In both the considered circuits, a SiC-MOSFET transistor of the SCT3060AL type is
used. This transistor is characterized by the maximum allowable value of the voltage
between the drain and the source equal to 650 V, the maximum allowable drain current
value of 39 A and the resistance of the switched on channel RON = 60 mΩ [31]. In the
practical application, such a transistor can be driven using monolithic drivers, e.g., offered
by Infineon Technologies. One of the possible solutions is the driver IR2125 [33].

Voltage source Vin supplies the tested circuits with DC voltage, resistor R0 is the load
of the circuits, voltage source Vctr generates the signal that drives the transistor gate with
the shape of a rectangular pulse train with frequency f, the duty cycle d = 0.5 and voltage
levels equal 0 and 15 V, respectively. Resistor R1 limits the value of the transistor’s gate
current. Diode D1 is an impulse diode, capacitor C has the capacitance of 1 mF and inductor
L has the inductance of 1 mH.

The voltage value Vin = 200 V and the resistance of resistor R1 = 30 Ω are assumed in
the calculations. Different values of load resistance R0 and three types of cooling conditions
of the tested transistor are considered, corresponding to:

(a) a transistor operating without an additional cooling system (system A),
(b) a transistor mounted in a system containing a heat sink and a fan (system B),
(c) a transistor mounted in the cooling system ensuring perfect cooling of its case: the

ideal cold plate (system C).

Table 1 shows the values of the thermal model parameters for the three considered
cooling systems.

The cooling conditions described above are characterized at the steady state by thermal
resistance Rth, the values of which are, respectively, equal to: 42.5 K/W, 3.2 K/W and
0.7 K/W [31,34]. The waveforms of the transient thermal impedance Zth(t) of the transistor
operating under the above-mentioned cooling conditions, normalized to the value of
thermal resistance, are shown in Figure 4.

This figure shows that the time required to achieve the steady state strongly depends
on the cooling system. This time is the longest for system B (1500 s) and the shortest for
system C (20 ms). In the description of Zth(t) under consideration, there are from 3 to
5 thermal time constants corresponding to ai coefficients not lower than 0.01. The shortest
of these are equal to 0.8 s for system A, 0.1 ms for system B and 0.4 ms for system C.
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Table 1. Values of parameters of the considered cooling systems.

Parameter System A System B System C

Rth (K/W) 42.5 3.2 0.7

a1 0.04 0.03 0.2

τth1 (s) 0.8 0.0001 0.0004

a2 0.86 0.07 0.15

τth2 (s) 42 0.01 0.0045

a3 0.1 0.5 0.65

τth3 (s) 105 0.7 0.006

a4 0.05

τth4 (s) 8

a5 0.35

τth5 (s) 540
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4. Investigations Results

Using the analysis method described in Section 2, the computations of both the circuits
shown in Figure 3 were carried out for all the considered transistor cooling systems. The
calculations adopted the diode model embedded in SPICE, and the values of its parameters
are as follows: IS = 1 pA, N = 1, CJO = 30 pF. Due to the significant differences in the
values of thermal resistance for individual cooling systems, the range of the calculations
was limited to the operating conditions, where the excess of the junction temperature of
the transistor over the ambient temperature at the steady state does not exceed 200 K. The
values of switching frequency f were also limited to the range from 1 to 400 kHz.

In Section 4.1 the comparison of the results performed with the use of the new method
and a selected method given in the literature are presented. Next, in Section 4.2 the influence
of properties of the used cooling system and the operation range of the tested networks are
presented.

4.1. Verification of the Method

In order to prove the correctness of the proposed computation method (new method),
the results obtained with this method were compared with the results obtained with the
classical method of transient analysis and the method using one non-physical thermal time
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constant (one tau method) [4]. In the one tau method, only one thermal time constant
equal to 5 ms is used. The verification of the proposed method is performed for the switch
operating with R0 = 4.5 Ω cooling system C and three values of frequency equal to 1 kHz,
10 kHz and 100 kHz, respectively. This cooling system is selected for such investigations
because it is characterized by the shortest time needed to obtain the steady state. Due
to such thermal properties of the tested transistor, the biggest changes in the junction
temperature are expected. For other cooling systems, such changes should be smaller. The
obtained results of the computations are given in Figure 5. In this figure the results obtained
using the new method are marked with red, using the classical method of transient analysis,
with blue, and using the one tau method, with black.
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Figure 5. Computed waveforms of the junction temperature of the transistor operating as a switch
with the cooling system C at frequency f equal to 1 kHz (a), 10 kHz (b) and 100 kHz (c).

As can be observed, the results obtained with the use the new method and the classical
transient analysis are very close to each other. The differences between these results do
not exceed 1 ◦C and the peak-to-peak values obtained with these methods are practically
the same. In contrast, the results obtained with the one tau method are characterized by
the same average value as the other considered methods, but the peak-to-peak values of
the obtained waveforms are more than two times lower than for the other methods. It is
also worth observing that an increase in the switching frequency from 1 to 100 kHz causes
a visible decrease (over 20 times) in the peak-to-peak value of the considered temperature
and an increase in the average value of this temperature. The presented results prove
the usefulness of the proposed method. The calculation time for the new method is five
times shorter than for the classical method at a frequency equal to 1 kHz. The computation
time of the new method does not depend on the frequency and values of thermal time
constants. In contrast, this time, while using the classical method, increases nearly linearly
with an increase in the values of the longest thermal time constant and switching frequency.
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In order to illustrate the usefulness of the proposed method for different values of
load resistance, some computations were repeated for a load resistance equal to 10 Ω. The
results of such computations obtained at a frequency equal to 1 kHz and 100 kHz are shown
in Figure 6.
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Figure 6. Computed waveforms of the junction temperature of the transistor operating as a switch
with the cooling system C at frequency f equal to 1 kHz (a) and 100 kHz (b).

As is visible, a good agreement between the computation results obtained using the
new method and the classical transient analysis was also obtained for a higher value of
load resistance. An increase in frequency causes an increase in the average value of the
junction temperature and a decrease in the peak-to-peak value of this temperature.

4.2. Analyses of Properties of the Considered Networks

Using the proposed method, some computations illustrating the influence of the
used cooling system, switching frequency and load resistance of the tested networks were
performed. Selected results of these computations are presented in Figures 7–14.

Figures 7–11 show the steady-state characteristics of a transistor switch, and Figures 12–14
show a boost converter. The investigations were performed for the SIC-MOSFET situated
in different cooling systems. The calculations, the results of which are shown in Figure 7,
were made with load resistance R0 = 40 Ω.

As can be seen in Figure 7a, an increase in frequency causes a practically linear
increase in the value of the average power dissipated in the transistor. This increase results
from an increase in the switching losses at practically constant conduction losses. In the
considered change in frequency from 1 to 400 kHz, the value of pavg increases by up to
10 times. It is also visible that the transistor cooling system has practically no effect on
the pavg(f ) course. The choice of the cooling system only affects the maximum allowable
operating frequency of the circuit under consideration.

An excess in the junction temperature above the ambient temperature ∆Tj is also
a linearly increasing function of frequency. The value of this excess for the fixed frequency
is proportional to the value of thermal resistance Rth. It can be seen that for system A already
at frequency f = 100 kHz, the temperature excess ∆Tj reaches 190 K, while for system C at
f = 400 kHz, this increase is much smaller and it does not exceed 10 K.

In Figure 7c it can be observed that the peak-to-peak value of the considered tempera-
ture excess ∆Tjpp is a decreasing function of frequency, and the highest values are obtained
for system B characterized by the thermal time constant of the lowest value.

Figure 8 shows the waveforms of the power dissipated in the transistor cooperating
with system C and working in the switch circuit loaded with a resistor of R0 = 40 Ω.
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Figure 9. Waveform of the junction temperature at the steady state for the transistor operating in the
switch circuit and cooperating with the cooling system C at frequency f = 1 kHz and load resistance
R0 = 4 Ω.
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Figure 10. Waveforms of the junction temperature at the steady state for the transistor operating in
the switch circuit and cooperating with the cooling systems B and C at frequency f = 1 kHz and load
resistance R0 = 8 Ω.
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Figure 11. Waveforms of the junction temperature at the steady state for the transistor operating in
the switch circuit and cooperating with all the considered cooling systems at frequency f = 10 kHz
and load resistance R0 = 25 Ω.
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Figure 12. Dependence of the average power value (a), the excess of the junction temperature (b) and
the quotient of the peak-to-peak value of ripples to the average value of the junction temperature
(c) on frequency for the transistor operating in the boost converter and cooperating with different
cooling systems.
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Figure 13. Waveforms of the power dissipated at the steady state in the transistor operating in the
boost converter and cooperating with system C at selected frequency values.
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Figure 14. Waveform of the junction temperature at the steady state for the transistor working in
the boost converter and cooperating with the cooling system C at frequency f = 10 kHz and load
resistance R0 = 15 Ω.

You can clearly see that there are large bursts of the power dissipated in the transistor
when it is turned on and off. With an increase in the operating frequency of the switch,
the average value of the power dissipated increases due to an increase in the number of
power pulses per time unit. It is worth noting that the power dissipated in the transistor
when it is turned on (conduction losses) is even a hundred times lower than the maximum
power dissipated during the transistor switching. The presented p(t) waveforms justify the
increasing dependence of the average value of power pavg on the frequency observed in
Figure 7a.

The peak-to-peak values of temperature excess ∆Tjpp obtained with load resistance
R0 = 40 Ω are low. In order to check the influence of load resistance on this temperature
excess, some analyses of the considered system were carried out at other values of R0.
Figure 9 shows the steady state ∆Tj(t) waveforms computed for the system operating at
frequency f = 1 kHz, loaded with the resistor of R0 = 4 Ω and cooperating with the cooling
system C.

As can be seen, under the considered operating conditions, the transistor junction
temperature ripple is characterized by the peak-to-peak value of as much as 27 K. This
means that the peak-to-peak value corresponds to as much as 30% of the average value of
this temperature excess. For the other cooling systems under the considered cooling condi-
tions, the junction temperature exceeds the maximum allowable value for the transistor
under consideration.

Figure 10 shows the results of calculations of the waveforms of the junction tempera-
ture excess of the transistor operating in the switch circuit operating at frequency f = 1 kHz
and load resistance R0 = 8 Ω.

It can be seen that the shape of the ∆Tj(t) waveforms is significantly different for both
the cooling systems under consideration. The observed differences result from the strong
differentiation of the thermal values of time constants in system B and small differences
in the values of these parameters for system C. The peak-to-peak values of the junction
temperature excess ∆Tj reach up to 7 K.

Figure 11 presents the waveforms of ∆Tj obtained at frequency f = 10 kHz and load
resistance R0 = 25 Ω for all the considered cooling systems.

As is visible, the obtained waveforms ∆Tj(t) are nearly constant functions. The values
of ∆Tj change between 2 K for system C and 155 K for system A. The peak-to-peak value of
the junction temperature changes from 1 mK for system A to 0.168 K for system B and is
much lower than the average value of this temperature at the steady state.
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Figure 12 shows the influence of frequency on the average value of the power dissi-
pated in the transistor working in the boost converter (Figure 12a), the average value of
the internal temperature excess of this transistor ∆Tjavg (Figure 12b) and the quotient of
the peak-to-peak value to the average value of this temperature excess (Figure 12c). The
calculations were performed with the load resistance of the converter equal to 200 Ω and
the operating frequency f in the range from 10 to 400 kHz. The value of the output voltage
of the converter in these operating conditions is in the range from 408 to 435 V. This means
that the power dissipated in the load is in the range from 832 W to 946 W.

As can be seen, the shape of the dependences presented in Figure 12 is the same as
the analogous relations presented in Figure 7. It is worth noting, however, that in the
case of the boost converter, an increase in frequency causes much lower changes in the
average power value and an increase in the junction temperature of the power MOSFET.
It can also be seen that under the considered operating conditions, already at frequency
f = 10 kHz and the cooling system A, the junction temperature of the transistor reaches
a value close to the maximum allowable value given by the manufacturer. On the other
hand, an increase in frequency to 400 kHz causes an increase by more than twenty-fold
in the value of the average power dissipated in the transistor. Figure 12c shows that the
quotient of the peak-to-peak value of the junction temperature ripple of the transistor and
the average value of the junction temperature excess above the ambient temperature is
a decreasing function of frequency, and at f = 10 kHz, it can even reach several percent.

Figure 13 shows the waveforms of the power dissipated at the steady state in the
transistor included in the boost converter and cooperating with system C. The calculations
were made for selected frequency values.

As can be seen, the actual value of the power dissipated in the transistor exceeds 2 kW.
At the same time, the value of conduction losses do not exceed 5 W. This means that in the
high frequency range of the boost converter, the value of the average power dissipated in
the transistor is determined by dynamic losses related to the transistor switching process.
They can be up to twenty times bigger than the losses due to the current flowing through
the switched transistor in the on-state.

Figure 14 shows the waveform of the junction temperature of the transistor working
in the boost converter, determined at frequency f = 10 kHz and resistance R0 = 15 Ω. The
presented results concern the transistor cooperating with system C.

As can be seen, under the considered operating conditions, ripples of the junction
temperature of the transistor are visible, and their peak-to-peak value exceeds 4 K.

5. Conclusions

This paper describes a new method of computing the waveforms of the junction
temperature of discrete power SiC-MOSFETs operating in switched networks at the steady
state. It is proved that this method makes it possible to obtain the correct results at a much
shorter computation time than for the classical method of transient analysis. On the
other hand, the use of the method using one non-physical thermal time constant makes
it possible to obtain the correct average value of the junction temperature at the steady
state, but the peak-to-peak value of this temperature can be much underestimated. It is
worth emphasizing that in the electrothermal analysis of switching circuits, the power of
switching losses should not be ignored as this may lead to a significant underestimation of
the junction temperature.

For two typical applications of power electronic networks some electrothermal compu-
tations were performed for different cooling systems of the transistor. The classical switch
with a power SiC-MOSFET and a boost converter with this transistor were considered.

The computer simulations show that switching losses in the transistor are an important
component of power losses. Their part in the total losses is an increasing function of
switching frequency and can be as high as 95%. As the switching frequency increases, the
junction temperature Tj of the transistor also increases in proportion to the value of thermal
resistance. The variable wave of the power dissipated in the transistor causes ripples in
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the Tj(t) waveform. The peak-to-peak value of these ripples depends on the switching
frequency, load resistance and transient thermal impedance of the transistor characterizing
the dynamic properties of the cooling system used. The peak-to-peak value of temperature
Tj ripples is a decreasing function of frequency and load resistance. The considered ripples
are the biggest for system C with very short thermal time constants. If the period of the
transistor control signal is close to the values of thermal time constants, the peak-to-peak
values of ripples of the transistor junction temperature may exceed even 25 K. If this period
is bigger, these ripples can be much bigger.

The observed peak-to-peak values of the transistor junction temperature ripples may
affect the reliability of such transistors. For example, at very low switching frequency and
a high value of the dissipated power, the value of the junction temperature can change
between the room temperature and the welding temperature of the soldering alloy. Such an
operation mode can result in a very short lifetime of the used transistor. It is worth noting
that these ripples are the biggest for the system, in which the most effective cooling system
of the transistor case is used, while the peak-to-peak value of these ripples is negligible for
the classical passive transistor cooling systems characterized by a high value of thermal
resistance and long thermal time constants.

The presented investigation results may be useful for designers of cooling systems for
transistors working in power supply systems. They show that the indispensable efficiency
of a cooling system depends strongly on the operating frequency of the analyzed circuit. On
the other hand, it is also important that for cooling systems characterized by longer thermal
time constants it is possible to obtain a lower smaller peak-to-peak value of the transistor
junction temperature. Therefore, free cooling systems could be better than forced cooling
systems for power transistors operating in switching circuits. The obtained results will
also be used to develop more accurate and faster methods of the electrothermal analysis of
switching circuits.
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