Performance Analysis of Storage Systems in Edge Computing Infrastructures
Abstract
:1. Introduction
- The coordination of unreliable devices and networks.
- Hardware and software incompatibilities.
- The integration of different data storage formats and data types.
- The data locality (enabling low access time).
- Security concerns.
- QoS and QoE insurance.
2. Related Work
3. Storage Systems
3.1. MinIO
3.2. BigchainDB
3.3. InterPlanetary File System
4. Experimental Evaluation
Experimental Results
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cisco, U. Cisco Annual Internet Report (2018–2023) White Paper; Cisco: San Jose, CA, USA, 2020. [Google Scholar]
- Chiang, M.; Zhang, T. Fog and IoT: An overview of research opportunities. IEEE Internet Things J. 2016, 3, 854–864. [Google Scholar] [CrossRef]
- Hao, Z.; Novak, E.; Yi, S.; Li, Q. Challenges and software architecture for fog computing. IEEE Internet Comput. 2017, 21, 44–53. [Google Scholar] [CrossRef]
- Hu, Y.C.; Patel, M.; Sabella, D.; Sprecher, N.; Young, V. Mobile edge computing—A key technology towards 5G. ETSI White Pap. 2015, 11, 1–16. [Google Scholar]
- Patel, M.; Naughton, B.; Chan, C.; Sprecher, N.; Abeta, S.; Neal, A. Mobile-edge computing introductory technical white paper. White Pap.-Mob.-Edge Comput. (Mec) Ind. Initiat. 2014, 29, 854–864. [Google Scholar]
- Satyanarayanan, M. The emergence of edge computing. Computer 2017, 50, 30–39. [Google Scholar] [CrossRef]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Korontanis, I.; Tserpes, K.; Pateraki, M.; Blasi, L.; Violos, J.; Diego, F.; Marin, E.; Kourtellis, N.; Coppola, M.; Carlini, E.; et al. Inter-operability and Orchestration in Heterogeneous Cloud/Edge Resources: The ACCORDION Vision. In Proceedings of the 1st Workshop on Flexible Resource and Application Management on the Edge, Virtual Event, 25 June 2020; pp. 9–14. [Google Scholar]
- Theodoropoulos, T.; Makris, A.; Violos, J.; Tserpes, K. An Automated Pipeline for Advanced Fault Tolerance in Edge Computing Infrastructures. In Proceedings of the 2nd Workshop on Flexible Resource and Application Management on the Edge, Minneapolis, MN, USA, 1 July 2022; pp. 19–24. [Google Scholar]
- Ferrucci, L.; Mordacchini, M.; Coppola, M.; Carlini, E.; Kavalionak, H.; Dazzi, P. Latency preserving self-optimizing placement at the edge. In Proceedings of the 1st Workshop on Flexible Resource and Application Management on the Edge, Virtual Event, 25 June 2020; pp. 3–8. [Google Scholar]
- Makris, A.; Boudi, A.; Coppola, M.; Cordeiro, L.; Corsini, M.; Dazzi, P.; Andilla, F.D.; Rozas, Y.G.; Kamarianakis, M.; Pateraki, M.; et al. Cloud for Holography and Augmented Reality. In Proceedings of the 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), Cookeville, TN, USA, 8–10 November 2021; pp. 118–126. [Google Scholar]
- Theodoropoulos, T.; Makris, A.; Boudi, A.; Taleb, T.; Herzog, U.; Rosa, L.; Cordeiro, L.; Tserpes, K.; Spatafora, E.; Romussi, A.; et al. Cloud-based XR Services: A Survey on Relevant Challenges and Enabling Technologies. J. Netw. Netw. Appl. 2022, 2, 1–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Cosmas, J.; Jawad, N.; Ali, K.; Meunier, B.; Kapovits, A.; Huang, L.K.; Li, W.; Shi, L.; et al. Internet of radio and light: 5G building network radio and edge architecture. Intell. Converg. Netw. 2020, 1, 37–57. [Google Scholar] [CrossRef]
- Sittón-Candanedo, I.; Alonso, R.S.; Corchado, J.M.; Rodríguez-González, S.; Casado-Vara, R. A review of edge computing reference architectures and a new global edge proposal. Future Gener. Comput. Syst. 2019, 99, 278–294. [Google Scholar] [CrossRef]
- Makris, A.; Tserpes, K.; Varvarigou, T. Transition from monolithic to microservice-based applications. Challenges from the developer perspective. Open Res. Eur. 2022, 2, 24. [Google Scholar] [CrossRef]
- Xu, X.; Li, H.; Xu, W.; Liu, Z.; Yao, L.; Dai, F. Artificial intelligence for edge service optimization in Internet of Vehicles: A survey. Tsinghua Sci. Technol. 2022, 27, 270–287. [Google Scholar] [CrossRef]
- Sandhu, A.K. Big data with cloud computing: Discussions and challenges. Big Data Min. Anal. 2022, 5, 32–40. [Google Scholar] [CrossRef]
- Psomakelis, E.; Aisopos, F.; Litke, A.; Tserpes, K.; Kardara, M.; Campo, P.M. Big IoT and Social Networking Data for Smart Cities. In Proceedings of the 6th International Conference on Cloud Computing and Services Science, Rome, Italy, 23–25 April 2016; Volume 1 and 2, pp. 396–405. [Google Scholar]
- Rausch, T.; Rashed, A.; Dustdar, S. Optimized container scheduling for data-intensive serverless edge computing. Future Gener. Comput. Syst. 2021, 114, 259–271. [Google Scholar] [CrossRef]
- Makris, A.; Psomakelis, E.; Theodoropoulos, T.; Tserpes, K. Towards a Distributed Storage Framework for Edge Computing Infrastructures. In Proceedings of the 2nd Workshop on Flexible Resource and Application Management on the Edge, Minneapolis, MN, USA, 1 July 2022; pp. 9–14. [Google Scholar]
- Nofer, M.; Gomber, P.; Hinz, O.; Schiereck, D. Blockchain. Bus. Inf. Syst. Eng. 2017, 59, 183–187. [Google Scholar] [CrossRef]
- Kumar, S.; Bharti, A.K.; Amin, R. Decentralized secure storage of medical records using Blockchain and IPFS: A comparative analysis with future directions. Secur. Priv. 2021, 4, e162. [Google Scholar] [CrossRef]
- Hou, W.; Jiang, Y.; Lei, W.; Xu, A.; Wen, H.; Chen, S. A P2P network based edge computing smart grid model for efficient resources coordination. Peer-Peer Netw. Appl. 2020, 13, 1026–1037. [Google Scholar] [CrossRef]
- Tracey, D.; Sreenan, C. How to see through the Fog? Using Peer to Peer (P2P) for the Internet of Things. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019; pp. 47–52. [Google Scholar]
- Daniel, E.; Tschorsch, F. IPFS and friends: A qualitative comparison of next generation peer-to-peer data networks. IEEE Commun. Surv. Tutor. 2022, 24, 31–52. [Google Scholar] [CrossRef]
- Subathra, G.; Antonidoss, A.; Singh, B.K. Decentralized Consensus Blockchain and IPFS-Based Data Aggregation for Efficient Data Storage Scheme. Secur. Commun. Netw. 2022, 2022, 3167958. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, W.; Jin, Z.; Su, Y.; Chen, H. A Research on Traceability Technology of Agricultural Products Supply Chain Based on Blockchain and IPFS. Secur. Commun. Netw. 2021, 2021, 3298514. [Google Scholar] [CrossRef]
- Confais, B.; Lebre, A.; Parrein, B. An Object Store Service for a Fog/Edge Computing Infrastructure Based on IPFS and a Scale-Out NAS. In Proceedings of the 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC), Madrid, Spain, 14–15 May 2017. [Google Scholar] [CrossRef]
- Nyamtiga, B.W.; Sicato, J.C.S.; Rathore, S.; Sung, Y.; Park, J.H. Blockchain-based secure storage management with edge computing for IoT. Electronics 2019, 8, 828. [Google Scholar] [CrossRef]
- Radanliev, P.; de Roure, D. Review of Algorithms for Artificial Intelligence on Low Memory Devices. IEEE Access 2021, 9, 109986–109993. [Google Scholar] [CrossRef]
- Ren, Y.; Leng, Y.; Cheng, Y.; Wang, J. Secure data storage based on blockchain and coding in edge computing. Math. Biosci. Eng. 2019, 16, 1874–1892. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; He, Q.; Chen, F.; Zhang, J.; Qi, L.; Xu, X.; Xiang, Y.; Yang, Y. CSEdge: Enabling Collaborative Edge Storage for Multi-Access Edge Computing Based on Blockchain. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 1873–1887. [Google Scholar] [CrossRef]
- Javed, A.; Heljanko, K.; Buda, A.; Främling, K. CEFIoT: A fault-tolerant IoT architecture for edge and cloud. In Proceedings of the 2018 IEEE 4th world forum on internet of things (WF-IoT), Singapore, 5–8 February 2018; pp. 813–818. [Google Scholar]
- Wu, J.; Li, Y.; Ren, F.; Yang, B. Robust and auditable distributed data storage with scalability in edge computing. Ad Hoc Netw. 2021, 117, 102494. [Google Scholar] [CrossRef]
- Nijim, M.; Albataineh, H. Secure-Stor: A Novel Hybrid Storage System Architecture to Enhance Security and Performance in Edge Computing. IEEE Access 2021, 9, 92446–92459. [Google Scholar] [CrossRef]
- Liu, J.; Curry, M.L.; Maltzahn, C.; Kufeldt, P. Scale-out Edge Storage Systems with Embedded Storage Nodes to Get Better Availability and Cost-Efficiency At the Same Time. In Proceedings of the 3rd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 20), Santa Clara, CA, USA, 6 February 2020. [Google Scholar]
- Jin, H.; Luo, R.; He, Q.; Wu, S.; Zeng, Z.; Xia, X. Cost-Effective Data Placement in Edge Storage Systems with Erasure Code. IEEE Trans. Serv. Comput. 2022, 1. [Google Scholar] [CrossRef]
- Elgazar, A.E.; Aazam, M.; Harras, K.A. SMC: Smart media compression for edge storage offloading. In Proceedings of the 2nd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 19), Renton, WA, USA, 9 July 2019. [Google Scholar]
- Radanliev, P.; Roure, D.D.; Burnap, P.; Santos, O. Epistemological Equation for Analysing Uncontrollable States in Complex Systems: Quantifying Cyber Risks from the Internet of Things. Rev. Socionetwork Strateg. 2021, 15, 381–411. [Google Scholar] [CrossRef]
- Mao, S.; Wu, J.; Liu, L.; Lan, D.; Taherkordi, A. Energy-efficient cooperative communication and computation for wireless powered mobile-edge computing. IEEE Syst. J. 2020, 16, 287–298. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, Y.; Zhong, W.; Zhang, C.; Xin, B. A truncated SVD-based ARIMA model for multiple QoS prediction in mobile edge computing. Tsinghua Sci. Technol. 2021, 27, 315–324. [Google Scholar]
- Zeng, F.; Chen, Q.; Meng, L.; Wu, J. Volunteer assisted collaborative offloading and resource allocation in vehicular edge computing. IEEE Trans. Intell. Transp. Syst. 2020, 22, 3247–3257. [Google Scholar] [CrossRef]
- McConaghy, T.; Marques, R.; Müller, A.; De Jonghe, D.; McConaghy, T.; McMullen, G.; Henderson, R.; Bellemare, S.; Granzotto, A. Bigchaindb: A Scalable Blockchain Database. White Paper BigChainDB 2016. Available online: https://git.berlin/bigchaindb/site/raw/commit/b2d98401b65175f0fe0c169932ddca0b98a456a6/_src/whitepaper/bigchaindb-whitepaper.pdf (accessed on 5 July 2022).
- Kwon, J. Tendermint: Consensus without Mining. Draft v. 0.6 Fall. 2014, Volume 1. Available online: https://tendermint.com/static/docs/tendermint.pdf (accessed on 5 July 2022).
- Cohen, B. Incentives build robustness in BitTorrent. In Proceedings of the Workshop on Economics of Peer-to-Peer Systems, Berkeley, CA, USA, 21–22 February 2003; Springer: Berlin/Heidelberg, Germany, 2003; Volume 6, pp. 68–72. [Google Scholar]
- Maymounkov, P.; Mazieres, D. Kademlia: A peer-to-peer information system based on the xor metric. In International Workshop on Peer-to-Peer Systems; Springer: Berlin, Germany, 2002; pp. 53–65. [Google Scholar]
Feature | Block | Object | Filesystem | Blockchain |
Data Access Method | Filepaths (usually) | Content Queries | Filepaths | Transactions |
Storage Mode | Binary blocks | Documents | Files | Signed blocks |
Scalability | Limited | Full | Not innate | Challenged |
Metadata | No | Yes | Limited | Yes |
Main Strengths | Distributed and Fast | Unstructured and Scalable | Simple and Secure | Security, Immutability, and Transparency |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makris, A.; Kontopoulos, I.; Psomakelis, E.; Xyalis, S.N.; Theodoropoulos, T.; Tserpes, K. Performance Analysis of Storage Systems in Edge Computing Infrastructures. Appl. Sci. 2022, 12, 8923. https://doi.org/10.3390/app12178923
Makris A, Kontopoulos I, Psomakelis E, Xyalis SN, Theodoropoulos T, Tserpes K. Performance Analysis of Storage Systems in Edge Computing Infrastructures. Applied Sciences. 2022; 12(17):8923. https://doi.org/10.3390/app12178923
Chicago/Turabian StyleMakris, Antonios, Ioannis Kontopoulos, Evangelos Psomakelis, Stylianos Nektarios Xyalis, Theodoros Theodoropoulos, and Konstantinos Tserpes. 2022. "Performance Analysis of Storage Systems in Edge Computing Infrastructures" Applied Sciences 12, no. 17: 8923. https://doi.org/10.3390/app12178923
APA StyleMakris, A., Kontopoulos, I., Psomakelis, E., Xyalis, S. N., Theodoropoulos, T., & Tserpes, K. (2022). Performance Analysis of Storage Systems in Edge Computing Infrastructures. Applied Sciences, 12(17), 8923. https://doi.org/10.3390/app12178923