Absolute Reliability and Concurrent Validity of the Modified Goniometric Platform for Measuring Trunk Rotation in the Sitting Position
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sample Size
2.3. Instruments
2.3.1. The Modified Goniometric Platform
2.3.2. Two-Dimension Video Analyses
2.4. Data Collection
2.4.1. Initial Position
2.4.2. Familiarisation and Testing
2.5. Statistical Analysis
3. Results
3.1. Inter-Rater Reliability
3.2. Intra-Rater Reliability
3.3. Validity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montgomery, T.; Boocock, M.; Hing, W. The effects of spinal posture and pelvic fixation on trunk rotation range of motion. Clin. Biomech. 2011, 26, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Feijen, S.; Kuppens, K.; Tate, A.; Baert, I.; Struyf, T.; Struyf, F. Intra-and interrater reliability of the ‘lumbar-locked thoracic rotation test’in competitive swimmers ages 10 through 18 years. Phys. Ther. Sport 2018, 32, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Masharawi, Y.; Haj, A.; Weisman, A. Lumbar axial rotation kinematics in an upright sitting and with forward bending positions in men with nonspecific chronic low back pain. Spine 2020, 45, 244–251. [Google Scholar] [CrossRef]
- Getnet, M.G.; Jember, G.; Janakiraman, B. Inter-and intra-observer reliability of scoliogauge app to assess the axial trunk rotation of scoliosis: Prospective reliability analysis study. Int. J. Surg. 2020, 27, 5–9. [Google Scholar] [CrossRef]
- Bullock, G.S.; Strahm, J.; Hulburt, T.C.; Beck, E.C.; Waterman, B.R.; Nicholson, K.F. The Relationship of Range of motion, Hip Shoulder Separation, and Pitching Kinematics. Int. J. Sports Phys. Ther. 2020, 15, 11–19. [Google Scholar]
- Brouwer, N.; Yeung, T.; Bobbert, M.; Besier, T. 3D trunk orientation measured using inertial measurement units during anatomical and dynamic sports motions. Scand. J. Med. Sci. Sports 2021, 31, 358–370. [Google Scholar] [CrossRef]
- Frank, B.; Bell, D.R.; Norcross, M.F.; Blackburn, J.T.; Goerger, B.M.; Padua, D.A. Trunk and hip biomechanics influence anterior cruciate loading mechanisms in physically active participants. Am. J. Sports Med. 2013, 41, 2676–2683. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, S.; Wan, B.; Visentin, P.; Jiang, Q.; Dyck, M.; Li, H.; Shan, G. The influence of X-factor (trunk rotation) and experience on the quality of the badminton forehand smash. J. Hum. Kinet. 2016, 53, 9–22. [Google Scholar] [CrossRef]
- Intolo, P.; Carman, A.B.; Milosavljevic, S.; Abbott, J.H.; Baxter, G.D. The Spineangel®: Examining the validity and reliability of a novel clinical device for monitoring trunk motion. Man. Ther. 2010, 15, 160–166. [Google Scholar] [CrossRef]
- Park, W.H.; Kim, Y.H.; Lee, T.R.; Sung, P.S. Factors affecting shoulder–pelvic integration during axial trunk rotation in subjects with recurrent low back pain. Eur. Spine J. 2012, 21, 1316–1323. [Google Scholar] [CrossRef]
- Jung, S.H.; Ha, S.M.; Kim, J.H.; Gwak, G.T.; Kim, S.J. Reliability of axial-thoracolumbar spine rotation range measurements. J. Mech. Sci. Technol. 2018, 2, 20–23. [Google Scholar] [CrossRef] [Green Version]
- Fujimori, T.; Iwasaki, M.; Nagamoto, Y.; Ishii, T.; Kashii, M.; Murase, T.; Yoshikawa, H. Kinematics of the thoracic spine in trunk rotation: In vivo 3-dimensional analysis. Spine 2012, 37, 1318–1328. [Google Scholar] [CrossRef] [PubMed]
- Sung, P.; Park, M. Lumbar spine coordination during axial trunk rotation in adolescents with and without right thoracic idiopathic scoliosis. Hum. Mov. Sci. 2020, 73, 102680. [Google Scholar] [CrossRef] [PubMed]
- Tayob, I. The Reliability of the Axial Rotation Measuring Device in Measuring Thoracic Spine Rotation Range of Motion. Master’s Thesis, University of Johannesburg, Johannesburg, South Africa, 2018. [Google Scholar]
- Olson, K.A.; Goehring, M.T. Intra and inter-rater reliability of a goniometric lower trunk rotation measurement. J. Back Musculoskelet. Rehabil. 2009, 22, 157–164. [Google Scholar] [CrossRef]
- Katkar, M.; Phutane, V.; Ghogale, I.; Sohani, S.; Rawankar, A. Design of Optical Fiber Goniometer Having Physiotherapeutic Application for Measurement of Tilt in Human Joints. In Proceedings of the 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 9–11 July 2021. [Google Scholar]
- Sarioglu, K.; Pekyavas, N.O. A Comparison Between People With and Without Subacromial Impingement Syndrome and a New Method for Measuring Thoracolumbar Fascia Flexibility. J. Chiropr. Med. 2021, 20, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Walter, S.; Eliasziw, M.; Donner, A. Sample size and optimal designs for reliability studies. Stat. Med. 1998, 17, 101–110. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Ries, J.D.; Echternach, J.L.; Nof, L.; Gagnon Blodgett, M. Test-retest reliability and minimal detectable change scores for the timed “up & go” test, the six-minute walk test, and gait speed in people with Alzheimer disease. Phys Ther. 2009, 89, 569–579. [Google Scholar]
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Johnson, K.D.; Kim, K.; Yu, B.; Saliba, S.A.; Grindstaff, T.L. Reliability of thoracic spine rotation range-of-motion measurements in healthy adults. J. Athl. Train. 2012, 47, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Sung, P.S.; Lee, K.J.; Park, W.H. Coordination of trunk and pelvis in young and elderly individuals during axial trunk rotation. Gait Posture 2012, 36, 330–331. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.; Lee, J.H.; Moon, S.; Park, S.W.; Woo, J.; Kim, C. The reliability of the nonradiologic measures of thoracic spine rotation in healthy adults. Phys. Ther. Rehabil. Sci. 2017, 6, 65–70. [Google Scholar] [CrossRef]
- Furness, J.; Schram, B.; Cox, A.J.; Anderson, S.L.; Keogh, J. Reliability and concurrent validity of the iPhone® Compass application to measure thoracic rotation range of motion (ROM) in healthy participants. PeerJ 2018, 6, e4431. [Google Scholar] [CrossRef]
- Navarro, I.; Candotti, C.T.; Amaral, M.A.; Dutra, V.H.; Gelain, G.M.; Loss, J.F. Validation of the Measurement of the Angle of Trunk Rotation in Photogrammetry. J. Manip. Physiol. Ther. 2020, 43, 50–56. [Google Scholar] [CrossRef]
- Straub, R.K.; Powers, C.M. Utility of 2D video analysis for assessing frontal plane trunk and pelvis motion during stepping, landing, and change in direction tasks: A validity study. Int. J. Sports Phys. Ther. 2022, 17, 139–147. [Google Scholar] [CrossRef]
- Cano-de-la-Cuerda, R.; Vela-Desojo, L.; Moreno-Verdú, M.; Ferreira-Sánchez, M.; Macías-Macías, Y.; Miangolarra-Page, J.C. Trunk range of motion is related to axial rigidity, functional mobility and quality of life in Parkinson’s Disease: An exploratory study. Sensors 2020, 20, 2482. [Google Scholar] [CrossRef]
- Van den Hoorn, W.; Cholewicki, J.; Coppieters, M.W.; Klyne, D.M.; Hodges, P.W. Trunk stiffness decreases and trunk damping increases with experimental low back pain. J. Biomech. 2020, 112, 110053. [Google Scholar] [CrossRef]
- Bucke, J.; Spencer, S.; Fawcett, L.; Sonvico, L.; Rushton, A.; Heneghan, N.R. Validity of the digital inclinometer and iphone when measuring thoracic spine rotation. J. Athl. Train. 2017, 52, 820–825. [Google Scholar] [CrossRef] [Green Version]
Action | Rater 1 | SEM (°) | MDC (°) | Rater 2 | SEM (°) | MDC (°) | ICC |
---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | [95% CI] | |||||
Right trunk rotation (test session) | 45.412 ± 8.181 | 0.818 | 2.267 | 45.255 ± 8.447 | 0.845 | 2.342 | 0.990 [0.982 0.994] |
Left trunk rotation (test session) | 43.843 ± 9.085 | 0.953 | 2.642 | 44.157 ± 8.889 | 0.932 | 2.583 | 0.989 [0.980 0.993] |
Right trunk rotation (re-test session) | 47.569 ± 8.346 | 0.988 | 2.739 | 47.490 ± 8.606 | 1.078 | 2.988 | 0.986 [0.982 0.998] |
Left trunk rotation (re-test session) | 46.235 ± 8.116 | 1.200 | 3.326 | 46.784 ± 8.333 | 1.236 | 3.426 | 0.978 [0.960 0.988] |
Action | Measurement1 (Test) | SEM (°) | MDC (°) | Measurement2 (Re-Test) | SEM (°) | MDC (°) | ICC | |
---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | [95% CI] | ||||||
Rater 1 | Right trunk rotation | 45.706 ± 8.060 | 1.820 | 5.045 | 47.294 ± 8.608 | 1.944 | 5.388 | 0.949 [0.852 0.982] |
Left trunk rotation | 44.294 ± 9.224 | 2.183 | 6.051 | 46.000 ± 8.624 | 2.041 | 5.657 | 0.944 [0.839 0.980] | |
Rater 2 | Right trunk rotation | 45.529 ± 8.420 | 1.806 | 5.006 | 47.235 ± 8.884 | 1.905 | 5.280 | 0.954 [0.858 0.984] |
left trunk rotation | 44.412 ± 8.832 | 2.052 | 5.688 | 46.059 ± 8.035 | 1.867 | 5.175 | 0.946 [0.840 0.981] |
Action | MGP | 2D Video Analysis | ICC [95% CI] | r | R2 | p Value |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | |||||
Right trunk rotation | 45.412 ± 8.181 | 46.118 ± 8.518 | 0.991 [0.980 0.996] | 0.986 | 0.972 | p < 0.001 |
Left trunk rotation | 43.843 ± 9.085 | 45.014 ± 8.533 | 0.985 [0.953 0.994] | 0.981 | 0.962 | p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Thung, J.S.; Wei, S.; Pavlů, D.; Chee, C.S.; Ramasamy, Y.; Mohd Ali, A.S.B.; Mat Yatim, R.B. Absolute Reliability and Concurrent Validity of the Modified Goniometric Platform for Measuring Trunk Rotation in the Sitting Position. Appl. Sci. 2022, 12, 8891. https://doi.org/10.3390/app12178891
Gao J, Thung JS, Wei S, Pavlů D, Chee CS, Ramasamy Y, Mohd Ali ASB, Mat Yatim RB. Absolute Reliability and Concurrent Validity of the Modified Goniometric Platform for Measuring Trunk Rotation in the Sitting Position. Applied Sciences. 2022; 12(17):8891. https://doi.org/10.3390/app12178891
Chicago/Turabian StyleGao, Jianhong, Jin Seng Thung, Shanshan Wei, Dagmar Pavlů, Chen Soon Chee, Yuvaraj Ramasamy, Azril Syazwan Bin Mohd Ali, and Rosnah Binti Mat Yatim. 2022. "Absolute Reliability and Concurrent Validity of the Modified Goniometric Platform for Measuring Trunk Rotation in the Sitting Position" Applied Sciences 12, no. 17: 8891. https://doi.org/10.3390/app12178891
APA StyleGao, J., Thung, J. S., Wei, S., Pavlů, D., Chee, C. S., Ramasamy, Y., Mohd Ali, A. S. B., & Mat Yatim, R. B. (2022). Absolute Reliability and Concurrent Validity of the Modified Goniometric Platform for Measuring Trunk Rotation in the Sitting Position. Applied Sciences, 12(17), 8891. https://doi.org/10.3390/app12178891