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Featured Application: In this work, Vector Autoregressive and Recurrent Neural Network algo-
rithms are used to predict time-space evolution of a saline water plume in homogeneous and
real aquifers.

Abstract: In this paper, an integrated workflow aimed at optimizing aquifer monitoring and man-
agement through time-lapse Electric Resistivity Tomography (TL-ERT) combined with a suite of
predictive algorithms is discussed. First, the theoretical background of this approach is described.
Then, the proposed approach is applied to real geoelectric datasets recorded through experiments
at different spatial and temporal scales. These include a sequence of cross-hole resistivity surveys
aimed at monitoring a tracer diffusion in a real aquifer as well as in a laboratory experimental set.
Multiple predictive methods were applied to both datasets, including Vector Autoregressive (VAR)
and Recurrent Neural Network (RNN) algorithms, over the entire sequence of ERT monitor surveys.
In both field and lab experiments, the goal was to retrieve a determined number of “predicted”
pseudo sections of apparent resistivity values. By inverting both real and predicted datasets, it is
possible to define a dynamic model of time-space evolution of the water plume contaminated by a
tracer injected into the aquifer system(s). This approach allowed for describing the complex fluid
displacement over time conditioned by the hydraulic properties of the aquifer itself.

Keywords: multi temporal geophysics; cross-hole geoelectrical measurements; Vector Autoregressive
algorithms; Recurrent Neural Networks; aquifer monitoring

1. Introduction

In the recent centuries, climate change-related phenomena and the rapid increase in
population have dramatically increased the exploitation of freshwater resources causing
deterioration in groundwater quality and raising the probability of severe droughts. There-
fore, the demand for better information on groundwater quantity and quality trends and
how best to equitably manage them is growing worldwide [1-3]. However, these trends
consist of an integrated response to several climatic, anthropogenic, and hydrogeological
factors and their interactions, which makes prediction both for the short and long term a
challenging task.

Natural geological systems exhibit a large spatial variability of hydrogeological prop-
erties over a wide range of scales. Numerical modelling is often performed to gain an
understanding of the hydraulic nature of the aquifer and to predict contaminant trans-
port; these models require spatial distributions of hydraulic properties as inputs [4]. It is
typically not feasible to describe the hydraulic properties over the entire flow domain at
the resolution needed for accurate flow modelling using conventional hydraulic property

Appl. Sci. 2022,12,9121. https:/ /doi.org/10.3390/app12189121

https://www.mdpi.com/journal/applsci


https://doi.org/10.3390/app12189121
https://doi.org/10.3390/app12189121
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4671-9438
https://orcid.org/0000-0002-8594-9455
https://orcid.org/0000-0003-0716-4318
https://doi.org/10.3390/app12189121
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12189121?type=check_update&version=2

Appl. Sci. 2022,12,9121

2 of 20

measurement techniques alone [5,6]. The ability to describe adequately these properties is
strongly dependent on the availability and distribution of field measurements correlated
with the hydrological heterogeneities [7].

The need for a comprehensive understanding of fluid transport behavior, such as flow
pathways, flow velocity, and hydraulic conductivity in heterogeneous aquifers, has driven
improvements of near-surface geophysical methods able to provide densely spatial and
temporal knowledge about these subsurface properties [8-11]. Among others, the direct
current (DC) method is probably the most widely used near-surface geophysical techniques
for these scopes because subsurface electrical resistivity properties are correlated to physical,
chemical, and lithologic properties of subsoil (e.g., saturation and salinity of fluids within
the pore space, porosity, and clay content). Furthermore, measurement techniques are
highly scalable, allowing for investigations at depths to tens of centimeters to hundreds of
meters [12,13].

In the last two decades, the DC electrical resistivity method has evolved significantly
through the introduction of cross-hole electrical resistivity tomography (CH-ERT) [14]
and 3D or 4D monitoring by time-lapse surveys as well as permanent measurement sys-
tems [15-19]. Nowadays, CH-ERT, combined with time-lapse surveys, has become very
common in environmental investigations to quantify the hydraulic parameters and to
obtain information on the spatial variability of solute transport processes allowing for
better deep resolution and anisotropy detection compared to surface measurements [20,21].

This type of survey commonly produces large volumes of data in the form of time
series, representing how resistivity distribution changes in the subsoil over time. These
variations can be correlated to various possible causes, such as water injection/production,
pollution diffusion, and so forth [22-24].

If a sufficiently large historical database is available, it is possible to make probabilistic
predictions about future resistivity changes by applying statistical and predictive algorithms
to time-lapse ERT data. So, the total knowledge acquired about past, current, and predicted
fluid displacement, contaminant diffusion, and aquifer hydraulic properties can be used to
define an optimal policy of aquifer management.

In general, the main objective of time series analysis is to extract meaningful character-
istics and statistical information from data organized in chronological order for different
purposes, such as analysis of past behavior, prediction, and forecasting of future trends,
curve fitting, interpolation and extrapolation, classification and clustering, segmentation
and decomposition, frequency characterization, etc. [25]. There are numerous types of
data analysis approaches available for time series that are suitable for understanding and
forecasting patterns of one or more crucial variables that characterize dynamic systems.
Among the others, univariate and multivariate analysis approaches and Deep Neural
Networks have proven to be very useful for the scope [4,7,26,27]. The various methods
show different effectiveness depending on their application to univariate or multivariate
time series. A univariate time series is a data series with a single time-dependent variable.
On the contrary, in multivariate time series each variable depends both on its past values
and, to some extent, also on other variables. That dependency can be used for improving
the forecasting of future values and trends [28].

In detail, the Recurrent Neural Networks (RNN), like the other artificial neural net-
works, utilize training data to learn, with the final objective to find the “optimal” weight
matrixes that allow for minimizing the misfit between the actual and predicted output.
However, RNN's distinctive characteristic consists in their “memory” capability: this con-
sists of their ability to take information from prior inputs to influence both current input
and output. In fact, in traditional neural networks, all inputs are assumed independent
from the outputs; instead, in RNNSs, it is assumed that there is some significant correlation
between input and output. In detail, the RNNs structure includes a “time delay unit” and a
“feedback connection” to use information from a previous state for inferring a model in
the subsequent state. This allows for a wide range of applications to the predictive analy-
sis of many types of time series, including natural language analysis, image captioning,
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speech and handwriting recognition, text summarization, text generation, word prediction,
stock market prediction, call center data analysis, sentiment analysis, face detection, image
recognition, and so forth [29]. For instance, RNN’s outperform traditional models in some
hydrogeological applications, such as groundwater level and quality prediction [30,31].

In general, statistical and artificial neural networks have been successful applied to
data series in near surface geophysics over multiple monitor surveys [32-34] and have
produced consistent results when applied to time-lapse resistivity survey addressed to
optimizing oil production and CO; geological storage and predicting the future behavior
of soils in slopes [35-37]. However, only one example of RNN application to near surface
geophysical data forecasting is reported in literature by Alali et al. [38], who used RNN to
produce synthetic time-lapse seismic data.

In this study, statistical and deep learning algorithms were tested to predict saline
plume migration in two porous aquifers using cross-hole geoelectrical datasets recorded
through experiments at different spatial and temporal scales (a real aquifer and a laboratory
experimental set-up). In detail, the Vector Auto Regressive (VAR) method and Recurrent
Neural Networks (RNN) were selected. As the other types of time series, the multi temporal
CH-ERT datasets acquired in the field and laboratory experiments produced a large volume
of data that are very suitable for statistical-based approaches and RNN's application.
Because of resistivity changes over time in the subsoil due to a fluid movement, high spatial
correlation between electrical resistivity measurements taken along the same layout can
be reasonably expected. For this reason, these time-lapse datasets represent a multivariate
time series.

The following sections describe how to apply both VAR and RNN methods with the fi-
nal goal to retrieve a multivariate forecast model of the aquifers and of fluids displacements
over time.

2. Background Theory

This section briefly describes the basic principles of DC electrical method and the
fundamentals of the two categories of predictive methods used: statistical-based approaches
and Recurrent Neural Networks.

2.1. DC Electrical Method

As shown in Figure 1, the DC electrical method consists in injecting a current (I4p,
Ampere) into the subsoil by using two current electrodes A and B and to measure the
potential difference (AVyn, Volt) through two other electrodes M and N on the ground
surface. The resistance of the material (R, Q2) through which the current flows can be
obtained by:

AVmN = IaBR. (1)

R depends on electrical resistivity distribution of the subsoil (p,, (dm) and the configu-
ration of electrodes, according to:
Pa = KgR ()

where K, (m) is called geometric factor; it depends on electrodes geometry (array) and can
be calculated by:

1 11, 1\
K, =2 —_— -+ = . 3
g 7T[(AM BM AN+BN>} @)
For inhomogeneous and anisotropic media, p, is called apparent resistivity and is
defined as the ratio between the measured value of the parameter in question and its
theoretical value in a homogeneous and isotropic medium of unit resistivity [39]. Therefore,

in real cases, inverse methods must be applied to turn from the apparent resistivity to the
true spatial distribution of this parameter.
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Figure 1. (a) Pseudo section setting for ERT acquisition with Dipole Dipole (DD) array, (b) cross
borehole, and (c) cross borehole with surface. A, B, M, and N are electrodes. D is borehole depth; S is
borehole separation. D/S > 1.5. Adapted from [14].

Lateral and vertical resistivity variation of the subsoil can be determined by moving
current (AB) and receiving dipoles (MN) on the soil surface. This is called electrical
resistivity tomography (ERT) and the sequence of four electrodes A, B, M and N is defined
as quadrupoles.

In order to increase resolution at depth, Shima [40] and Zhou and Greenhalgh [41]
introduced the cross-hole electrical resistivity tomography (CH-ERT). In this case, plate or
cylindrical electrodes are installed along two or more boreholes in contact with the host
soils/rocks or with the formation fluid (Figure 1b). CH-ERT allows to identify lateral and
vertical resistivity variations in the area between two or more boreholes; however, the ratio
between boreholes depth and separation should be >1.5 otherwise sensitivity is reduced
(Figure 1c).

2.2. Predictive Methods
2.2.1. Statistical Approaches

A relatively simple statistical approach for time series analysis is known as Exponential
Smoothing. This is based on a weighted sum of past observations and applies an expo-
nentially decreasing weight for past observations [42]. Several variants of this approach
exist. The simplest one is called Single Exponential Smoothing (SES, for short). This is
effective for univariate data that do not show neither significant trends nor seasonality. A
more complex approach is the Double Exponential Smoothing method that includes the
information about trends in the data. Triple Exponential Smoothing is a further extension of
the previous approaches. It considers the seasonality eventually presents in the time series.

In case datasets are characterized by variables that show a significant reciprocal corre-
lation, methods based on multivariate analysis (MVA) are used [43—45]. This correlation
can be exploited for forecasting future values of one or more variables. Such a mutual
dependency is often a crucial feature of multiple geophysical measurements used for
characterizing dynamic geological models.

Between the various approaches for multivariate time series forecasting, it is possible
to applied Vector Auto Regression (VAR) method where each variable is considered a linear
function of the past values of itself and the past values of all the other variables [46].
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Considering the simplest case in which there are only two correlated variables, y; and
Y2, it is possible to forecast the values of these two variables at the future time ¢, using
the data recorded for past n values. Furthermore, assuming the correlation between the
two variables, the past value of both y; and y, will be used.

Formally, in case just one set of past measurements (n = 1) is available, the following
relationships can be written:

Y1, =C1+ P11,1 Yie—1 + P12,1 Yo,i—1 + €1t 4)

Yo =Cot Pa11 Yii—1 + P21 Yoi—1 + €24, 5)

where e;; and e, ; are white noise processes that may be contemporaneously correlated.
The symbols c¢; and c; are constants serving as the intercepts of the model.

The coefficient ¢;; o represents the influence of the £y, lag of variable y; on itself. Instead,
the coefficient ¢;; , represents the influence of the ¢y, lag of variable y; on y;, where “lag”
represents a fixed amount of passing time [47].

Equations (4) and (5) just state that each individual variable is using the past values of
every variable to make the predictions, based on the assumption of significant correlation
between these variables. This approach is useful for describing the dynamic behavior of
the data and allows for improving the forecast model.

2.2.2. Recurrent Neural Networks

A different approach for time series forecasting is through Recurrent Neural Network
(RNN). It represents a class of artificial neural networks characterized by the connection
between the nodes along a temporal sequence. This allows for exhibiting temporal dynamic
behavior. In detail, RNN’s can use an “internal memory state” to process variable-length
sequences of inputs in order to predict probabilistic future trends in the data [48].

The simplest RNN consists of just three layers: one input layer with d input neurons,
one hidden layer with ¢ hidden neurons, and one output layer with g output neurons (see
Figure 2). At each time point t, the network includes three matrices of weight, Wy,, Wy,
and Wy, that connect, the input to hidden layer, recurrent hidden layer to hidden layer
itself, and hidden layer to output, respectively. The hidden layer captures information
about what happened in the previous time step. It can be considered as the “memory” of
the network.

’ y = Output layer |

Who

h = Hidden layer <& —
A Whh

Wi

’ x= Input layer |

o] [x]

Figure 2. Schematic and simplified structure of an RNN.

In order to determine how well the RNN predicts the output during the training
phase, a Loss function (L;) is computed that includes the differences between predicted and
actual output (y; and v't, respectively) at each iteration. At each time step, L; is given by
cross-entropy, defined as follows:

Ly = -y log(v/')) (6)
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The final Loss is the sum of the loss at all steps. For instance, in case of T steps (and T
layers, as in Figure 2), the final Loss is:
T
L= i1 L 7)
The Loss function is minimized by finding the optimal weights for all the nodes
forming out the RNN. For instance, the gradient descent algorithm can be applied for
determining the optimal weights matrixes. According with that algorithm, the rule for
updating the weights is:
oL

Here, W indicates, generically, each one of the weights matrixes defined above (Wj,,
Wy, and Wy,). The parameter « is called “learning rate”. It scales the gradient and thus
controls the step size. When the gradient of the Loss function is calculated with respect
to the weight matrixes, generally it is possible to incur in the well-known problem of the
vanishing gradient. In fact, when the RNN is formed by many neural layers, there is the risk
that the gradient tends to become smaller and smaller at each derivative step. Consequently,
since the gradient tends to vanish over time, the network cannot learn properly about
long-term time information kept in memory. This is a typical problem in all the types of
deep neural networks formed by many hidden layers, and not exclusively in RNNs. In
order to face that problem, a variant of RNN called “Long-Short Term Memory” (LSTM)
algorithm can be used [49-51]. This allows for the network to include both short-term and
long-term dependencies at a given time from many time steps before the current time and
can solve the vanishing gradient problem effectively. A typical LSTM cell consists of three
special “gates” called, respectively, the input gate, forget gate, and output gate. These allow
for deciding what information must be included or excluded from the network memory
and used for calculating the output. In other words, the effectiveness of the network is
guaranteed by selecting the length of the sequence of historical data to be used as “memory
information”. The LSTM network is designed to keep information in the memory only if
required. The input gate is responsible for selecting the part of information that must be
stored in memory and used for calculating the output. Instead, the forget gate is responsible
for deciding what information is not relevant for calculating the output and should be
excluded from the output computation. Finally, the output gate is set for selecting what
information must be shown at each time step. It determines the value of the next hidden
state that contains information on previous inputs, that is, the output gate determines what
output (next Hidden State) to generate from the current Internal Cell State [52-54].

3. Datasets

For the present study, time series of subsoil electrical resistivity data ((dm) variations
have been obtained from geophysical monitoring experiments in a test site and in laboratory.
The data coming from the test site were already published in a previous experiment
obtained through a collaboration between the Department of Environmental Engineering
of the University of Calabria and CNR-IMAA [55-58]. Anyway, all the data were re-
elaborated with a new inversion approach described below.

In both cases, electrical resistivity variations are due to the introduction, into the
studied aquifers, of electrically conductive fluids (saline solutions at the concentration
of 100 g/L) in order to enhance resistivity contrasts. The full description of the exper-
imental set-up and the procedure to obtain subsoil resistivity data is provided in the
following sections.

3.1. Real Scale Field Dataset

The field dataset was acquired to better characterize the groundwater system of the
Montalto Uffugo test site [55,59-61]. From a hydrogeological point of view, the test site can
be divided in four formations (Figure 3a): a shallow phreatic aquifer (formation A) to a
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depth of 7 m; a shale layer from 7 to 11 m (formation B); the main confined aquifer, from
11 to 55 m, which is composed by silty sands alternated to conglomerate and clay lenses
(formation C); and the shale substratum (formation D).
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Figure 3. (a) Tracer test at Montalto Uffugo test site: (Formation A) shallow aquifer; (Formation B)
shale; (Formation C) main aquifer, silty sands alternated to conglomerate and clay lenses; (Formation
D) shale. B1-11 are boreholes. P1-2 are piezometers for CH-ERT. (b) Pre-tracer test resistivity model
and B11 stratigraphic log (from 41, modified); (c) water electrical conductivity (normalized at 20 °C)
monitored in P1 at the depth of 40 m; (d) water electrical conductivity (normalized at 20 °C) logs
measured 20 days after the salt injection (19 July), in boreholes B5 and P2. Adapted from [55].

The Montalto Uffugo system is monitored by 11 boreholes (B1-11), and two new PVC
piezometers (P1 and P2 in Figure 3) were instrumented for CH-ERT measurements. For the
confined aquifer, the water table is approximately at —6 m and hydraulic conductivity is in
the order of 10> ms~1 [55].

A tracer test experiment was carried out at the site by the injection of 400 L of saltwater
solution (concentration C = 100 g/L of NaCl) into the confined aquifer C through the
borehole Bl (Figure 3). At the same time, to create a water flux longitudinal compared
to piezometers P1-P2, 1 L/s of water was pumped in B9. The entire test lasted about
27 days and was stopped before the salt tracer could reach P2, due to the rupture of the
pump. The tracer test was monitored by temperature and electrical conductivity of water
in the piezometer P1, B5, and P2. In addition, CH-ERT monitoring based on time-lapse
geoelectrical survey was carried out [56-58].

A number of 48 steel circular electrodes installed along P1 and P2 were used to perform
the CH-ERT measurements within 6-52 m in depth. A total of 87 CH-ERTs (3 at days)
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with 1836 measurements for each CH-ERT were taken with reciprocal configuration for
errors assessment. Electrical resistivity data were acquired using a dipole-dipole array
with injection current dipole and receiver dipole located in different boreholes [56-58].
Figure 3b shows the starting resistivity model acquired two days before the tracer
test and inverted using ResIPy software [62,63]. The area under investigation was parame-
terized using a node-centered, 2D, quadrilateral mesh made by 30 x 66 square elements,
covering a region of 128 m x 221 m to account for current flow towards infinite boundaries.

3.2. Small-Scale Laboratory Dataset

The laboratory dataset was acquired during a controlled experiment at Hydrogeosite
Laboratory of CNR-IMAA. The aim was to image salt plume migration under almost
natural gradient conditions by means of cross-hole electrical resistivity monitoring for
quantifying hydraulic conductivity and transport parameters of a homogeneous porous
aquifer [64,65].

The simulated phreatic aquifer consists of 1 m® of homogeneous silica sand (95% SiO,)
characterized by an average diameter equal to 0.09 mm (very fine sand), porosity of about
45-50%, and hydraulic conductivity in the order of 1072 ms~! [66]. An external hydraulic
system was used to impose a constant hydraulic gradient during all the experiment while
contamination occurs by continuously injecting 10 liters of salt water (NaCl solution with
a concentration of 100 g/L) for 10 days. The source of contamination was at —0.15 m of
depth (Figure 4).

Section 1 Section 2
Source of
contamination
- i 370 ”.
4

o Phreati level
ol —_—t "1 - 2|1
ol o
& &

Inlet o

© (o]

Figure 4. Laboratory experimental set-up. A-F are the piezometers instrumented for CH-ERT.
Distances are in cm. Modified from [65].

The geophysical system used to monitor the plume migration consisted of six piezome-
ters (A-F in Figure 4) instrumented for CH-ERT as shown in Figure 4. In detail, 12 steel
electrodes (plate of 0.5 cm) were installed along the six piezometers and used to perform
the 2D cross-borehole resistivity measures within —0.1-—0.65 m in depth. In addition, pH,
Eh, temperature, and electrical conductivity of water were monitored for 31 days both in
the piezometer A and at the outlet [64,65].

The entire geophysical dataset consists of 210 CH-ERTs with 504 measurements with
reciprocal for errors assessment. Recurrent Neural Networks (RNN) were applied to time-
lapse geoelectrical measurements for predicting the displacement of the contaminant over
time in the small-scale laboratory experimental setup. In this work only measurements
between piezometers C and D (transversal section respect to the plume migration) were
considered. In detail, the first 15 daily surveys as the historical dataset (7560 data) were
used for training the recurrent network. Then, the data belonging to the remaining five
sets of measurements (2520 data) were used as “test data” for checking the predictive
capabilities of implemented RNN. Figure 5 shows a subset of data (in terms of apparent
resistivity) taken at several measurement points.
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Figure 5. Subset of data (in terms of apparent resistivity) taken at several measurement points, in the
set-up of Figure 4, over 20 time steps. Q is quadrupole.

4. Results

In this study, Vector Autoregressive (VAR) and Recurrent Neural Network were
applied to TL-ERT measurements for the forecast of the displacement of a salt tracer and a
contaminant plume over time in porous aquifers. As described in Section 3, two datasets
were considered for the performance analysis of the aforementioned forecasting algorithms:
a small-scale laboratory and a real scale field experimental setup.

For our computations and tests, we used a proprietary workflow based on Python
libraries including Tensorflow. Among the many libraries available in the public domain,
we used Keras, which represents an effective package for applying Recurrent Neural
Networks to many types of time series. Keras is a deep learning Application Programming
Interface (API) written in Python (version 3), running on top of the machine-learning
platform TensorFlow mentioned above. For data analysis and result plotting, we used
libraries fully available in the public domain like Pandas, Numpy, and Matplotlib.

Table 1 gives a summary of the apparent electrical resistivity dataset considered for
analysis in the present manuscript.

Table 1. Description of the two datasets used in the present manuscript for testing Vector Autoregres-
sive (VAR) and Recurrent Neural Network algorithms (RNN).

Electrical Resistivity Dataset Number of Surveys in Training Data Number of Surveys in Test Data
Field d 2-20 CH-ERT 5 CH-ERT
leld data (1836 data each) (1836 data each)
Laboratory data 2-20 CH-ERT 5 CH-ERT
y (504 data each) (504 data each)

Cross-hole electrical resistivity tomography (CH-ERT).

4.1. Application of VAR and RNN Methods to Field Dataset

This first example shows the predictive results when the Vector Autoregressive (VAR)
and Recurrent Neural Network (RNN) methods are applied to multi temporal CH-ERT
field dataset described in Section 3.1. The objective was to predict the displacement of the
saline tracer if the pump had not broken.

As described in Section 2.2.1, VAR is a statistical multivariate forecasting algorithm that
is used when two or more time series influence each other. Typical examples of multivariate
time series are time-lapse electric resistivity measurements. These are used for retrieving
models of the resistivity distribution that change over time for some geological reason.
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To retrieve a defined number of “predicted” pseudo sections of apparent resistivity
values, firstly the VAR algorithm was applied to the data recorded over a sequence of
18 daily CH-ERT surveys (33,048 data). Then, the data belonging to five sets of measure-
ments (9180 data) were used as “test data” for checking the predictive capabilities of the
VAR algorithm.

In detail, the procedure for testing the VAR method is done as follows: First, the corre-
lated historical data were used for creating a model of future trends of electric properties
(such as apparent resistivity as well as resistances) over time, for each measurement point
by applying Equations (4) and (5). Next, such predicted measurements were inverted for
retrieving predicted resistivity models. The test data and models (effectively observed)
were used for comparing predicted and true resistivity distributions.

Table 2 shows an example of a subset of experimental data (resistances measured at
10 quadrupoles) and the corresponding prediction for five future steps.

Table 2. Experimental measurements and corresponding predictions using Vector Autoregressive
(VAR) statistical method.

Sequential ERT Surveys

Resistance at the Various Quadrupoles (Q2)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

STEP 10 1.76 19.16 8.80 1.65 12.03 14.33 16.15 13.40 19.71 8.88
STEP 11 1.68 19.21 8.46 3.59 9.63 13.15 15.29 12.93 19.13 9.16
STEP 12 1.74 19.13 8.46 3.09 10.06 13.33 15.60 13.20 19.66 9.37
STEP 13 2.04 18.87 9.33 1.08 9.64 12.81 15.66 13.37 20.80 10.33
STEP 14 1.66 19.07 8.47 3.17 10.78 13.17 15.32 12.75 19.46 9.25
STEP 15 1.77 19.02 8.50 3.24 10-08 12.94 15.18 12.81 19.65 9.11
STEP 16 1.92 18.90 8.40 2.95 10.79 13.19 15.29 12.66 19.42 9.39
STEP 17 1.83 19.12 9.69 1.15 9.24 12.72 16.72 14.35 21.21 11.87
STEP 18 1.84 18.29 7.29 0.22 11.95 16.95 15.46 15.47 19.09 12.43
Sequential Predictions Predicted resistance at the Various Quadrupoles (£2)
PRED 1 1.85 18.80 8.47 1.38 10.95 14.07 15.80 14.12 20.05 11.10
PRED 2 1.86 18.77 8.47 1.25 11.04 14.12 15.84 14.19 20.09 11.24
PRED 3 1.87 18.75 8.47 1.12 11.12 14.18 15.88 14.27 20.13 11.37
PRED 4 1.88 18.72 8.47 0.99 11.21 14.24 15.92 14.35 20.17 11.50
PRED 5 1.89 18.69 8.47 0.88 11.29 14.30 15.96 14.43 20.22 11.63

Electrical resistivity tomography (CH-ERT), prediction (PRED), quadrupole (Q).

Furthermore, RNN was tested to the same dataset. Like in the VAR method, the crucial
step consists of creating a predictive model using historical data. In this case, a Recurrent
Neural Network was used with an architecture similar to the one shown in Figure 2. As
explained in the Section 2.2.2, a Long-Short Term Memory (LSTM) algorithm is used for
retrieving a multivariate predictive function from various sequences of correlated historical
data. For that purpose, different numbers of monitoring surveys were tested (ranging from
2 to 20, 1 per day), in order to compare various predictive models. Since the electrical
measurements taken at adjacent electrodes are strongly correlated, it is possible to assume
that a number between 10 and 20 monitor surveys should be sufficient for building an
effective historical dataset for Recurrent Neural Network application.

In general, the performance of the prediction can be assessed by estimating the av-
erage forecast error on known data. What is done is to verify how far the forecast of the
observations is wrong for known observations, assuming that they are not known to the
predictive algorithm.

As an example, Figure 6 shows a chart of predictions (predicted future) vs. obser-
vations (true future) for a given quadrupole (Q1). The red and blue dots represent the
normalized resistance values (ordinate axis) for a single measurement quadrupole, for
various time steps (abscissa axis). In detail, 10 historical surveys were proved to be the right
compromise between prediction reliability and number of surveys in test data. The Figure 6
shows that four out of five forecasts are excellent (error of about 1-2%). One of the values



Appl. Sci. 2022,12,9121

11 of 20

Normalized potentials (data — data_mean)/std

2.1
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1.9
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(at the third time step in the “future”) shows much less prediction accuracy (outlier?). The
same graph is calculated for each quadrupole. For this dataset, the prediction uncertainties
range between £1% and +5%.

—— History [ ]
®  “True” future
®  Predicted future
3
[ ] °
L ]
®
®
o
-8 -6 -4 -2 0 2 4

Figure 6. Chart of four predictions (predicted future) vs. observations (“true” future) for a single
quadrupole (Q1—field data). Remark: time step “0” corresponds to the first prediction time step. The
training dataset consists of 10 time steps.

In general, predictions retrieved by Recurrent Neural Network result are very con-
sistent with the predictions shown in Table 2. The reason for this consistency probably
arises in the fact that both the VAR and Neural Network methods are based on the same
multivariate approach of data analysis. However, the principal advantage of RNN over
VAR is that RNN can model a sequence of records so that each pattern can be assumed to be
dependent on previous ones. In particular, LSTM allows for properly selecting the fraction
of previous events to consider. This approach allows for properly managing complex
historical datasets, improving the reliability of the predictive model(s) [67].

4.2. Application of RNN to Laboratory Dataset

In this second example, prevision capabilities of RNN were tested to multi temporal
CH-ERT laboratory dataset described in Section 3.2. In this case, the procedure for training
and testing of the RNN is similar to the one described in the previous paragraph.

Figure 7a,b shows two examples of predictions at two correspondent measurements
points (quadrupoles 1 and 3). The lowest panel (Figure 7c) shows an example of the
Loss function trend over 40 epochs (iterations of the ML model) in the training and
validation process.

In detail, the training loss is a metric used to assess how the machine-learning (ML)
model fits the training data and it represents the error (normalized or expressed in %) of
the model on the training set. The validation loss is a metric used to assess the performance
of a machine-learning model on the validation set. This is a portion of the dataset used to
validate the performance of the ML model.

The effectiveness of the training can be appreciated by looking at the continuous
decrease of the Loos function and the correspondent good match between predicted and
true future measurements at each quadrupole.

In this case, 13 historical surveys were proved to be the right compromise between
prediction reliability and number of surveys in test data. The prediction uncertainties
ranged between £1% and £+3%.
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Figure 7. (a,b) Examples of RNN's predictions (normalized electrical potentials vs. time); (c) Loss
function convergence trend (bottom-right panel). The training dataset consists of 13 time steps.
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5. Discussion

Incorporation of two- and three-dimensional densely sampled geophysical data with
conventional hydrological data increases the amount of data available for the hydroge-
ological system characterization, and thus has the potential to significantly improve the
estimates of hydraulic properties and their spatial correlation over those estimates obtained
from borehole data alone, as well as to provide this information at the relevant spatial
scale [8,68]. Therefore, predicting the evolution of the geoelectrical response associated
with fluids/contaminant displacements is extremely useful for defining an optimal aquifer
management policy; modelling is indispensable to understand past and present conditions
and for predicting and managing the future states of groundwater processes.

5.1. Field Experiment: Prediction of Saline Tracer Displacement

Acquired and “predicted” datasets were inverted with the open source ResIPy soft-
ware package [62] and the “pyres” Python wrapper package, which allows for creating a
flexible user interface for modelling and inversion of ERT datasets using the NumPy, SciPy,
and Matplotlib Python packages [62,63]. In particular, the time-lapse inversion strategy
used was difference inversion, after LaBrecque and Yang [69], because small changes of
conductivity are better resolved, as in this experimental case, and high-quality images with
fewer artefacts are produced.

In detail, the resistivity obtained by the inversion of background data (10 July) serves as
the a priori model in the difference inversion. There are several advantages to this method.
First, convergence is fast since the inverse routine needs only to find small perturbations
about a good initial guess. Second, systematic errors, such as those due to errors in field
configuration and discretization errors in the forward modelling algorithm, tend to be
cancelled [69].

Then, CH-ERT imaging of tracer transport is best presented using images of resistivity
change (%) relative to the pre-tracer condition according to the following;:

(%) = ["*;0"0} x 100 )

where 0% indicates no change between datasets, whereas negative values indicate an
electrical resistivity decrease.

Images of electrical resistivity changes between —30 and —42 m (Figure 8) allow us
to delineate salt plume evolution: they show evidence for a prevalent transport pathway
under 30 m depth. Moreover, statistical predicted datasets seem to predict the tracer
phenomenon well in the real aquifer studied here.

5.2. Laboratory Experiment: Prediction of Contamination Evolution

Predicted apparent electrical resistivity values were inverted using the open-source
software ResIPy for retrieving correspondent predicted resistivity sections [62]. The area un-
der investigation was discretized using a node-centered, 2D, triangular mesh and dividing
the area into two regions: the outer one, characterized by fixed very high resistivity values
to account for tank finite boundaries; and the inner region for the sand body, characterized
by a starting resistivity of 100 Qm.

Figure 9a shows the starting resistivity model before the salt solution injection. The
measured resistivity values range between 1 and 50 (Om. Higher values are probably
associated to noisy electrodes. In Figure 9b, CH-ERT imaging following the solution
injection are presented as resistivity change (%) relative to the pre-tracer condition (0% for
no change between datasets, negative values for electrical resistivity decrease). Moreover,
an example of a predicted resistivity model is shown retrieved from the previous “historical
data” used for training the network.
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Figure 8. (a) Some images of resistivity variation (d, %) after tracer injection. Black dots are electrodes,
and P1, P2, and B5 are piezometers; (b) electrical resistivity variation (d, %) curves along the
piezometers P1, B5, and P2 from the CH-ERT dataset. Values at days 29 and 31 were estimated from
CH-ERT predicted datasets.
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Figure 9. (a) True resistivity model obtained using ResIPy software of pre contamination condition;
(b) images of resistivity variation (d, %) after salt solution injection. Black dots are electrodes, C and
D are piezometers.

Electrical resistivity method is an effective tool to determine the Total Dissolved
Solids (TDS) concentration if electrical resistivity of the formation and porosity are known.
The possibility to correlate TDS with electrical resistivity is showed by Archie [70], who
proposed an empirical relationship between formation electrical resistivity (o;, (dm) and
pore water electrical resistivity (0w, (dm) according to the following equation:

pp =ag "S "py (10)

where g is the pore geometry coefficient (usually a = 1), ¢ is the porosity, m is the cementation
factor (dimensionless, 1.14 < m < 2.9 [71]), S is the saturation degree, and # is the saturation
exponent [72].
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In fully saturated conditions (S = 1), this equation can be rearranging introducing the
formation factor F defined as: 4
F=2 _ P (11)
(PT}’[ pw
Assuming for the simulated sandy aquifer a constant value for F (homogenous sand),
it is possible to define the saturation degree as:

—n Po

S ouF" (12)
The electrical conductivity of groundwater (normalized to 25 °C) is directly related to
the TDS based on the assumption that TDS in the water consist mainly of ionic constituents
that conduct electricity [73]. In detail, the correlation of TDS and solution electrical con-
ductivity (0 in S/m = 1/p) at the specified temperature T = 25 °C can be estimated by the

following equation:
TDS = keo (13)

where k. will increase along with the increase of ions in water TDS is expressed in g/L and
o in mS/cm. Therefore, considering k, = 0.7 (saline water with ¢ from 1 till 45 mS/cm [74]),
TDS (g/L) in the saturated zone can be obtained with the relation:

—n
TDS = 7% f) . (14)
b

For the studied case, p;, ((2m) was obtained by CH-ERT monitoring, porosity was 0.45,
m =1.14, and n =1.5 [64,65], while saturation degree in the vadose zone was estimated by
numerical models [66].

Figure 10 shows the 3D representation of TDS > 10 g/L allowing us to delineate the
salt plume evolution under 30 cm depth at 10, 18, and 24 days after the NaCl solution
injection. TDS values at day 24 were estimated from CH-ERT predicted datasets.

Day 10 Day 18

Day 24

V.=23.1dm?3 V.=28.8dm3 V=21.3dm3

Figure 10. In red is the 3D distribution of TDS > 10 g/L obtained from predicted CH-ERT. A-F are
piezometers, V. is the contaminated volume. TDS values at day 24 were estimated from CH-ERT
predicted datasets. The 3D distribution was obtained with Paraview software (version 5.6.0, Kitware,
Sandia National Labs, Los Alamos nat. lab., ASC and ARL, https://www.paraview.org/, accessed on
13 June 2022).

6. Summary of Results
In detail, the following are the most relevant results of the proposed approach:

- Inthe field experiment, based on multiple monitor geoelectrical surveys in cross-hole
configuration, multiple resistivity models changing over a period of 28 days of the

tracer test were defined;
- Avariational statistical method was applied for predicting electrical resistivity variations;
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- Transport characteristics of the studied aquifer were evaluated through both measured
and predicted electrical resistivity data;

- This predictive approach can be applied for defining optimal aquifer management policy;

- Inthelab experiment, Recurrent Neural Networks to retrieve a Multivariate LSTM
Forecast Dynamic Model of the tracer displacements over time were applied;

- The predictions obtained through RNN are fully consistent with the evolution of the
experimental system effectively observed, confirming the effectiveness of such a type
of approach applied to predictive analysis of hydrogeological time-series;

- The predictions are based on the history path of electric potentials recorded through
multiple surveys including thousands of measurement points.

7. Conclusions

Different statistical and machine-learning algorithms are commonly applied in various
fields (such as in financial studies as well as in climatology, and so forth) to predict the future
behavior of complex dynamic systems. However, no works are reported in the literature
on their use for multi temporal geophysical data forecasting in near-surface applications.

In this work, both variational methods (VAR) and machine-learning algorithms (Re-
current Neural Networks) were tested for predicting the values of cross-hole electrical
resistivity data, taking in account measurements recorded during a tracer test monitoring
experiments performed, respectively, during a previous work on a heterogeneous aquifer
in the south of Italy [55] and in a new controlled laboratory experiment. The aim was
to predict the geoelectrical variations induced by fluids/contaminant displacements in
the subsoil.

This study shows that VAR and RNN can be effective tools for predicting the values
of cross-hole geoelectrical data for subsoil fluid transport monitoring in a relatively simple
hydrogeological context where seasonal changes in temperature, subsoil saturation degree,
and groundwater level variation are negligible. In particular, RNN showed a very good
performance even with a small historical dataset.

However, starting from a bigger historical dataset, and by entering more control
factors and increasing the variables of subsurface response, it will be possible to extend the
forecast to more than five previsions. In this manner, an efficient quantification of transport
characteristics at a study site could follow from the integration of direct hydrological data,
and a relatively “small” number of geoelectrical measurements and probabilistic previsions
based on electrical images.

Finally, we remark that the proposed methodology is potentially applicable also in the
energetic sector for the reservoirs management during oil, gas, hydrogen, CO;, and heat
storage or extraction.
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