Multistationary Geomagnetic Vertical Intensity Polarization Anomalies for Predicting M ≥ 6 Earthquakes in Qinghai, China
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Multistationary Geomagnetic Vertical Intensity Polarization Anomalies
3.2. Characteristics of Anomaly Spatial Groupings
3.3. Earthquake Grouping Characteristics
3.4. Temporal Distribution of Earthquake Occurrences
4. Discussion
5. Conclusions
- (1)
- The spatial distribution of seismic electromagnetic radiation anomalies is characterized by grouping, and the geomagnetic vertical intensity polarization usually has high values synchronized in time at multiple locations. Multiple regions of high-value anomalies in different anomalous regions are also synchronized in time.
- (2)
- Earthquakes occur in groups after the occurrence of anomalies within a period ranging from 3 months to 1 year. Multiple earthquakes occur in one or multiple anomalous zones within a group of anomalies.
- (3)
- The time interval of grouped earthquakes after anomalies is concentrated within 100~200 days.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molchanov, O.; Hayakawa, M. Generation of ULF electromagnetic emissions by microfracturing. Geophys. Res. Lett. 1995, 22, 3091–3094. [Google Scholar] [CrossRef]
- Hayakawa, M.; Kawate, R.; Molchanov, O.A.; Yumoto, K. Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993. Geophys. Res. Lett. 1996, 23, 241–244. [Google Scholar] [CrossRef]
- Hayakawa, M.; Itoh, T.; Hattori, K.; Yumoto, K. ULF electromagnetic precursors for an earthquake at Biak, Indonesia on February 17, 1996. Geophys. Res. Lett. 2000, 27, 1531–1534. [Google Scholar] [CrossRef]
- Ismaguilov, V.; Kopytenko, Y.A.; Hattori, K.; Voronov, P.; Molchanov, O.; Hayakawa, M. ULF magnetic emissions connected with under sea bottom earthquakes. Nat. Hazards Earth Syst. Sci. 2001, 1, 23–31. [Google Scholar] [CrossRef]
- Molchanov, O.; Schekotov, A.; Fedorov, E.; Belyaev, G.; Gordeev, E. Preseismic ULF electromagnetic effect from observation at Kamchatka. Nat. Hazards Earth Syst. Sci. 2003, 3, 203–209. [Google Scholar] [CrossRef]
- Hattori, K. ULF geomagnetic changes associated with large earthquakes. Terr. Atmos. Ocean. Sci. 2004, 15, 329–360. [Google Scholar] [CrossRef]
- Prattes, G.; Schwingenschuh, K.; Eichelberger, H.; Magnes, W.; Boudjada, M.; Stachel, M.; Vellante, M.; Wesztergom, V.; Nenovski, P. Multi-point ground-based ULF magnetic field observations in Europe during seismic active periods in 2004 and 2005. Nat. Hazards Earth Syst. Sci. 2008, 8, 501–507. [Google Scholar] [CrossRef]
- Hobara, Y.; Koons, H.; Roeder, J.; Yumoto, K.; Hayakawa, M. Characteristics of ULF magnetic anomaly before earthquakes. Phys. Chem. Earth Parts A/B/C 2004, 29, 437–444. [Google Scholar] [CrossRef]
- Feng, Z.; Li, Q.; Lu, J.; Li, H.; Ju, H.; Sun, H.; Yang, F.; Zhang, Y. The seismic ULF geomagnetic reliable information exaction based on fluxgate magnetometer data of second value. South China J. Seismol. 2010, 30, 1–7. [Google Scholar]
- Masci, F. Brief communication” On the recent reaffirmation of ULF magnetic earthquakes precursors”. Nat. Hazards Earth Syst. Sci. 2011, 11, 2193–2198. [Google Scholar] [CrossRef]
- Currie, J.; Waters, C. On the use of geomagnetic indices and ULF waves for earthquake precursor signatures. J. Geophys. Res. Space Phys. 2014, 119, 992–1003. [Google Scholar] [CrossRef]
- Li, Q.; Yang, X.; Cai, S. Case study of applying polarization method to geomagnetic array data. Technol. Earthq. Disaster Prev. 2015, 10, 412–417. [Google Scholar]
- Feng, L.; Feng, Z.; Fan, W.; Guan, Y.; He, M.; Li, X.; He, C.; Liao, X.; Aisa, Y.; Yuan, W.; et al. Spatio-temporal variation characteristic of the ultra-low frequency magnetic field prior to strong earthquakes of western Chinese mainland. Acta Seismol. Sin. 2021, 43, 359–375. [Google Scholar]
- Huang, Q.; Ikeya, M. Seismic electromagnetic signals (SEMS) explained by a simulation experiment using electromagnetic waves. Phys. Earth Planet. Inter. 1998, 109, 107–114. [Google Scholar] [CrossRef]
- Monitoring and Forecasting Department of China Earthquake Administration. Work Manual of Seismic Electromagnetic Analysis and Prediction Techniques; Seismological Press: Beijing, China, 2020. (In Chinese) [Google Scholar]
- Fan, W.; Feng, L.; Li, X.; Guan, Y.; He, C.; Liao, X.; He, M.; Liu, S.; Yuan, W.; Aisa, Y. Characteristics of Geomagnetic Vertical Intensity Polarization Anomalies before Moderate Strong Earthquakes and Their Relationship With Subsequent Earthquakes. Earthquake 2021, 41, 170–179. [Google Scholar]
- Yusof, K.A.; Abdullah, M.; Hamid, N.S.A.; Ahadi, S.; Yoshikawa, A. Correlations between earthquake properties and characteristics of possible ULF geomagnetic precursor over multiple earthquakes. Universe 2021, 7, 20. [Google Scholar] [CrossRef]
- Yao, X.; Wang, W.; Teng, Y. Detection of Geomagnetic Signals as Precursors to Some Earthquakes in China. Appl. Sci. 2022, 12, 1680. [Google Scholar] [CrossRef]
- Li, Q.; Schekotov, A.; Asano, T.; Hayakawa, M. On the anomalies in ULF magnetic field variations prior to the 2008 Sichuan earthquake. Open J. Earthq. Res. 2015, 4, 55. [Google Scholar] [CrossRef]
- Li, X.; Feng, L.; Zhao, Y.; Liu, L.; Guo, Z.; Fan, W.; He, M.; Liao, X.; Yisimayili, A. Anomalous characteristics of geomagnetic vertical strength polarization before the 2017 Milin Ms 6.9 earthquake in Tibet. Acta Seismol. Sin. 2021, 43, 584–594. [Google Scholar]
- Mao, Z.; Chen, C.; Zhang, S.; Yisimayili, A.; Yu, H.; Yu, C.; Liu, J. Locating Seismo-Conductivity Anomaly before the 2017 MW 6.5 Jiuzhaigou Earthquake in China Using Far Magnetic Stations. Remote Sens. 2020, 12, 1777. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Liu, J.; Shen, X.; Yu, H.; Jiang, Z.; Zhang, G. Pre-Earthquake Observations and Their Application in Earthquake Prediction in China. A Review of Historical and Recent Progress. Pre-Earthq. Process. Multidiscip. Approach Earthq. Predict. Stud. 2018, 234, 19. [Google Scholar]
- Ma, Z. Multipoints (concentrated) stress field and earthquakes in North China crust. Seismol. Egol. 1980, 2, 39. [Google Scholar]
- Deng, Q.; Cheng, S.; Ma, J.; Du, P. Seismic activities and earthquake potential in the Tibetan Plateau. Chin. J. Geophys. 2014, 57, 678–697. [Google Scholar] [CrossRef]
- Mei, S. On the physical model of earthquake precursor fields and the mechanism of precursors’ time-space distribution—Origin and evidences of the strong body earthquake-generating model. Acta Seismol. Sin. 1995, 8, 337–349. [Google Scholar] [CrossRef]
- Bürgmann, R.; Pollard, D.D.; Martel, S.J. Slip distributions on faults: Effects of stress gradients, inelastic deformation, heterogeneous host-rock stiffness, and fault interaction. J. Struct. Geol. 1994, 16, 1675–1690. [Google Scholar] [CrossRef]
- Luo, G.; Yang, M.; Ma, H.; Xu, X. Intermediate and shorttrem anomalies of seismic activity energy field before the Wenchuan M8. 0 earthquake. Earthquake 2011, 31, 135–142. (In Chinese) [Google Scholar]
- Liao, X.; Fan, W.; Qiu, G.; Li, X.; Yang, P. Analysis on Short-Term Characteristics of Geomagnetic Vertical Intensity Polarization Anomaly Before Jiuzhaigou 7.0 earthquake on August 8, 2017. Earthquake 2021, 41, 170–179. (In Chinese) [Google Scholar]
- Aisa, Y.; Feng, Z.; Chen, J.; Feng, L.; Li, X.; Guan, Y.; Mao, Z. Analysis on geomagnetic polarization anomalies before Yutian Ms6.4 earthquake in 2020. Inland Earthq. 2020, 34, 295–302. [Google Scholar]
- Feng, L.; Guan, Y.; Fan, W.; He, M.; Li, X.; He, C.; Liao, X.; Aisa, Y.; Yuan, W.; Liu, S.; et al. Geomagnetic vertical component polarization anomaly in october 15th 2020 before Maduo M7. 4 earthquake. Plateau Earthq. Res. 2021, 33, 1–6. [Google Scholar]
- Xue, Y.; Liu, J.; Song, Z.; Li, M. On the universality and mechanism interpretation of the seismicity characteristics before the 2008 Wenchuan MS 8.0 earthquake. Chin. J. Geophys. 2018, 61, 1891–1906. [Google Scholar]
- Zhan, Y.; Liang, M.; Sun, X.; Huang, F.; Zhao, L.; Gong, Y.; Han, J.; LI, C.; Zhang, P.; Zhang, H. Deep structure and seismogenic pattern of the 2021.5. 22 Madoi (Qinghai) MS 7.4 earthquake. Chin. J. Geophys. 2021, 64, 2232–2252. [Google Scholar]
- Petraki, E.; Nikolopoulos, D.; Nomicos, C.; Stonham, J.; Cantzos, D.; Yannakopoulos, P.; Kottou, S. Electromagnetic pre-earthquake precursors: Mechanisms, data and models—A review. J. Earth Sci. Clim. Chang. 2015, 6, 1. [Google Scholar]
- Kamiyama, M.; Sugito, M.; Kuse, M.; Schekotov, A.; Hayakawa, M. On the precursors to the 2011 Tohoku earthquake: Crustal movements and electromagnetic signatures. Geomat. Nat. Hazards Risk 2016, 7, 471–492. [Google Scholar] [CrossRef]
- Carpinteri, A.; Borla, O. Acoustic, electromagnetic, and neutron emissions as seismic precursors: The lunar periodicity of low-magnitude seismic swarms. Eng. Fract. Mech. 2019, 210, 29–41. [Google Scholar] [CrossRef]
- Bolton, D.C.; Shreedharan, S.; Rivière, J.; Marone, C. Acoustic energy release during the laboratory seismic cycle: Insights on laboratory earthquake precursors and prediction. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018975. [Google Scholar] [CrossRef]
- Dolgikh, G.I.; Kuptsov, A.V.; Larionov, I.A.; Marapulets, Y.V.; Shvets, V.A.; Shevtsov, B.M.; Shirokov, O.P.; Chupin, V.A.; Yakovenko, S.V. Deformation and acoustic precursors of earthquakes. Dokl. Earth Sci. 2007, 413, 281. [Google Scholar] [CrossRef]
- Gregori, G.P.; Paparo, G. Acoustic Emission (AE). (A diagnostic tool for environmental sciences and for non-destructive tests). Meteorol. Geophys. Fluid Dyn. 2004, 166–204. [Google Scholar]
- Carpinteri, A.; Lacidogna, G.; Manuello, A.; Borla, O. Energy emissions from brittle fracture: Neutron measurements and geological evidences of piezonuclear reactions. Strength Fract. Complex. 2011, 7, 13–31. [Google Scholar] [CrossRef]
- Carpinteri, A.; Borla, O. Fracto-emissions as seismic precursors. Eng. Fract. Mech. 2017, 177, 239–250. [Google Scholar] [CrossRef]
- Kuzhevskij, B.M.; Nechaev, O.Y.; Sigaeva, E.A.; Zakharov, V.A. Neutron flux variations near the Earth’s crust. A possible tectonic activity detection. Nat. Hazards Earth Syst. Sci. 2003, 3, 637–645. [Google Scholar] [CrossRef]
- Kuzhevskij, B.M.; Nechaev, O.Y.; Sigaeva, E.A. Distribution of neutrons near the Earth’s surface. Nat. Hazards Earth Syst. Sci. 2003, 3, 255–262. [Google Scholar] [CrossRef]
- Gregori, G.P.; Paparo, G.; Poscolieri, M.; Zanini, A. Acoustic emission and released seismic energy. Nat. Hazards Earth Syst. Sci. 2005, 5, 777–782. [Google Scholar] [CrossRef]
- Volodichev, N.N.; Kuzhevskij, B.M.; Nechaev, O.Y.; Panasyuk, M.I.; Podorolsky, A.N.; Shavrin, P.I. Sun-Moon-Earth connections: The neutron intensity splashes and seismic activity. Astron. Vestn. 2000, 34, 188. [Google Scholar]
- Tang, M.; Gao, X. Some statistic characteristics of “underground Hot vortex” in China during 1980–1993 (II). Sci. China Ser. D Earth Sci. 1997, 40, 569–576. [Google Scholar] [CrossRef]
- Gregori, G.P.; Dong, W.J.; Gao, X.Q.; Gizzi, F.T. The Origin of Magnetic Fields Stellar, Earth’s and Planetary Dynamos. The Bridge Between the Big Bang and Biology: Stars, Planetary Systems, Atmospheres, Volcanoes: Their Link to Life; Giovanelli, F., Ed.; International Workshop: Stromboli, Italy, 2001; p. 201. [Google Scholar]
- Tang, M.C.; Gao, X. Analysis of the geothermal vortexes triggering the Xingtai earthquake in 1966. Acta Seismol. Sin. 1997, 10, 379–385. [Google Scholar] [CrossRef]
- Rydelek, P.A.; Davis, P.; Koyanagi, R.Y. Tidal triggering of earthquake swarms at Kilauea volcano, Hawaii. J. Geophys. Res. 1988, 93, 4401–4411. [Google Scholar] [CrossRef]
- Han, Y.; Guo, Z.; Wu, J.; Ma, L. Possible triggering of solar activity to big earthquakes (Ms ≥ 8) in faults with near west–east strike in China. Sci. China Ser. B Phys. Mech. Astron. 2004, 47, 81. [Google Scholar] [CrossRef]
Number | Date | Origin Time | Magnitude | Epicenter | Abnormal Lead Time (Day) | Abnormal Area Number | Abnormal Area (104·km2) | Earthquake Time Difference |
---|---|---|---|---|---|---|---|---|
1 | 20150118 | 20150415 | 5.8 | Alxa Zuoqi, Inner Mongolia | 87 | 1-1 | 288 | - |
20150425 | 8.2 | Nepal | 97 | 1-1 | 288 | 10 | ||
20150425 | 5.9 | Tingri, Tibet | 97 | 1-1 | 288 | 10 | ||
20150703 | 6.5 | Pishan, Xinjiang | 166 | 1-1 | 288 | 79 | ||
20151207 | 7.4 | Tajikistan | 323 | 1-1 | 288 | 157 | ||
20160121 | 6.4 | Menyuan, Qinghai | 368 | 1-1 | 288 | 45 | ||
2 | 20150213 | 20150415 | 5.8 | Alxa Zuoqi, Inner Mongolia | 61 | 2-2 | 5 | - |
20150703 | 6.5 | Pishan, Xinjiang | 140 | 2-1 | 88 | 79 | ||
20151207 | 7.4 | Tajikistan | 166 | 2-1 | 88 | 157 | ||
3 | 20150718 | 20151207 | 7.4 | Tajikistan | 142 | 3-1 | 12 | - |
20160121 | 6.4 | Menyuan, Qinghai | 178 | 3-2 | 7 | 36 | ||
4 | 20160915 | 20161017 | 6.3 | Zadoi, Qinghai | 32 | 4-2 | 123 | - |
20161208 | 6.2 | Hutubi, Xinjiang | 84 | 4-1 | 80 | 52 | ||
20161220 | 5.8 | Qiemo, Xinjiang | 96 | 4-1 | 80 | 12 | ||
20170808 | 7.0 | Jiuzhaigou, Sichuan | 327 | 4-2 | 123 | 231 | ||
20170809 | 6.6 | Jinghe, Xinjiang | 328 | 4-1 | 80 | 1 | ||
20170916 | 5.8 | Kuqa, Xinjiang | 366 | 4-1 | 80 | 38 | ||
5 | 20161202 | 20161208 | 6.2 | Hutubi, Xinjiang | 7 | 5-1 | 18 | - |
20170808 | 7.0 | Jiuzhaigou, Sichuan | 249 | 5-2 | 43 | 242 | ||
20170809 | 6.6 | Jinghe, Xinjiang | 250 | 5-1 | 18 | 1 | ||
20170916 | 5.8 | Kuqa, Xinjiang | 288 | 5-1 | 18 | 38 | ||
20171118 | 6.9 | Milin, Tibet | 351 | 5-2 | 43 | 61 | ||
6 | 20170318 | 20170808 | 7.0 | Jiuzhaigou, Sichuan | 143 | 6-4 | 3 | - |
20170809 | 6.6 | Jinghe, Xinjiang | 144 | 6-1 | 106 | 1 | ||
20170916 | 5.8 | Kuqa, Xinjiang | 182 | 6-1 | 106 | 38 | ||
20171118 | 6.9 | Milin, Tibet | 243 | 6-2 | 20 | 61 | ||
7 | 20190924 | 20200119 | 6.4 | Payzawat, Xinjiang | 117 | 7-1 | 63 | - |
20200320 | 5.9 | Tingri, Tibet | 178 | 7-1 | 63 | 61 | ||
20200626 | 6.4 | Yutian, Xinjiang | 276 | 7-1 | 63 | 98 | ||
20200723 | 6.6 | Nima, Tibet | 303 | 7-1 | 63 | 27 | ||
8 | 20191112 | 20200626 | 6.4 | Yutian, Xinjiang | 227 | 8-1 | 8 | - |
20200723 | 6.6 | Nima, Tibet | 254 | 8-1 | 8 | 27 | ||
9 | 20201015 | 20210521 | 6.4 | Yangbi, Yunnan | 218 | 10-3 | 5 | - |
20210522 | 7.4 | Maduo, Qinghai | 219 | 10-2 | 58 | 1 | ||
20210813 | 5.8 | Maduo, Qinghai | 299 | 10-2 | 58 | 80 | ||
20210916 | 6.0 | Luzhou, Sichuan | 336 | 10-2 | 58 | 117 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Qu, R.; Ji, Y.; Zhu, W.; Zhu, Y.; Feng, Z.; Fan, W.; Guan, Y.; Xie, C. Multistationary Geomagnetic Vertical Intensity Polarization Anomalies for Predicting M ≥ 6 Earthquakes in Qinghai, China. Appl. Sci. 2022, 12, 8888. https://doi.org/10.3390/app12178888
Feng L, Qu R, Ji Y, Zhu W, Zhu Y, Feng Z, Fan W, Guan Y, Xie C. Multistationary Geomagnetic Vertical Intensity Polarization Anomalies for Predicting M ≥ 6 Earthquakes in Qinghai, China. Applied Sciences. 2022; 12(17):8888. https://doi.org/10.3390/app12178888
Chicago/Turabian StyleFeng, Lili, Rui Qu, Yingfeng Ji, Weiling Zhu, Ye Zhu, Zhisheng Feng, Wenjie Fan, Yiliang Guan, and Chaodi Xie. 2022. "Multistationary Geomagnetic Vertical Intensity Polarization Anomalies for Predicting M ≥ 6 Earthquakes in Qinghai, China" Applied Sciences 12, no. 17: 8888. https://doi.org/10.3390/app12178888
APA StyleFeng, L., Qu, R., Ji, Y., Zhu, W., Zhu, Y., Feng, Z., Fan, W., Guan, Y., & Xie, C. (2022). Multistationary Geomagnetic Vertical Intensity Polarization Anomalies for Predicting M ≥ 6 Earthquakes in Qinghai, China. Applied Sciences, 12(17), 8888. https://doi.org/10.3390/app12178888