Unsaturated Hydraulic Conductivity in Composite Porous Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Saturated Hydraulic Conductivity Measurements
2.2. Unsaturated Hydraulic Conductivity Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Durner, W.; Flühler, H. Soil Hydraulic Properties. In Encyclopedia of Hydrological Sciences; Wiley Online Library: Hoboken, NJ, USA, 2006; Volume HS077, pp. 1–32. [Google Scholar]
- Hunt, A.G.; Ghanbarian, B.; Saville, K.C. Unsaturated hydraulic conductivity modeling for porous media with two fractal regimes. Geoderma 2013, 207, 268–278. [Google Scholar] [CrossRef]
- Brooks, R.; Corey, A. Hydraulic properties of porous media. In Hydrology Papers 3; Colorado State University: Fort Collins, CO, USA, 1964; pp. 1–27. [Google Scholar]
- van Genuchten, M. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 8, 892–898. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Xing, A. Equations for the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 512–532. [Google Scholar] [CrossRef]
- Gallage, C.; Kodikara, J.; Uchimura, T. Laboratory measurement of hydraulic conductivity functions of two unsaturated sandy soils during drying and wetting processes. Soils Found. 2013, 53, 417–430. [Google Scholar] [CrossRef]
- Hall, K.D. Comparison of falling-head and constant-head techniques: Estimating field permeability of hot-mix asphalt pavements. Transp. Res. Rec. 2004, 1891, 23–31. [Google Scholar] [CrossRef]
- Andres-Valeri, V.C.; Juli-Gandara, L.; Jato-Espino, D.; Rodriguez-Hernandez, J. Characterization of the infiltration capacity of porous concrete pavements with low constant head permeability tests. Water 2018, 10, 480. [Google Scholar] [CrossRef]
- Zarandi, M.A.F.; Pillai, K.M.; Barari, B. Flow along and across glass-fiber wicks: Testing of permeability models through experiments and simulations. AIChE J. 2018, 64, 3491–3501. [Google Scholar] [CrossRef]
- Assaad, J.J.; Harb, J. Use of the falling-head method to assess permeability of freshly mixed cementitious-based materials. J. Mater. Civ. Eng. 2013, 25, 580–588. [Google Scholar] [CrossRef]
- Sun, Y.; Causse, P.; Benmokrane, B.; Trochu, F. Permeability measurement of granular porous materials by a modified falling-head method. J. Eng. Mech. 2020, 146, 04020101. [Google Scholar] [CrossRef]
- Marshall, T.J. A relation between permeability and size distribution of pores. J. Soil Sci. 1958, 9, 1–8. [Google Scholar] [CrossRef]
- Millington, R.J.; Quirk, J.P. Permeability of porous solids. Trans. Faraday Soc. 1961, 57, 1200–1207. [Google Scholar] [CrossRef]
- Green, R.E.; Corey, J.C. Calculation of hydraulic conductivity: A further evaluation of some predictive methods. Soil Sci. Soc. Am. J. 1971, 35, 3–8. [Google Scholar] [CrossRef]
- Durner, W. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res. 1994, 30, 211–223. [Google Scholar] [CrossRef]
- Arya, L.M.; Leij, F.J.; Shouse, P.J.; Van Genuchten, M.T. Relationship between the hydraulic conductivity function and the particle-size distribution. Soil Sci. Soc. Am. J. 1999, 3, 1063–1070. [Google Scholar] [CrossRef]
- Fredlund, M.D.; Wilson, G.W.; Fredlund, D.G. Use of the grain-size distribution for estimation of the soil-water characteristic curve. Can. Geotech. J. 2002, 39, 1103–1117. [Google Scholar] [CrossRef]
- Chapuis, R.P. Estimating the in-situ porosity of sandy soils sampled in boreholes. Eng. Geol. 2012, 141, 57–64. [Google Scholar] [CrossRef]
- Klute, A. The determination of the hydraulic conductivity and diffusivity of unsaturated soils. Soil Sci. 1972, 113, 264–276. [Google Scholar] [CrossRef]
- Baker, F.G.; Veneman, P.L.; Bouma, J. Limitations of the instantaneous profile method for field measurement of unsaturated hydraulic conductivity. Soil Sci. Soc. Am. J. 1974, 38, 885–888. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Xing, A.; Huang, S. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 533–546. [Google Scholar] [CrossRef]
- Daniel, D.E. State-of-the-art: Laboratory hydraulic conductivity tests for saturated soils. In Hydraulic Conductivity and Waste Contaminant Transport in Soil; Daniel, D.E., Trautwein, S.J., Eds.; ASTM International: West Conshohocken, PA, USA, 1994; pp. 111–168. [Google Scholar]
- Cui, Y.J.; Tang, A.M.; Loiseau, C.; Delage, P. Determining the unsaturated hydraulic conductivity of a compacted sand–bentonite mixture under constant-volume and free-swell conditions. Phys. Chem. Earth Parts A B C 2008, 33, S462–S471. [Google Scholar] [CrossRef] [Green Version]
- Schindler, U.; Durner, W.; von Unold, G.; Müller, L. Evaporation method for measuring unsaturated hydraulic properties of soils: Extending the measurement range. Soil Sci. Soc. Am. J. 2010, 74, 1071–1083. [Google Scholar] [CrossRef]
- Tao, G.; Zhu, X.; Cai, J.; Xiao, H.; Chen, Q.; Chen, Y. A fractal approach for predicting unsaturated hydraulic conductivity of deformable clay. Geofluids 2019, 2019, 8013851. [Google Scholar] [CrossRef]
- Pilon, J. Characterization of the Physical and Hydraulic Properties of Peat Impacted by a Temporary Access Road. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2015. [Google Scholar]
- Wanger, M.M.; Fox, G.A.; Wilson, G.V. Pipeflow experiments to quantify pore-water pressure buildup due to pipe clogging. In Proceedings of the 2015 ASABE Annual International Meeting, New Orleans, LA, USA, 26–29 July 2015; p. 1. [Google Scholar]
- Robinson, D.A.; Jones, S.B.; Lebron, I.; Reinsch, S.; Domínguez, M.T.; Smith, A.R.; Jones, D.L.; Marshall, M.R.; Emmett, B.A. Experimental evidence for drought induced alternative stable states of soil moisture. Sci. Rep. 2016, 6, 20018. [Google Scholar] [CrossRef] [PubMed]
- Fontanet, M.; Scudiero, E.; Skaggs, T.H.; Fernandez-Garcia, D.; Ferrer, F.; Rodrigo, G.; Bellvert, J. Dynamic management zones for irrigation scheduling. Agric. Water Manag. 2020, 238, 106207. [Google Scholar] [CrossRef]
- Jackisch, C.; Germer, K.; Graeff, T.; Andrä, I.; Schulz, K.; Schiedung, M.; Haller-Jans, J.; Schneider, J.; Jaquemotte, J.; Helmer, P.; et al. Soil moisture and matric potential–an open field comparison of sensor systems. Earth Syst. Sci. Data 2020, 12, 683–697. [Google Scholar] [CrossRef]
- Wooding, R.A. Steady infiltration from a shallow circular pond. Water Resour. Res. 1968, 4, 1259–1273. [Google Scholar] [CrossRef]
- Smettem, K.R.J.; Clothier, B.E. Measuring unsaturated sorptivity and hydraulic conductivity using multiple disc permeameters. J. Soil Sci. 1989, 40, 563–568. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Elrick, D.E. Determination of hydraulic conductivity using a tension infiltrometer. Soil Sci. Soc. Am. J. 1991, 55, 633–639. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T.; Gribb, M.M.; Hopmans, J.W. Parameter estimation of unsaturated soil hydraulic properties from transient flow processes. Soil Tillage Res. 1998, 47, 27–36. [Google Scholar] [CrossRef]
- Vandervaere, J.P.; Vauclin, M.; Elrick, D.E. Transient flow from tension infiltrometers II. Four methods to determine sorptivity and conductivity. Soil Sci. Soc. Am. J. 2000, 64, 1272–1284. [Google Scholar] [CrossRef]
- Zhang, R. Infiltration models for the disk infiltrometer. Soil Sci. Soc. Am. J. 1997, 61, 1597–1603. [Google Scholar] [CrossRef]
- Schacht, K.; Marschner, B. Treated wastewater irrigation effects on soil hydraulic conductivity and aggregate stability of loamy soils in Israel. J. Hydrol. Hydromech. 2015, 63, 47–54. [Google Scholar] [CrossRef]
- Gadi, V.K.; Tang, Y.R.; Das, A.; Monga, C.; Garg, A.; Berretta, C.; Sahoo, L. Spatial and temporal variation of hydraulic conductivity and vegetation growth in green infrastructures using infiltrometer and visual technique. Catena 2017, 155, 20–29. [Google Scholar] [CrossRef]
- Warrick, A.W. Models for disc infiltrometers. Water Resour. Res. 1992, 28, 1319–1327. [Google Scholar] [CrossRef]
- Haverkamp, R.; Ross, P.J.; Smettem, K.R.J.; Parlange, J.Y. Three-dimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation. Water Resour. Res. 1994, 30, 2931–2935. [Google Scholar] [CrossRef]
- Palomino, A.; Kim, S.; Summit, A.; Frata, D. Impact of diatoms on fabric and chemical stability of diatom-kaolin mixtures. Appl. Clay Sci. 2011, 51, 287. [Google Scholar] [CrossRef]
- Flower, R. Diatomites: Their formation, distribution, and uses. Earth Syst. Environ. Sci. 2013, 2, 501. [Google Scholar]
- Zuluaga, D.A.; Sabogal, D.; Buenaventura, C.A.; Slebi, C.J. Physical and mechanical behavior of fine soil according to the content of multispecies diatoms. J. Phys. Conf. Ser. 2021, 2118, 012011. [Google Scholar] [CrossRef]
- Krumbein, W.C. Measurement and geological significance of shape and roundness of sedimentary particles. J. Sediment. Res. 1941, 11, 64–72. [Google Scholar] [CrossRef]
- Olarte, M.C.; Ruge, J.C.; Rocha de Albuquerque, P.J. Influence of the inclusion of synthetic compounds on the plasticity of kaolinitic clays. Arab. J. Geosci. 2021, 14, 1581. [Google Scholar] [CrossRef]
- DIN 19683-9; Physical Laboratory Investigation, Determination of the Permeability (Hydraulic Conductivity) in Saturated Soil Sample Rings. Beuth Verlag GmbH: Berlin, Germany, 1998.
- DIN 18130; Foundation Ground: Investigation of Soil Samples; Determination of the Hydraulic Conductivity—Part 1. Beuth Verlag GmbH: Berlin, Germany, 1998.
- Klute, A.; Dirksen, C. Hydraulic conductivity and diffusivity: Laboratory methods. Methods Soil Anal. Part 1 Phys. Miner. Methods 1986, 5, 687–734. [Google Scholar]
- Dirksen, C. Soil Physics Measurements; Catena Verlag: Reiskirchen, Germany, 1999. [Google Scholar]
- Zhang, R. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci. Soc. Am. J. 1997, 61, 1024–1030. [Google Scholar] [CrossRef]
- Carsel, R.F.; Parrish, R.S. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res. 1988, 24, 755–769. [Google Scholar] [CrossRef]
- Dane, J.H.; Topp, G.C. Methods of Soil Analysis Part 4—Physical Methods; Soil Science Society of America: Madison, WI, USA, 2002. [Google Scholar]
- Terzaghi, K.; Peck, R.B. Soil Mechanics in Engineering Practice, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1948. [Google Scholar]
- Lambe, T.W.; Lambe, R.V. Soil Mechanics; John Wiley & Sons: New York, NY, USA; MIT: Cambridge, MA, USA, 1991. [Google Scholar]
- Kenney, T.C.; Lau, D.; Ofoegbu, G.I. Permeability of compacted granular materials. Can. Geotech. J. 1984, 21, 726–729. [Google Scholar] [CrossRef]
- Ahmed, A.; Hossain, S. Field Determination of Unsaturated Permeability and Flow Properties through Subgrade Instrumentation. Geosciences 2022, 12, 95. [Google Scholar] [CrossRef]
- Fattah, M.; Mahmood, A.; Nawar, A. Prediction of Coefficient of Permeability of Unsaturated Soil. J. Eng. 2014, 20, 33–48. [Google Scholar]
- Kai, L.; Xu, L.; Stroeven, P.; Shi, C. Water permeability of unsaturated cementitious materials: A review. Constr. Build. Mater. 2021, 302, 124168. [Google Scholar]
- Mualem, Y. Anisotropy of unsaturated soils. Soil Sci. Soc. Am. J. 1984, 48, 505–509. [Google Scholar] [CrossRef]
- Dabney, S.M.; Selim, H.M. Anisotropy of a fragipan soil: Vertical vs. horizontal hydraulic conductivity. Soil Sci. Soc. Am. J. 1987, 51, 3–6. [Google Scholar] [CrossRef]
- Bronswijk, J.J.B. Shrinkage geometry of a heavy clay soil at various stresses. Soil Sci. Soc. Am. J. 1990, 54, 1500–1502. [Google Scholar] [CrossRef]
- Pagliai, M.; Vignozzi, N.; Pellegrini, S. Soil Structure and the effect of management practices. Soil Tillage Res. 2004, 79, 131–143. [Google Scholar] [CrossRef]
- Dörner, J.; Horn, R. Anisotropy of pore functions in structured Stagnic Luvisols in the Weichselian moraine region in N. Germany. J. Plant Nutr. Soil Sci. 2006, 169, 213–220. [Google Scholar] [CrossRef]
- Peng, X.; Horn, R. Anisotropic shrinkage and swelling of some organic and inorganic soils. Eur. J. Soil Sci. 2007, 58, 98–107. [Google Scholar] [CrossRef]
- Peng, X.; Horn, R. Time-dependent, anisotropic pore structure and soil strength in a 10-year period after intensive tractor wheeling under conservation and conventional tillage. J. Plant Nutr. Soil Sci. 2008, 171, 936–944. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, R. Modelling the water retention behaviour of anisotropic soils. J. Hydrol. 2021, 599, 126361. [Google Scholar] [CrossRef]
- Gutierrez, H.; de la Vara, R. Analisis y Diseño de Experimentos, 3rd ed.; McGrawHill: Mexico City, Mexico, 2012. [Google Scholar]
- Nazari, S.; Hassanlourad, E.; Chavoshi, E.; Mirzaii, A. Experimental Investigation of Unsaturated Silt-Sand Soil Permeability. Adv. Civ. Eng. 2018, 2018, 4946956. [Google Scholar] [CrossRef]
- Galvis-Velasco, L.C.; Ruge, J.C.; Galvis-Salamanca, L.C.; Pulgarín-Morales, L.; Bastidas-Martínez, J.G.; Olarte, M.C. Permeability measurement in porous media under unsaturated paths. Dyna 2021, 88, 123–130. [Google Scholar] [CrossRef]
Material | Gs | Loose Unit Weight (g/cm3) |
---|---|---|
Guamo Sand | 2.70 | 1.41 |
Water Permeability Characteristics | |
---|---|
Characteristic | ks (m/s) |
Very highly permeable | >10−2 |
Highly permeable | 10−2–10−4 |
Permeable | 10−4–10−6 * |
Slightly permeable | 10−6–10−8 |
Very weakly permeable | <10−8 |
Hydraulic conductivity | |
Material | ks (m/s) |
Gravel | 10−1–10−2 |
Coarse sand | ≅10−3 |
Medium-grained sand | 10−3–10−4 |
Fine-grained sand | 10−4–10−5 |
Silty sand | 10−5–10−7 |
Silty clay | 10−6–10−9 * |
Clay | <10−9 |
Material | ho (cm) | ||||
---|---|---|---|---|---|
Guamo sand | −1 | −2 | −3 | −4 | −5 |
A | A | A | A | A | |
2.40 | 1.73 | 1.24 | 0.89 | 0.64 | |
Guamo sand + Diat. | 3.89 | 3.91 | 3.93 | 3.95 | 3.98 |
Guamo sand + Fe2O3 | 3.89 | 3.91 | 3.93 | 3.95 | 3.98 |
Guamo sand + CaCO3 | 3.89 | 3.91 | 3.93 | 3.95 | 3.98 |
Material | Sample | Initial Height (cm) | Final Height (cm) | ks (cm/s) | Std. Dev. |
---|---|---|---|---|---|
Guamo Sand + Diatomites | 100% | 160 | 50 | 0.02416 | 0.00481 |
5–95% | 0.02390 | 0.00119 | |||
10–90% | 0.01648 | 0.00062 | |||
20–80% | 0.00916 | 0.00011 | |||
40–60% | 0.00086 | 0.00005 | |||
Guamo Sand + Fe2O3 | 100% | 160 | 50 | 0.02416 | 0.00481 |
5–95% | 0.02192 | 0.00105 | |||
10–90% | 0.01276 | 0.00099 | |||
20–80% | 0.00088 | 0.00006 | |||
40–60% | 0.00009 | 0.000002 | |||
Guamo Sand + CaCO3 | 100% | 160 | 50 | 0.02416 | 0.00481 |
5–95% | 0.01599 | 0.00095 | |||
10–90% | 0.01370 | 0.00092 | |||
20–80% | 0.00043 | 0.00043 | |||
40–60% | 0.00006 | 0.000003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas, J.P.; Ruge, J.C.; Carrillo, G.A. Unsaturated Hydraulic Conductivity in Composite Porous Media. Appl. Sci. 2022, 12, 9058. https://doi.org/10.3390/app12189058
Rojas JP, Ruge JC, Carrillo GA. Unsaturated Hydraulic Conductivity in Composite Porous Media. Applied Sciences. 2022; 12(18):9058. https://doi.org/10.3390/app12189058
Chicago/Turabian StyleRojas, Jhan Piero, Juan Carlos Ruge, and Gustavo Adolfo Carrillo. 2022. "Unsaturated Hydraulic Conductivity in Composite Porous Media" Applied Sciences 12, no. 18: 9058. https://doi.org/10.3390/app12189058
APA StyleRojas, J. P., Ruge, J. C., & Carrillo, G. A. (2022). Unsaturated Hydraulic Conductivity in Composite Porous Media. Applied Sciences, 12(18), 9058. https://doi.org/10.3390/app12189058