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Abstract: Enabling deep learning inferences on resource-constrained devices is important for intelli-
gent Internet of Things. Edge computing makes this feasible by outsourcing resource-consuming
operations from IoT devices to edge devices. In such scenarios, sensitive data shall be protected while
transmitted to the edge. To address this issue, one major challenge is to efficiently execute inference
tasks without hampering the real-time operation of IoT applications. Existing techniques based on
complex cryptographic primitives or differential privacy are limited to either efficiency or model
accuracy. This paper addresses this challenge with a lightweight interactive protocol by utilizing
low-latency IoT-to-edge communication links for computational efficiency. We achieve this with a
new privacy-preserving scalar product evaluation technique that caters to the unique requirements of
deep learning inference. As compared to the state-of-the-art, our solution offers improved trade-offs
among privacy, efficiency, and utility. Experimental results on a Raspberry Pi 4 (Model B) show that
our construction can achieve over 14× acceleration versus local execution for AlexNet inference over
ImageNet. The proposed privacy-preserving scalar-product-evaluation technique can also be used as
a general primitive in other applications.

Keywords: privacy; Internet of Things; convolutional neural networks; deep learning; computation
outsourcing; edge computing; privacy-preserving scalar product

1. Introduction

With the recent rapid development of data-driven Internet-of-Things (IoT) applications,
the integration of deep learning on IoT devices is receiving unparalleled attention [1,2].
As a representative deep learning system, deep neural networks, such as convolutional
neural networks (CNN), have been widely studied since their inception and have achieved
record-breaking results on highly challenging tasks such as image recognition [3] and
natural language processing [4]. Efficient execution of this kind of deep networks onsite at
IoT devices, where data are acquired, is particularly important for numerous low-latency
intelligent IoT applications [5,6], including robotics, health monitoring, smart homes, and
smart transportation, to name a few. In these scenarios, the pre-trained deep models are
pre-loaded on IoT devices which will continuously conduct inferences on acquired data
and make intelligent decisions in a real-time manner. However, executing highly compute-
intensive learning tasks on resource-constrained IoT devices for time-sensitive tasks is
extremely challenging. For instance, widely used CNN architectures such as AlexNet [3]
and ResNet [7] require billions of operations for a single inference task, which can cost
hundreds of seconds on typical IoT devices [8], not to mention the energy consumption.

To mitigate the computational constraints of IoT devices, with the proliferation of cloud
computing, outsourcing data and data analytic tasks such as deep learning to the public
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cloud has become a popular solution. Most of the existing cloud-based methods utilize
advanced cryptographic primitives such as Homomorphic Encryption (HE) [9] and Multi-
party Computation (MPC) [10,11] to achieve privacy-preserving computation outsourcing.
However, these techniques are still far from efficient even when outsourcing simplified
deep networks, despite recent promising progress. For example, CryptoNets [12] needs
over 570 s for the inference of a simplified CNN (5 layers) on MNIST. More importantly,
existing “cloud-based” techniques usually do not consider bandwidth constraints or other
latencies between the data source (e.g., IoT devices) and the cloud. For emerging low-
latency applications, one trend is to shift from cloud computing to edge computing [13,14]
so that computationally expensive operations can be offloaded to nearby edge devices
instead of the remote cloud to minimize the communication delay. Unlike cloud systems
that are massively parallel and extremely elastic, local edge servers are usually equipped
with relatively limited computing resources, though advanced computing modules such as
GPUs are still available.

To support secure and efficient offloading of deep networks, one promising approach
is to employ customized lightweight encryption (e.g., one-time pad (OTP) or random
noises) instead of using heavy cryptographic primitives. To this end, a recent study [15]
proposes an edge-assisted interactive scheme that allows IoT devices to outsource only
linear operations to edge devices. This is based on the observation that linear operations
contribute to most of the computational complexity in popular deep networks. For example,
in AlexNet [3], with five convolutional layers and three fully-connected layers, the non-
linear operations only count for less than 2 million floating-point operations (FLOPs)—less
than 0.1% of the total of 2 billion FLOPs—while over 99.9% are linear operations. Therefore,
one practical approach is to let IoT devices only offload linear operations to edge devices
while computing non-linear ones locally. To this end, Ref. [15] encrypts input data with
one-time random noises and is extremely efficient because of the minimal computational
overheads incurred by the OTP-like encryption. The linearity of the outsourced operations
ensures that the added noises can then be efficiently eliminated from the scalar products
returned by the edge. The communication latency introduced by the interactive scheme can
be largely alleviated, since edge devices are usually located within one hop to IoT devices.

Despite the advantages, one outstanding constraint of this solution, however, is the
ever-increasing storage overhead incurred by the offline pre-computation. Specifically, to
eliminate the added noises in the returned scalar products, IoT devices shall pre-compute
and store the scalar products of the random noises and the network weights. Both compu-
tational and storage complexities are linear to the neural network size and the number of
inferences performed. While the offline computational cost might be somewhat mitigated
by employing powerful computers, the storage overheads are on the IoT devices, which are
resource constrained. In practical systems, these overheads can result in the reduced per-
formance of IoT devices, e.g., flight time of drones, or IoT devices needing to be frequently
“replenished” in one way or another, which introduces other constraints to the operation of
IoT devices. Concerning the practical operation of IoT devices, a better trade-off between
offline computation/storage and online computation shall be achieved.

Our Contribution

In this paper, we propose a new technique for privacy-preserving deep neural net-
work offloading for IoT devices. Different from [15], our scheme unleashes IoT devices
by eliminating the need for the ever-increasing data storage while enjoying the secure
offloading of linear operations. We achieve this with our novel design of an interactive
privacy-preserving scalar product (iPPSP) primitive. Specifically, we introduce a constant-
size random key pool on each IoT device, from which encryption/decryption keys for
iPPSP are continuously generated. The theoretical results show that, compared to local
execution, our design is able to accelerate the execution of convolutional layers by an
approximation of n̂k2

T , where T is a pre-set parameter which is usually a small number, and
k and n̂ denote the kernel size and input size of each channel, respectively. Experimental
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results on a Raspberry Pi 4 (mode B) show that our design has over 14× speedup over local
execution of AlexNet over ImageNet.

Our contributions can be summarized as follows:

• We propose a new deep neural network inference scheme for IoT devices that supports
the secure and efficient outsourcing of 99.9% inference operations from IoT devices to
edge devices.

• We introduce a new privacy-preserving scalar-product evaluation technique, namely
iPPSP, that supports secure encryption and decryption in a similar fashion of a
one-time pad (OTP). In addition to deep learning, iPPSP can be used as a generic
lightweight cryptographic primitive for other applications, wherein the interactive
evaluation of scalar products is needed.

• A thorough analysis shows that our protocol is secure against key-recovery attack and
semantically secure under the chosen-plaintext attack (CPA) model.The theoretical
results show that, compared to local execution, our design improves the performance
of convolutional layers by approximately n̂k2

T . Extensive experimental evaluation
shows that our protocol is able to speed up over 14× for CNN inference as compared
to local execution.

This paper is organized as follows. In Section 2, we formulate the problem and present
the system and threat models. Section 3 presents the detailed design of our secure inference
scheme and the construction of iPPSP. Section 4 provides thorough security analysis and
performance evaluation. Section 5 reviews related works, which is followed by conclusion
in Section 6.

2. Problem Formulation and Models
2.1. Privacy-Preserving Deep Network Inference

In this work, we focus on the privacy-preserving outsourcing of deep neural network
inferences from an IoT device to a nearby edge server. The deep neural network is pre-
loaded on both the IoT device and the edge server. The IoT device holds the private data,
which it encrypts and sends to the edge server. The edge performs the most resource-
consuming linear operations and returns the results back to the IoT device in a timely
manner. For convenience, we use a typical convolution neural network (CNN) structure
such as AlexNet for the case study. The network consists of multiple convolutional layers,
non-linear layers, and the final fully connected layers. The proposed scheme is applicable to
networks that share similar structures.

A convolutional layer takes as its input a tensor T ∈ Rn̂×n̂×D with H kernels Kh, each
of size k× k× D. The convolutional layer outputs a tensor T′ of size n̂′ × n̂′ × H, where
n̂′ = n̂−k+2p

ŝ + 1, and ŝ, p indicate the stride and padding, respectively. The computation
process of a convolutional layer can be viewed as multiplying each k × k matrix of a
D-channel kernel with the input n̂× n̂ matrix by sliding the former across the latter in a top-
down and left–right manner with stride ŝ. The process is repeated for all D channels, and the
output tensor is a weighted sum. From a mathematical perspective, each element of channel
h ∈ [1, H] of the output tensors can be represented as: T′(i, j, h) = Σt,t′∈[k],c∈[D]T(iŝ + t, jŝ +
t′, c)Kh(t, t′, c). The input into the fully connected layer is an n-dimensional vector x ∈ Rn̄,
which goes through a linear transformation parameterized by a weight matrix W̄ ∈ Rn̄×m̄

and a bias vector b ∈ Rm̄. The output is y = xW̄ + b, a vector of length m̄. For simplicity, we
use scalar products to represent the convolution operations and the linear transformations
throughout the paper.

Non-linear layers consist of activation functions and pooling layers. The activation
functions aim at shrinking the output size by performing computation on each element
of the input. One of the most common activation functions in deep neural networks is
the ReLU function ReLU(x) = max(0, x). Pooling layers consists of the widely used max-
pooling function or average-pooling function. Throughout the paper, we will focus on the
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outsourcing of linear layers, since the non-linear function counts for only a small portion
and can be efficiently computed on IoT devices.

2.2. System Model

The targeted system is depicted in Figure 1, which includes three entities: IoT devices,
edge devices and the IoT device owner.

• The IoT device owner, who possesses the pre-trained CNN model, wants to perform
the inference of the data collected by IoT devices for purposes such as event detection
and object identification without revealing any sensitive information.

• IoT devices are considered clients that collect private data and conduct CNN inference.
IoT devices are assumed to not be powerful enough to execute CNN inference locally
in real time, though they may have some limited computational capability.

• Edge devices are deployed in a one-hop communication distance to the IoT devices.
They are equipped with considerable computing resources and can perform inference
tasks in real time. For inference outsourcing, IoT devices first transmit the CNN model
to the edge device before the inference task starts.

For simplicity, we use C and S to denote an IoT device and an edge device, respectively.
We consider that there exists a direct wireless communication link between C and S. The link
quality is stable, and the bandwidth is comparable with contemporary home or commercial
WiFi networks (e.g., hundreds of Mbps in each direction). We assume each IoT device is
equipped with some storage capacity (e.g., tens of GB).

Figure 1. System model.

2.3. Threat Model

We assume the IoT device owner has physical and remote access to IoT devices and
can securely load initial secrets to the latter. We consider that the IoT devices and the secrets
they store are well secured. Device compromise attacks (e.g., via malware or physical
tampering) are not considered, for which we resort to orthogonal research on software or
system security. The edge device is considered “honest-but-curious”, i.e., the edge device
will honestly follow the protocol but tend to obtain or infer the information about the inputs
and outputs of scalar products. Therefore, the adversary in this paper can be either curious
edge devices or external attackers who can eavesdrop on the communication channels. The
main goal of our design is to protect the data’s privacy, i.e., to prevent the edge device and
any external attackers from learning the private input data collected by the IoT devices,
the final inference result, and all the intermediate results from the offloaded layers. Model
privacy is not considered in this article, and the edge devices have access to the trained
model (i.e., the weights). The encrypted data, including the encrypted input from the IoT
device and the encrypted intermediate results such as the outputs of the offloaded layers
of a CNN model, are available to the edge devices and attackers. The communication
channels are assumed to be secure against message-modification attacks, e.g., through
standard message integrity codes.
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3. Construction
3.1. Privacy-Preserving CNN Inference

The high-level framework of our privacy-preserving CNN inference protocol is de-
picted in Figure 2. As previously discussed, we aim to allow IoT devices to securely offload
the linear operations of the convolutional layers and the fully connected layers, which
count for over 99.9% of the overall computation of the inference task. The non-linear layers
are executed locally on IoT devices. Therefore, the protocol is interactive.

Figure 2. Framework of the proposed secure CNN inference protocol.

More specifically, an IoT device encrypts the inputs of each convolutional layer or fully
connected layer and sends the encrypted inputs to the edge server. The latter computes the
scalar products of the encrypted inputs and the corresponding weight parameters of the
CNN network. The computed scalar products are, therefore, in encrypted forms, which are
returned to the IoT device. The IoT device then locally decrypts the returned results and
proceeds with non-linear layers, if there are any. This process is repeated until the output
layer of the CNN structure is reached. The overall process is depicted in Algorithm 1.

Algorithm 1: Privacy-Preserving CNN Inference
Data: Input Data X , Pre-trained modelW
Result: Inference result Y
for each layer inW do

Layer.Input = X ;
if Layer = Fully-Connected Layer or Convolution Layer then

C interacts with S to execute Algorithm 2 and obtains output X ′;
X = X ′;

else
C computes the non-linear functions locally and obtains output X ′;
X = X ′

end
end

In the privacy-preserving CNN inference protocol, one important component is the
secure outsourcing of scalar products, which demands the corresponding data encryp-
tion/decryption algorithm be linear, lossless, and efficient. In particular, the “linear” property
is in place to assure that the edge server is able to perform the learning operations as
in plaintext models, e.g., it shall be compatible with tensor operations using existing li-
braries, such as TensorFlow, and conveniently support GPU executions for efficiency. The
“lossless” property requires that the decryption does not introduce any distortion of the
corresponding scalar products, so that the model performance is not impaired by the CNN
inference protocol. Last but not least, “efficiency” is in terms of not only computation
and communication, but also storage available considering contemporary IoT devices,
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edge servers and wireless networks. To achieve these design goals, we introduce a new
interactive privacy-preserving scalar product (iPPSP) primitive that can securely evaluate
the scalar product in the four stages depicted in Figure 3: (1) Initialization, (2) Pad Generation,
(3) Encryption, and (4) Report. In the Initialization phase, the IoT device owner prepares
for the initial secrets necessary for the subsequent operation of the protocol. Specifically,
our protocol generates a constant-size random key pool to be loaded to the IoT device; a
so-called pre-computation table, which is also of constant size, is loaded on the IoT device
as well. The two types of initial secret will be used as master keys to generate real-time
data encryption and decryption keys, respectively. During the Pad Generation phase, the
IoT device will randomly generate the encryption keys using the random keys in the
key pool; as the encryption is similar to a one-time pad, we call these encryption keys as
encryption pads. In the Encryption phase, the IoT device encrypts the message with the pad
and sends the encrypted message to the edge server, which will compute the scalar product
(over the encrypted data) for the IoT device. During the Report phase, the edge server
returns the encrypted scalar product to the IoT device, which can immediately decrypt the
expected scalar product with the decryption keys that can be efficiently derived with the
pre-computation table. Please note that, while other phases are needed for each linear layer,
Initialization is only executed once for an IoT device, unless the device is compromised,
which is out of the scope of this work.

Figure 3. High-level workflow of iPPSP primitive.

3.2. Construction of iPPSP

Now, we elaborate on the construction of our iPPSP protocol. Important notation and
parameters of our protocol are presented in Table 1.

Table 1. Summary of notation and parameters.

Notation Meaning

λ Security Parameter

C Client. The IoT devices

S Server. The edge computing devices

n The length of input vector

W n×m dimensional weight matrix

R Secret key pool

s Secret key pool size

T Pad Generation Parameter

γi Random Indices
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Interactive Privacy-Preserving Scalar Product (iPPSP): As described in Algorithm 2,
in iPPSP the client C has an input vector x = (x1, x2, · · · , xn) and wants to compute the
scalar product with weight matrix W = (W1, W2, · · · , Wn)ᵀ, where each Wi is a vector
of dimension m. After an edge device responds to the outsourcing request from the IoT
device, they will interactively execute Algorithm 2.

Algorithm 2: Interactive Privacy-Preserving Scalar Product (iPPSP)
Data: n-dimensional input vector x, Weights matrix Wn×m
Result: m dimensional vector A = x ·W
Initialization:
C generates a s-tupleR = (r(0), r(1), · · · , r(s−1));
C computes tensor productR⊗Wi for i = 1, 2, · · · n and stores the result;
for i = 1→ n do

Encryption:
C executes Algorithm 3 to generate an encryption pad r;
C computes C = x + r and sends C to server S;
Report:
S computes and sends to C: ai = C ·Wi;
C decrypts the message with pre-computation table: Ai = ai − r ·Wi;
i = i + 1;

end

Initialization: For an input vector x, each entry xi, i = 1, 2, · · · , n is a κ-bit number.
The client first generates a sequence of random numbers r(0), r(1), · · · , r(s−1) from Zq, where
q = 2l , and these random numbers form the secret key poolR. Notice that each element r(j)

is l-bit (l > κ) and is generated by a pseudo-random generator (PRG). During the Initialization
phase, the client computes n tensor productsR⊗Wi for i = 1, 2 · · · , n and stores the result
in a pre-computation table which will be used in decryption. The pre-computation table
for a single tensor productR⊗W1 is shown in Table 2.

Table 2. Pre-computation table locally maintained by IoT device.

r(0) ·W11 r(1) ·W11 · · · r(s−1) ·W11
r(0) ·W12 r(1) ·W12 · · · r(s−1) ·W12
· · · · · · · · · · · ·

r(0) ·W1m r(1) ·W1m · · · r(s−1) ·W1m

Moreover, in this phase, a system parameter T ∈ Zs is also generated.
Pad Generation: Each time the client needs to outsource a scalar product calculation

for input vector x of dimension n, it executes Algorithm 3 to generate a pad of the same di-
mension to be used for encryption. Notice that, during the initialization phase, C generates
a sequence of random numbers r(0), r(1), · · · , r(s−1) as master secrets stored in the key pool
R. To generate an encryption pad ri, C randomly selects T (a system parameter determined
in the Initialization phase) indices γ1, · · · , γT ∈ Zs and computes the following:

ri = r(γ1) + r(γ2) + · · ·+ r(γT). (1)

An n-dimensional pad r = (r1, r2, · · · , rn) is generated for an n-dimensional input x.
Encryption: After pad generation, the client encrypts the input data x as:

C = x + r. (2)

C is then sent to the edge server S.
Report: Upon receiving C from the client, the server will immediately compute the

scalar product C ·Wi = (x + r) ·Wi and return the result to the client C.
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Algorithm 3: Pad-Generation Algorithm

Data: A s-tuple Key pool (r(0), r(1), · · · , r(s−1)), Pre-set parameter T
Result: encryption pad vector r
r = 0;
for i = 1→ n do

for t = 1→ T do

C generates a random seed γt
$←− Zs;

ri = ri + r(γt) ;
t = t + 1;

end
i = i + 1;

end

Given the returned scalar product C ·Wi = (x + r) ·Wi, the client can easily decrypt
the expected scalar product x ·Wi by eliminating the scalar product of added noise with
weights r ·Wi as:

x ·Wi = (x + r) ·Wi − r ·Wi. (3)

Please note that r ·Wi can be conveniently computed by looking up the “pre-computation
table” and then adding up the corresponding items r(γk) ·Wij.

After decryption, the IoT device proceeds to the next layer of the CNN network, i.e.,
either to process the non-linear function or to invoke another round of iPPSP for the next
offloaded linear layer.

4. Analysis
4.1. Security Analysis

This section provides the overall security analysis of our privacy-preserving CNN
inference protocol.

For any κ-bit messageM, Theorem 1 states that the probability for a probabilistic
polynomial time (PPT) adversary A to output a correct guess ofM is negligible.

Theorem 1. Given the ciphertext C = xi + ri of a κ-bit messageM = xi generated using iPPSP,
the probability for a PPT adversary A to output a correct guess forM follows:

Pr[(M∗ =M)|C]− Pr[M∗ =M] ≤ ε,

where ε = negl(·) is a negligible function regarding the security parameter λ,M∗ is the guess for
M made by A, and Pr[M∗ =M] denotes the probability that the adversary A makes a correct
guess onM.

Proof. Given a κ-bit input xi, iPPSP encrypts it with an η-bit random number ri generated
by padding T random numbers of l-bit with a secure PRG, which indicates that the distribu-
tion of ri should be indistinguishable from uniform. To make a correct guess onM without
ciphertext, A has Pr[M∗ =M] = 1

2κ . Given the ciphertext C = xi + ri, C ∈ [0, 2κ + 2η ], we
differentiate two different cases to discuss the impact of the value of C. In the first case,
2κ ≤ C ≤ 2η , we have Pr[(M∗ =M)|C] = 1

2κ , since C is indistinguishable from ri within
the range. If C < 2κ or C > 2η , then the distribution of C will be affected byM and the
total possible inputs are reduced to C or C − 2η . Hence, we have Pr[(M∗ =M)|C] = 1

C or
Pr[(M∗ =M)|C] = 1

C−2η , respectively. In these cases, Pr[(M∗ =M)|C] > 1
2κ .
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Consider the second case when C < 2κ or C > 2η ; this happens only when the value of
encryption pad ri is either too big or too small. More specifically, this happens only when
ri > 2η−κ or ri < 2κ . The probability of this event is

Pr[ri > 2η − 2κ ∪ ri < 2κ ] =
2 · 2κ

2η =
1

2η−κ+1 .

Thus, we require η − κ − 1 to be greater than some pre-set security parameter λ (e.g.,
η − κ − 1 > λ = 128). In this case, the probability Pr[ri > 2η − 2κ ∪ ri < 2κ ] = 1

2η−κ+1 is
negligible, we denote it as ε(λ). Combining the two cases:

Pr[(M∗ =M)|C] ≤ 1
2κ
· (1− ε(λ)) + ε =

1
2κ

+ (1− 1
2κ

) · ε(λ).

Hence, we have

Pr[(M∗ =M)|C]− Pr[M∗ =M] =
1
2κ

+ (1− 1
2κ

) · ε(λ)− 1
2κ

= (1− 1
2κ

) · ε(λ) < ε.

which concludes the proof.

Theorem 1 shows that. with appropriate system parameters. the ciphertext distribution
cannot be distinguished with non-negligible probability by a PPT adversary. Since inputs
of different CNN layers are independently encrypted, this property holds for the entire
CNN inference task.

Next, we show that our protocol is semantically secure under the chosen-plaintext
attack (CPA) model. Assume a PPT adversary A has access to an encryption oracle O.
When A queries the oracle, it chooses a message m on its own and sends it to the oracle.
The oracle will execute the protocol and output an encryption of message C = m + r, where
r is sampled through our key-generation algorithm. Recall that, during pad generation,
the client generates T random numbers to identify elements in key pool R. Thus, the
total possible combination of the pad is given by sT . For security reasons, we assure the
probability that the same pad is re-used is negligible regarding the security parameter
λ. That is, ( 1

s )
T = negl(λ), which can be achieved by choosing appropriate parameters.

Specifically, we can formulate the security in Theorem 2.

Theorem 2. For every PPT adversary A, there exists a negligible function negl(·) such that the
probability of the CPA-indistinguishability experiment Exp to output 1 is only negligibly more
than 1

2 :

Pr[ExpSS−CPA
A,PPSP (λ) = 1] ≤ 1

2
+ negl(λ)

Proof. We first describe the CPA-indistinguishability experiment ExpSS−CPA
A,PPSP (λ). The ad-

versary is given input 1λ and access to the encryption oracle O. A samples a pair of
message m0, m1 from the message space and sends them to the challenger. Then, a random

bit b $←− {0, 1} is selected by the challenger, who encrypts the message C = mb + r, where r
is generated through Algorithm 3. The challenger sends the ciphertext C to the adversary.
Here, we assume that the output of Algorithm 3 follows distribution D. In Theorem 1, we
show thatD cannot be distinguished from a uniform distribution on Zq with non-negligible
probability. The adversary can keep querying the oracle for polynomial times and then
output a bit b′. The output of experiment ExpSS−CPA

A,PPSP (λ) is defined as 1 if b′ = b and
0 otherwise.
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Then, we define a sequence of hybrid Hi

H0 = {r ← D : m0 + r}
H1 = {R← Ul : m0 + R}
H2 = {R← Ul : m1 + R}
H3 = {r ← D : m1 + r}

By construction, if A can win the CPA game with a non-negligible probability p, i.e.,
the probability of ExpSS−CPA

A,PPSP (λ) to output 1 is larger than the experiment to output 0 with
non-negligible probability, then A can distinguish H0 and H3 with same probability p.
Therefore, from the hybrid lemma, which shows the transitivity of hybrids, we immediately
know that A can also distinguish between two consecutive hybrids with non-negligible
probability 1/4p. We will proceed to show that this gives rise to a contradiction.

Define a pair of nonuniform PPT machines M0, M1 by Mi(Xl) = {r ← Xl : mi + r}.
It is clear that Mi is an efficient operator. Observe that H0 = M0(D) and H1 = M0(Ul).
Guaranteed by our construction, with only negligible probability, the pad r generated by
our algorithm can be distinguished from a truly random number sampled from a uniform
distribution Ul . Thus, from the efficient operation lemma, H0 ≈ H1. Similarly, it is easy
to show that H2 ≈ H3. Then, to preserve the transitivity of hybrids, A must be able to
distinguish H1 and H2. Nonetheless, by the perfect secrecy of one time pad, we know that
H1 and H2 are indistinguishable, which immediately introduces the contradiction.

Next, we show that our construction is secure against a key-recovery attack. Assume
that a PPT adversary A has access to the encryption oracle O and wants to perform a
key-recovery attack, i.e., to recover the key pool given the polynomial number of accesses
to the oracle O. In Theorem 3, we show that the probability that the adversary succeeds in
performing such an attack is negligible.

Theorem 3. For any PPT adversary A with access to encryption oracle O, the probability of
performing a successful key-recovery attack is

PrKRA =

(
Q
s

)
ps(1− p)Q−s, (4)

which is negligible in terms of security parameter λ, p = T!(s−1)!
(s+T−1)! , where s denotes the number

of secret keys, and T represents the number of keys used to generate the pad r for encryption.
Q = poly(λ) where λ is the security parameter.

Proof. By accessing the encryption O for each query, A can choose a message m from the
given message space that it chooses, and the oracle will return its encryption C = m + r,
where r is generated through the pad-generation algorithm. Thus, the adversary can easily
recover the pad r by r = C −m. Recall that each pad is a combination of the secret key:

ri = r(γ1) + r(γ2) + · · ·+ r(γT)

To successfully recover the key pool of size s, the adversary is asked to give a unique
solution of a linear system Ax = b. The variable x is an s-dimensional vector where each
entry represents a secret key value in the key pool. The coefficient matrix A is a sparse
matrix of dimension Q× s, where Q = poly(λ) is the number of queries made by the
adversary. The non-zero elements indicate the secret key value used for generating the pad
r. The sparsity of the matrix ranges from [ s

Q , sT
Q ].

To launch the attack, adversary A needs at least s equations to give a solution to the
system. Consider the case that A only retrieves k equations where k < s; it is clear that
the linear system would be an underdetermined system, which implies infinite solutions.
Thus, to recover the key pool, the adversary shall have at least s equations. However, notice
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that, for each query, the attacker is only able to recover the pad r while the randomnesses
γ1, · · · , γT are kept secret on the user’s end. Thus, to recover the secret key, A has to first
guess the randomnesses, i.e., to guess the coefficient matrix A for at least s times. For
each query, the adversary needs to identify which key value is used in generating the pad.
This problem can be described as a sampling problem with replacement. The possible
combination of secret key values is given by (s+T−1

T ) = (s+T−1)!
T!(s−1)! . That is, the probability

of a successful guess in one equation is p = T!(s−1)!
(s+T−1)! . Here, we do not consider the trivial

case T = 1 in which for each query adversary can reveal a secret key value since the pad is
exactly equal to the secret key chosen. When T ≥ 2, to retrieve the secret key value, the
adversary needs to recover at least s equations on Q attempts. Thus, the overall probability
of recovering s equations out of Q attempts is given by PrKRA = (Qs )ps(1− p)Q−s. We
require the probability to be negligible in terms of the security parameter λ. That is,
PrKRA = (Qs )ps(1− p)Q−s = negl(λ). To prove this, we first show that the upper bound of
(Qs ) is given by [ eQ

s ]s. To start with, we know that(
Q
s

)
=

Q!
(s)!(Q− s)!

=
Q(Q− 1) · · · (Q− s + 1)

s!
<
Qs

(s)!
. (5)

Consider the expansion of es = Σ∞
i=0

(s)i

i! . If we only consider the term with respect
to s, we have es > ss

(s)! , which immediately yields 1
(s)! < [ e

s ]
s. Substituting the term in

Equation (5), we have (Qs ) < [ eQ
s ]s. Now, it is easy to see that

PrKRA =

(
Q
s

)
ps(1− p)Q−s < [

eQ
s
]s ps = [

epQ
s

]s

Next, we show that, with the careful parameter, we have PrKRA < 1
poly(λ) . Specifically, we

have PrKRA = [ epQ
s ]s, where s is the key pool size. Notice thatQ is polynomial in terms of λ,

whereQ = poly(λ). Since [ e
s ]

s << 1, we have PrKRA = [ epQ
s ]s < poly(λ) · ps < 1

poly(λ) . If p

is sub-exponential, then the inequality holds. We know that p = (s+T−1)!
T!(s−1)! < [ 1

s ]
T < 1

2λ1/3 .

Discussion We now discuss the overall security of the protocol and the impact of
the parameters. In our protocols, we have two important parameters: s and T, where s
denotes the number of secret keys, and T represents the number of keys used to generate
the pad r for encryption. The key-pool size s is strongly related to the storage overhead,
since our protocol needs to pre-compute the product of the keys and weights. T is related
to the computation complexity, because the IoT device has to perform T additions for each
encryption and T subtraction with a search operation for each decryption.

To fulfill the security requirement while preserving the efficiency, the parameters shall
be chosen carefully. Throughout our implementation, s is chosen to be 8192 under careful
consideration of the storage overhead. Under this condition, to fulfill the requirement of
being semantically secure with a security parameter λ = 128 (or λ = 80), T is required to
be at least 10 (or 6). Nonetheless, semantic security indicates that the adversary cannot
distinguish between different plaintexts being encrypted. If such a security requirement
can be relaxed by instead focusing on defeating the key-recovery attack, the protocol can be
made more efficient. Following Theorem 3, when T ≥ 2, the probability that the adversary
can launch a successful key-recovery attack is negligible. In real IoT systems, the trade-off
between security and efficiency can be chosen based on practical security requirements.

4.2. Performance Analysis

In this section, we provide the performance analysis both from a theoretical perspective
and with experimental results. In our protocol, we consider input data and weights to be
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real numbers, and we use floating-point operations (FLOPs) to denote the addition and
multiplication operation. We consider a typical network structure AlexNet for our analysis.

Computational Cost Given a convolutional layer with H k × k × D kernels, stride
ŝ, and padding p, for each input data of size n̂ × n̂ × D, the output tensor is of size
n̂′ × n̂′ × H, where n̂′ = n̂−k+2p

ŝ . An IoT device needs to performs n̂2DT FLOPs and n̂′2HT
FLOPs to encrypt and decrypt, respectively. In comparison, the computational cost for local
execution is 2Hn̂k2n̂′2 FLOPs. Moreover, it is noteworthy that the operations in our protocol
are addition/subtraction only, while the local execution contains Hn̂k2n̂′2 multiplication
and Hn̂k2n̂′2 addition. For a fully-connected layer of input size n̄ and output size m̄, the
IoT device needs to perform n̄T FLOPs for encryption and m̄T FLOPs for decryption. For
comparison, the IoT device needs to perform n̄m̄ FLOPs if it executes such a fully-connected
layer on IoT device without outsourcing. It is worth noting that, when executing the fully-
connected layer at local, the IoT device is performing n̄m̄ multiplications, while, in our
scheme, the IoT device only needs to preform (m̄ + n̄)T additions on its end. Moreover,
IoT devices need to handle non-linear computation locally. As depicted in Table 3, the
comparison of IoT computation on linear layers between local executions and our protocol
shows that our design dramatically reduces the overhead and achieves better performance
in CNN inference tasks, considering that the parameter T is usually small for practical
security.

Table 3. The comparison of computational cost of IoT device between local execution and our scheme.

Computational Cost of IoT Device

Convolutional Layers Fully-Connected Layer

Local execution 2Hn̂k2n̂′2 n̄m̄

Ours n̂2DT + n̂′2HT (m̄ + n̄)T

Communication Cost The communication cost of our protocol is mainly from the
transmission of the ciphertext and the outputs of the convolutional layers and fully-
connected layers. To outsource a convolutional layer with n̂ × n̂ × D inputs, the IoT
device first encrypts it and sends the corresponding ciphertext, which is of size Dn̂2, to the
edge device. Then, the edge device computes the expected scalar products and sends back
the results, which are matrices of size n̂′ × n̂′ × H. Regarding the fully-connected layer,
the IoT device transmits encrypted message vectors of exactly the same dimensions as the
plaintext ones, i.e., n̄-dimensional input vectors and m̄-dimensional output vectors. Thus,
the total communication cost for a fully-connected layer would be m̄ + n̄.

Storage Overhead To assure correct decryption, the scalar products of the secret keys
and weights shall be pre-computed and stored in the IoT device as showed in Table 2. The
pre-computation occurs only in the initialization phase, and once finished, there would
be no extra storage overhead introduced during the offloading process. To outsource a
convolutional layer with H kernels of k× k matrices, the IoT device needs to store the scalar
products with secret keys of size sk2H for decryption, which is quite small for most CNN
architecture where the kernel sizes are normally 3× 3 or 1× 1. Moreover, the IoT device
also stores a constant-size key pool measured by s. To outsource a fully-connected layer
with n̄-dimensional input and m̄-dimensional output, the IoT device needs to store sm̄n̄ as
a decryption key.

4.3. Experiment Result

We implemented our protocol on real devices to evaluate its performance. Our imple-
mentation adopts the TensorFlow library with Python 3.8. We used a Raspberry Pi 4 (Model
B) as the IoT device, which is configured with Raspbian Debian GNU/Linux 11 (bulleye)
and has an 1.5GHz quad-core ARM Cortex-A72 processor, 8 GB SDRAM of LPDDR4, and
32 GB SD card storage. We use a desktop as the edge device, which is configured with
Ubuntu 20.04.3 LTS, an 8-core 3.60GHz Intel i7-9700K processor, 32 GB memory, two Nvidia
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GeForce RTX 2080Ti GPU, and 2TB HDD storage. The IoT device and the edge device
are deployed in the same building and connected through 2.4GHz WiFi of 300 Mbps. We
used ImageNet [16] as the dataset and implemented a privacy-preserved SqueezeNet and
ResNet-50 to compare with the current state-of-the-art cryptographic 2PC-NN solution
CrypTFlow2 [17]. The result depicted in Table 4 shows that our solution has 4.7× to 24.7×
speed-up in terms of computation as compared to CrypTFlow2 on the two CNN models
being evaluated. For the communication overhead, our design requires an interaction
of the client and the edge node only for the transmission of the encrypted data and the
encrypted scalar product, which are of the same size compared to the expanded ciphertext
using heavy cryptographic primitives such as homomorphic encryption. As a result, the
communication cost of our protocol is 65 to 4000 times less than CrypTFlow2.

Table 4. Performance comparison with CrypTFlow2 [17] for End-to-End time and communication.
Time is measured in seconds and communication in GB.

Benchmark Methods End-to-End Time Communication

SqueezeNet
[17]-SCIHE 59.2 5.27
[17]-SCIOT 44.3 26.07

Ours 9.31 0.08

ResNet-50
[17]-SCIHE 545.8 32.43
[17]-SCIOT 619.4 370.84

Ours 25.19 0.09

We summarize the experimental results from AlexNet in Table 5 and compare the
performance of each layer with local execution and the overall performance with the
literature [15]. As shown in Table 5, our protocol significantly improves the efficiency of
the AlexNet inference task, achieving a 14.26× speed-up compared with executing the
inference task on IoT devices locally. It is noteworthy that, for the convolutional layer,
our protocol achieves up to over 66× faster than local computation. With the number of
convolution layers increasing in more complicated CNNs such as ResNet-50, DenseNet-121,
our secure inference scheme retains the advantage of performance, as shown in Table 4.

In terms of storage overheads, in our design, the storage cost, which contains mainly
the secret-key pool R and the pre-computation table, is fixed once the pre-trained CNN
model is selected. For SqueezeNet and ResNet-50, the storage overhead of our protocol
is 0.54 GB and 2.61 GB, respectively. For the implementation of AlexNet, considering the
extremely imbalanced ratio between parameters and FLOPs, where there are over 586
million parameters with 58 million FLOPs performed in fully connected layers, while the
number is 3 million parameters with over 665 million FLOPs, we outsource the convo-
lutional layers only and keep the fully-connected layers computed locally. The storage
overhead for the convolutional layers of AlexNet is 1.98 GB. We want to mention that better
performance is expected when the IoT devices with sufficient storage can pre-load the
complete pre-computation table for AlexNet.

Our experiment also shows that [15] is faster than our protocol. According to our
experiments, it takes [15] around 2.51 s to execute the AlexNet, while ours took around
6.76 s, though both are significantly faster than other crypto-based solutions such as [17].
However, as mentioned earlier, one outstanding limitation of [15] is that its storage cost
on the IoT device grows linearly to the number of inference instances being executed. For
example, a 32 GB SD card can store pre-computed secrets that are only enough for around
1600 AlexNet inferences and 250 ResNet-50 inferences. After that, the SD card needs to
be replaced and re-initialized, which could disturb the continuous operation of the IoT
system in real-world applications such as drone-based systems. Our design eliminates such
a limitation because of the constant storage overheads.
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Table 5. Performance comparison with local execution. Time is measured in seconds.

IoT w/o Outsourcing IoT Device
Computation

Edge Device
Computation Communication Total Speedup

Conv-1 7.39 1.05 0.039 0.058 1.147 6.44×
Conv-2 29.654 1.152 0.028 0.036 1.216 24.38×
Conv-3 14.372 0.256 0.03 0.050 0.336 42.77×
Conv-4 25.62 0.383 0.032 0.048 0.463 66.89×
Conv-5 15.141 0.255 0.029 0.050 0.334 59.37×
FC 3.095 3.095 N/A N/A 3.095 N/A

Non-linear 1.33 1.33 N/A N/A 1.33 N/A

Total 96.422 6.191 0.158 0.242 6.76 14.26×
[15] 96.422 1.932 0.268 0.315 2.515 38.41×

5. Other Related Works

With the increasing popularity of “Machine Learning as a Service” (MLaaS) in recent
years, users take advantage of the powerful cloud server to perform deep learning inference
tasks and free the local device of a heavy computation workload. While offloading offers an
appealing practice for the users, the concern of exposing sensitive data to the cloud service
provider has greatly drawn attention from both the industry and academia. Providing a
privacy-preserved machine learning service that enables the user to upload their data and
retrieve the inference result without revealing any sensitive information becomes the hinge
of fate. Since the inception of secure inferences, considerable efforts have been made to
address secure deep neural network inference issues using modern cryptographic tools such
as homomorphic encryption and multi-party computation techniques [12,17–33]. Most of
these works focus on a two-party scenario (2PC-NN), in which the user only interacts with a
single server, while there are some other works [28–31] considering multiple servers, which
is much more complicated than a single server when it comes to real-world implementation.

Some early works adopt homomorphic encryption [12,18] to compute the linear oper-
ations and introduce approximation to handle the non-linear activation function or pooling
layers. These works are not only very costly due to the heavy cryptographic primitive
itself, but also fail to provide a secure and efficient evaluation of the non-linear operation
(e.g., ReLU function). Another trend is to use MPC-based techniques such as oblivious
transfers and garbled circuits [19,25] to evaluate the convolution operation. These methods,
while introducing less computational overheads, incur tremendous communication com-
plexities. For example, even with an extremely simplified neural network containing only
three fully-connected layers with square activation [19] trained on the CIFAR-10 dataset,
MiniONN [25] has a communication overhead of over 9000 MB. Hence, a mixed strategy of
combining HE- and MPC-based techniques has come into vogue. The intuition is that HE
performs better in matrix–vector computations and the non-linear functions in most CNNs
can be represented as some linear circuits and better handled by oblivious transfers and
garbled circuits.

In spite of recent advances, the performance of existing 2PC-NN systems is still far
from practical, especially for the time-sensitive and resource-constrained IoT application.
The state-of-the-art solution CrypTFlow2 [17], though it enables a CNN inference task at
large scale dataset such as ImageNet for the first time, introduces over 370 gigabytes of
communication overheads and takes over 600 s on ResNet-50 in their OT-based method.
On top of that, some recent works [26,34] replace the ReLU activation function with
approximations due to the challenges with the implementation of secure ReLUs. However,
this method leads to a significant loss in model accuracy. Alternatively, many protocols
have to trade security for efficiency by assuming a trusted third party [20,23,24,32] or by
allowing the leakage of intermediate results [33]. Moreover, many works [19,20,24,26,32]
sacrifice a certain level of correctness due to the truncation protocol in their fixed-point
arithmetic implementations, which leads to unexpected probability error.
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Moreover, many of these works utilize Single Instruction/Multiple Data (SIMD) opera-
tions to improve performance. However, due to the inevitable matrix–vector multiplication,
numerous homomorphic rotations are required in these SIMD-based schemes [12,21,33].
The major concern is that these operations are not only extremely expensive [33], but also
bring challenges to security due to the attempts to accelerate these homomorphic rotations
with special modulus techniques adopted [35]. The key-switching matrices in this tech-
nique are related to a large modulus compared to the original BGV scheme [36], while
requiring a small noise term, which means there is a larger ratio of modulus/noise in the
LWE problem. Thus, to obtain the same level of security (e.g., 80-bit security), the lattice
dimension has to be increased accordingly, which leads to a slower homomorphic operation.
These shortcomings have become the major challenges that limit the performance of the
2PC-NN inference system.

6. Conclusions

In this work, we design a secure and efficient CNN inference outsourcing protocol
for resource-constrained IoT devices with the assistance of edge computing. Observing
the dominance of linear operations in most DNN architecture, we propose a lightweight
scalar-product evaluation primitive iPPSP that can securely offload over 99% of CNN
inference operations and achieve improved trade-offs among privacy, efficiency, and utility
as compared to the state-of-the-art research. Thorough security analysis shows that our
protocol is secure under chosen-plaintext attacks and key-recovery attacks. Experimental
results on widely used CNN architecture including AlexNet and ResNet-50 show that our
protocol significantly outperforms the state-of-the-art 2PC-NN solution by up to 66.89×
speed-up for convolutional layers and up to 24.7× for the overall inference. As compared
to existing lightweight interactive solutions, our protocol has an obvious advantage of a
fixed storage cost, which eliminates the need for the periodic re-initialization of the IoT
devices. Our iPPSP primitive itself is generic and can be used as a building block in a wide
range of similar applications, wherein the secure offloading of scalar products is needed.
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