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Abstract: This paper describes a simple, lossless and computationally efficient two-band single (s-)
filter bank that creates an opposite band output by subtracting the primary filtered data from the
original data. For computationally efficient and error-free s-filter bank achievement, a maximally flat
(MAXFLAT) half-band filter with zero odd-order coefficients is characterized from a unique perfect
reconstruction condition, and an explicit impulse–response formula (for non-zero integer coefficients
of even order) is derived in a closed form of the filter. The examples are shown to provide a complete
and accurate solution for the design of such s-filter banks. In addition, the effectiveness of the
proposed s-filter banks is clearly verified by comparing the lossless 5/3 and lossy 9/7 filter banks (in
the JPEG2000). The simulation results show that the s-filter banks lead to better performance than the
JPEG2000 filter banks using two filters although allowing low computational complexity of less than
50%. This new approach is shown to provide significant advantages over existing lossless discrete
wavelet transform (DWT) filter banks in both design flexibility and computational complexity.

Keywords: lossless two-band filter bank; wavelet transform; DWT filter bank; quadrature mirror filter

1. Introduction

The discrete wavelet transform (DWT) filter bank using two-band quadrature mirror
filter (QMF) structure provides the advantage of separating the input signal into several
frequency subbands in both time and wavelet transform domains [1–28]. Recently, the
DWT filter bank is vastly utilized in large-scale operational applications requiring a compu-
tationally demanding task such as remote-sensing (RS) image retrieval, classification in a
DWT compressed image archive, analyzing quantization noise for medical imaging, image
encryption and image deblurring with convolutional neural network [1–9]. Currently,
Joint Photographic Experts Group (JPEG) 2000, available to lossy and lossless DWT, is
most utilized for various image applications. To cite an example, M. A. Gungor et al. [1]
dealt with the denoising effect of the JPEG2000 for the compression of noisy images.
A. P. Byju et al. [2,3] reported RS image retrieval and classification in a JPEG2000 com-
pressed image archive. Further, T. Brahimi et al. [4] presented a wavelet-based multimodal
compression method that jointly compresses a medical image and an electrocardiogram
(ECG) signal within a JPEG2000 single codec [1–4,28]. This research focus on minimizing
the amount of computational complexity for image decompression, but there exists the
disadvantage that should use two different wavelet filters (Cohen-Daubechies-Wavelet
9/7) causing a lot of computation in the lossy-mode JPEG2000 [1–4,7–10]. For the design
of lossless DWT filter bank, a spectral factorization algorithm through energy partition-
ing in the z-plane was proposed by S. R. M. Penedo et al. [11]. However, since these
lossless DWT filters have the real (irrational-number) coefficients, there exist problems of
not only exponentially increasing computational complexity in the multiple-channel filter
bank, but also causing large calculation errors [2–4]. For this reason, the DWT filter pair
(wavelet 5/3) used in the lossless mode of well-known JPEG2000 has integer coefficients for
computational-complexity minimization and computing-error free [5,10,28]. Nevertheless,
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existing two-channel lossless DWT filter banks using such filters provide the disadvantage
of less flexibility (due to limited error-free conditions) in designing filters, resulting in lower
performance due to relatively low image compression ratio and poor denoising efficiency
(as compared to lossy DWT filter banks) [1–7,10].

A two-channel DWT filter bank consists of analysis and synthesis banks, as shown in
Figure 1 where HL(z), HU(z) are the transfer functions of analysis bank filters, and GL(z),
GU(z) are the synthesis filters. The reconstruction signal, in general, suffers from aliasing,
amplitude and phase distortions, due to the fact that these filters are not ideal [15–17]. As is
well known, aliasing frequencies are removed completely by substituting GL(z) = HL(−z)
and GU(z) = −HL(−z). Then, the overall system function T(z) of the alias-free filter bank
can be written as [18–26]

T(z) =
1
2
{HL(z)HU(−z)− HL(−z)HU(z)} (1)

Apart from this regularity, the unit-amplitude and linear-phase properties are also
very important in applications [17]. A system that is free from aliasing, amplitude and phase
distortions is called a lossless DWT filter bank that yields a perfect reconstruction (PR) [18–24].
The reconstructed signal is therefore just a time-delayed version of the transmitted signal
x[n], i.e., x̂[n] = cx[n− nd] if T(z) = cz−nd for some nonzero constant c and some positive
integer nd. In [13,25], the PR conditions for two-band multi-rate DWT filter banks were
given to be alias free and to have a unity frequency response. It was shown that the class
of QMFs that satisfies these conditions is quite limited. One of the most common design
methods for designing two-band lossless DWT filter banks is by starting from a half-band
product filter P(z) and then factorizing it to obtain the filters in the lossless filter bank,
i.e., P(z) = HL(z)HU(−z), followed by its factorization to obtain HL(z) and HU(−z) that
satisfy T(z) = cz−nd . Regularity is imposed in the design of P(z) by forcing P(z) to have
zeros at z = −1, i.e., terms of the form

(
1 + z−1) [26,27]. However, the number of possible

spectral factors grows exponentially with respect to the order of the filters and the resulting
filters are not guaranteed to be optimal. Moreover, the design of lossless DWT filters with
integer coefficients for computational-complexity minimization and calculation-error free
is more difficult. However, aside from the Le Gall 5/3 filters (of JPEG2000) among lossless
DWT filters announced so far, integer coefficient filters are rare [11,24,28]. Hence, a new
lossless filter bank structure is needed to obtain integer coefficient filters satisfying the
perfect reconstruction conditions.

Appl. Sci. 2022, 12, 9166 2 of 12 
 

not only exponentially increasing computational complexity in the multiple-channel filter 
bank, but also causing large calculation errors [2–4]. For this reason, the DWT filter pair 
(wavelet 5/3) used in the lossless mode of well-known JPEG2000 has integer coefficients 
for computational-complexity minimization and computing-error free [5,10,28]. Never-
theless, existing two-channel lossless DWT filter banks using such filters provide the dis-
advantage of less flexibility (due to limited error-free conditions) in designing filters, re-
sulting in lower performance due to relatively low image compression ratio and poor de-
noising efficiency (as compared to lossy DWT filter banks) [1–7,10]. 

A two-channel DWT filter bank consists of analysis and synthesis banks, as shown in 
Figure 1 where 𝐻𝐻𝐿𝐿(𝑧𝑧), 𝐻𝐻𝑈𝑈(𝑧𝑧) are the transfer functions of analysis bank filters, and 𝐺𝐺𝐿𝐿(𝑧𝑧), 
𝐺𝐺𝑈𝑈(𝑧𝑧) are the synthesis filters. The reconstruction signal, in general, suffers from aliasing, 
amplitude and phase distortions, due to the fact that these filters are not ideal [15–17]. As 
is well known, aliasing frequencies are removed completely by substituting 𝐺𝐺𝐿𝐿(𝑧𝑧) =
𝐻𝐻𝐿𝐿(−𝑧𝑧) and 𝐺𝐺𝑈𝑈(𝑧𝑧) = −𝐻𝐻𝐿𝐿(−𝑧𝑧). Then, the overall system function 𝑇𝑇(𝑧𝑧) of the alias-free 
filter bank can be written as [18–26] 

𝑇𝑇(𝑧𝑧) =
1
2

{𝐻𝐻𝐿𝐿(𝑧𝑧)𝐻𝐻𝑈𝑈(−𝑧𝑧) − 𝐻𝐻𝐿𝐿(−𝑧𝑧)𝐻𝐻𝑈𝑈(𝑧𝑧)} (1) 

Apart from this regularity, the unit-amplitude and linear-phase properties are also 
very important in applications [17]. A system that is free from aliasing, amplitude and 
phase distortions is called a lossless DWT filter bank that yields a perfect reconstruction 
(PR) [18–24]. The reconstructed signal is therefore just a time-delayed version of the trans-
mitted signal 𝑥𝑥[𝑛𝑛], i.e., 𝑥𝑥�[𝑛𝑛] = 𝑐𝑐𝑥𝑥[𝑛𝑛 − 𝑛𝑛𝑑𝑑] if 𝑇𝑇(𝑧𝑧) = 𝑐𝑐𝑧𝑧−𝑛𝑛𝑑𝑑  for some nonzero constant c 
and some positive integer 𝑛𝑛𝑑𝑑. In [13,25], the PR conditions for two-band multi-rate DWT 
filter banks were given to be alias free and to have a unity frequency response. It was 
shown that the class of QMFs that satisfies these conditions is quite limited. One of the 
most common design methods for designing two-band lossless DWT filter banks is by 
starting from a half-band product filter 𝑃𝑃(𝑧𝑧) and then factorizing it to obtain the filters in 
the lossless filter bank, i.e., 𝑃𝑃(𝑧𝑧) = 𝐻𝐻𝐿𝐿(𝑧𝑧)𝐻𝐻𝑈𝑈(−𝑧𝑧), followed by its factorization to obtain 
𝐻𝐻𝐿𝐿(𝑧𝑧) and 𝐻𝐻𝑈𝑈(−𝑧𝑧) that satisfy 𝑇𝑇(𝑧𝑧) = 𝑐𝑐𝑧𝑧−𝑛𝑛𝑑𝑑. Regularity is imposed in the design of 𝑃𝑃(𝑧𝑧) 
by forcing 𝑃𝑃(𝑧𝑧) to have zeros at 𝑧𝑧 = −1, i.e., terms of the form (1 + 𝑧𝑧−1) [26,27]. How-
ever, the number of possible spectral factors grows exponentially with respect to the order 
of the filters and the resulting filters are not guaranteed to be optimal. Moreover, the de-
sign of lossless DWT filters with integer coefficients for computational-complexity mini-
mization and calculation-error free is more difficult. However, aside from the Le Gall 5/3 
filters (of JPEG2000) among lossless DWT filters announced so far, integer coefficient fil-
ters are rare [11,24,28]. Hence, a new lossless filter bank structure is needed to obtain in-
teger coefficient filters satisfying the perfect reconstruction conditions. 

 
Figure 1. Conventional two-band filter bank. 

The objective of this paper is to present a novel two-band lossless single (s-) filter 
bank which allows more computationally efficient and flexible design strategies than ex-
isting lossless filter banks [11,24,28]. From PR conditions a generalized filter polynomial 
is derived which allows a unity frequency response and gives a computationally effective 

Figure 1. Conventional two-band filter bank.

The objective of this paper is to present a novel two-band lossless single (s-) filter
bank which allows more computationally efficient and flexible design strategies than
existing lossless filter banks [11,24,28]. From PR conditions a generalized filter polynomial
is derived which allows a unity frequency response and gives a computationally effective
and efficient filter (half of coefficients are zeros). A single, arbitrary FIR filter (with integer
coefficients) is demonstrated able to be easily obtained for the proposed s-filter bank. In
that sense, the design of a computationally superior and error-free filter bank through
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this new approach gives an additional insight into the physical significance of the design
flexibility. Design examples are shown which demonstrate the power of the new technique.

2. Design of Two-Band Lossless Single(s-) Filter Banks

Consider the two-channel biorthogonal filter bank of Figure 1, with the synthesis bank
filters chosen as GL(z) = HU(−z) and GU(z) = −HL(−z). The elegant choices of (a pair
of) analysis bank filters, HL(z) and HU(z), cancel aliasing and yield a PR system.

Let H0(z) be a FIR lowpass filter with the real impulse response hn of order 2N, which
can be written as

H0(z) =
2N

∑
n=0

hnz−n = z−NQ0(z) (2)

by using the transfer function

Q0(z) =
N

∑
n=−N

hN−nz−n (3)

where Q0(z) represents a zero-phase FIR lowpass filter and has a linear-phase property
if hn = h2N−n. For a complementary pair of analysis filters with strongly dependent
responses (Figure 1), a highpass filter HU(z) (or lowpass filter HL(z)) can be reconstructed
by subtracting a lowpass filter HL(z) = H0(z) (or highpass filter HU(z) = H0(−z)) from
allpass (or unity) as

HU(z) = z−m − H0(z) = z−N
{

z−(m−N) −Q0(z)
}

(4)

or
HL(z) = z−m − H0(−z) = z−N

{
z−(m−N) − (−1)−NQ0(−z)

}
(5)

where m is a positive integer constant for system causality, and z−m denotes an (allpass)
m-sample delay. Thus, in the case of Equation (4), the upper-band residual data is obtained
by subtracting the lowpass filtered data from the unfiltered (m-sample delay) original data,
i.e., xU [n] = x[n−m]− xL[n] where xL[n] and xU [n] are the lower and upper band outputs
before subsampling. Then, the value of m has a significant effect on the subtracted (residual)
quantities since m determines the redundancy between the lower and upper band outputs.
This is because the subtraction operation of the analysis filter bank has the same effect
which uses the highpass filter (or lowpass filter) with its magnitude response dependent
on m. The overall system function Ts(z) of the alias-free s-filter bank can be obtained as

Ts(z) =
1
2

z−(N+m)
{
(−1)−mQ0(z)− (−1)−NQ0(−z)

}
(6)

by substituting the results of Equations (2) and (4) into (1). For a given even m, substituting
N = 2K− 1(K = 1, 2, 3, · · ·) into Equation (6) can yield

Ts(z) =
1
2

z−(2K+m−1){Q0(z) + Q0(−z)} (7)

Figure 2 depicts the proposed single (s-) filter bank structure which consists of one
single (analysis) filter and its mirrored subtraction loop. It can be seen that the analysis bank
consists of a lowpass (or highpass) filter and a subtraction loop, which has more strongly
dependent responses than the conventional QMF form. In addition to alias-free compu-
tations, so that Ts

(
ejω) of Equation (7) has a unity gain response in the whole frequency

domain (i.e.,
∣∣Ts
(
ejω)∣∣ = 1,−π ≤ ω ≤ π), a gain error-free s-filter bank can be achieved

by designing Q0(z). From Equation (7) it can be found that the even number indexed
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coefficient terms
(

: h2nz−(2K−2n−1), n = 0, · · · , 2K− 1
)

of Q0(z) completely cancel out
those of Q0(−z) if Q0(z) is

Q0(z) = h0z−(2K−1) + h2z−(2K−3) + . . . + h2K−2z−1 + h2K−1 + h2Kz + . . .

+h4K−4z2K−3 + h4K−2z2K−1 (8)

by introducing h2n−1 = 0 (n = 1, 2, · · · , 2K− 1) into Equation (2) [26,27,29]. Thus, substi-
tuting Equation (8) to (7) potentially leads to

Ts(z) = h2K−1z−(2K+m−1) (9)

From Equation (9), it is shown that even though any h2n (n = 0, · · · , 2K− 1) is chosen,
the s-filter bank produces zero distortion and also has a linear phase response. Conse-
quently, the filter form of Equation (8) for the lossless s-filter bank can allow unusual
flexibility in choosing a best filter for analysis and synthesis, i.e., the overall passband and
stopband distortion (even if not flat) of the filter has no effect on producing the result of
Equation (9). Further, these filters can lead to computationally efficient implementations
due to the fact that all odd-order coefficients are zeros. The computational superiority
of the proposed lossless s-filter bank can be confirmed even more by realizing a linear-
phase half-band FIR filter, where Q0(z) has symmetric integer (even-order) coefficients of
h2n = h4K−2−2n (n = 0, 1, · · · , K− 1). Such linear-phase half-band FIR filter design will be
discussed in next section.
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prediction) and (b) upper-band subtraction loop (lower-band prediction).

Comments for additional designs: Using Equation (6), we can consider the other set of
N and m (i.e., odd m if N is even) for the design of lossless s-filter banks. In this case, the
PR condition is identical to the form of Equation (8) above, and only the system delay is
different. Hence, similarly to the case of even m and odd N, the choice of m in addition to
the determination of H0(z) has to be also seriously considered for the various applications
of s-filter banks. This is because m for a given N has a significant effect on the residual
band characteristics. Further Figure 2a,b have identical input/output behavior for analysis
and synthesis, while providing different image compression and denoising effects if H0(z)
is not a half-band filter. For example, if H0(z) is a lowpass filter with narrow passband,
upper subband of Figure 2a has larger high-frequency bandwidth than that of Figure 2b,
which results in relatively low image compression ratio and poor denoising efficiency. In
other words, to achieve higher image compression ratio and denoising efficiency, the s-filter
bank of Figure 2a is better to choose a large passband filter, while Figure 2b is better to
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use a narrow passband filter. For this reason, so that the lower and upper subbands have
a symmetric bandwidth, the design of FIR half-band lowpass filter with linear phase is
also significantly important. More importantly, the value of even m (> 0), defined as
input sample delay of (m− N) in Equation (4) for a given N = 2K− 1, is decided from the
relation of m− 2K + 1 = 1 (i.e., m = 2K) to minimize the redundancy between lower and
upper subbands.

3. Design of Lossless s-Filter Banks

Design of the lossless s-filter bank reduces to the design of a FIR lowpass filter given
by Equation (8) to yield the PR system satisfying Equation (9). For this reason, the unique
lossless condition can characterize a FIR half-band lowpass filter with a linear-phase
as below

Q0(z) = h0z−(2K−1) + h2z−(2K−3) + . . . + h2K−2z−1 + 1
2 + h2K−2z + . . .

+h2z2K−3 + h0z2K−1
(10)

by imposing h2n = h4K−2n−2(n = 0, 1, · · · , K− 1) and h2K−1 = 1/2 on Equation (8). Then,
the filter coefficients of Equation (10) can be easily designed by imposing zeros at z = −1
(i.e., a

(
1 + z−1) term)—i.e., maximally flat (MAXFLAT) magnitude or relatively nar-

rower transition band response [26,27,29]. In other words, the filter can be said to have
a MAXFLAT frequency response at ω = π if Q0(z) has a maximum number of zeros at
z = −1 (i.e., z = ejω

∣∣
ω=π

) as

∂kQ0(ω)

∂ωk

∣∣∣∣∣
ω=π

= 0, k = 0, 1, 2, · · · , 2K− 1 (11)

Thus, this paper focuses on the design superiority of the lossless s-filter bank using
MAXFLAT half-band lowpass filter with integer coefficients. Computation of half-band
filter coefficients h2n’s, using Equation (10), had ever been reported in [29,30]. In a similar
way, imposing the MAXFLAT condition of Equation (11) on (10), the filter Q0(z) can be
expressed in terms of K (:flatness order) as a closed-form half-band solution:

Q0(z) = zK
(

1 + z−1

2

)2K{K−1

∑
l=0

(
K + l − 1

l

)(
2− z− z−1

4

)l}
(12)

From Equation (11), the frequency response of Q0(z) becomes

Q0(ω) =
(

cos
ω

2

)2(K−1)
{

K−1

∑
l=0

(
K + l − 1

l

)(
sin

ω

2

)2l
}

(13)

For the computation of the filter coefficients shown in Equation (10), transforming
Equation (12) into interpolation-coefficient (gl) form

Q0(z) = zK
(

1 + z−1

2

)2K{
gK−1 +

K−1

∑
l=1

gK−l−1

(
z−l + zl

)}
(14)

and mapping Equation (14) to (10), the relationship between h2n and gl is derived in terms
of K as

h2n =
1

22K

{
K−1

∑
l=0

(
2K

2n− l

)
+

K−1

∑
l=1

(
2K

2n− K− l + 1

)
gK−l−1

}
, n = 0, 1, 2, . . . , K− 1 (15)
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and

gl =
(−1)K−l−1

22(K−1)

l

∑
j=0

22j
(

2K− j− 2
K− j− 1

)(
2K− 2j− 2

l − j

)
, l = 0, 1, 2, . . . , K− 1 (16)

where
(

A
B

)
= 0 if A < B or B < 0. It can be seen from Equations (15) and (16) that both

22Kh2n and 22(K−1)gl directly produce integer values for a given K value where the order
of flatness K is determined by the order of filter 4K − 2. This implies that the proposed
lossless s-filter bank allows MAXFLAT half-band FIR filters with integer coefficients able to
minimize computational complexity without calculation error (by using just only addition
and shift operation).

3.1. Design Examples of MAXFLAT Half-Band FIR Filters

The design examples were demonstrated here using K = 1, 2, 3, 4, 5 for the filter order
of 2N = 4K− 2. In addition, the computations of MAXFLAT half-band filter coefficients
h2n’s for the lossless s-filter bank were performed on the Equation (15) derived in closed
form. This is due to the fact that two s-filter banks depicted in Figure 2 can produce
equivalent results since the designed filter Q0(z) has a zero-phase half-band frequency
response with respect to ω = π/2.

Table 1 shows the integer filter coefficients computed by solving Equation (15) for
given K = 1, 2, 3, 4, 5. For example, in the case of K = 3 (i.e., the order of filter is such
that 4K− 2 = 10), a closed form polynomial of order 10 can be given from Equation (14) as

Q0(z) = z3
(

1 + z−1

2

)6{
g2 +

2

∑
l=1

g2−l
(

zl + z−l
)}

(17)

Then, gl’s (l = 0, 1, 2) are obtained from Equation (16) as

g0 =
3
23 , g1 = −18

23 , g2 =
38
23 (18)

Substituting Equation (18) to (15) leads to h2n’s (n = 0, 1, 2):

h0 =
3
29 , h2 = −25

29 , h4 =
150
29 (19)

Table 1. Filter coefficients for given K = 1–5.

K hn
1

1 h0 = h2 =
1
22 , h1 =

20

21

2 h0 = h6 = − 1
25 , h2 = h4 =

9
25 , h3 =

24

25

3 h0 = h10 =
3
29 , h2 = h8 = −25

29 , h4 = h6 =
150
29 , h5 =

28

29

4 h0 = h14 = − 5
212 , h2 = h12 =

49
212 , h4 = h10 = −245

212 , h6 = h8 =
1225
212 , h7 =

211

212

5 h0 = h18 =
35
217 , h2 = h16 = −405

217 , h4 = h14 =
2268
217 , h6 = h12 = −8820

217 , h8 = h10 =
39, 690

217 , h9 =
216

217

1 Note that the odd number indexed coefficients given by Equation (15) are zero—i.e., h2n−1 = 0
(n = 1, 2, . . . , K− 1)

Using Equation (19) yields the transfer function of the form shown in Equation (10),
which is expressed as

Q0(z) =
1
29

{
3z−5 − 25z−3 + 150z−1 + 256 +150z− 25z3 + 3z5

}
(20)
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Note that the odd number indexed coefficients of the half-band filter given by Equation (10)
are zero—i.e., h2n−1 = 0 (n = 1, 2). It is also shown that all the rest coefficients can be
obtained as integer values. From Equation (13), the closed-form frequency response is
given by

Q0(ω) =
(

cos
ω

2

)4
{

2

∑
l=0

(
2 + l
l

)(
sin

ω

2

)2l
}

(21)

Figure 3 depicts the frequency responses of MAXFLAT half-band filters indicated in
Table 1. The example shows that the impulse–response formula Equation (15), available
for directly obtaining MAXFLAT half-band filters with integer coefficients, is effective and
practically useful in designing highly accurate filters with a magnitude response passing
exactly through the half-band cut-off frequency ω = π/2. Further, the MAXFLAT half-band
filters can be found to have a trade-off between transition bandwidth and filter length. In
another way, using a steepness parameter into Equation (10) can allow the design flexibility
to obtain half-band FIR filters with a sharp transition band [29].
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3.2. Special Design Examples of Two-Taps Symmetric Filters

The utilization of the proposed lossless s-filter bank structure shown in Figure 2 can
produce another new filter satisfying PR conditions. On a condition HU(z) = HL(−z) that
can permit GL(z) = HL(z) and GU(z) = −HL(−z) in Figure 1, imposing Equations (2) and (4)
(for given even m and N = 2K− 1) yields a PR condition able to characterize Q0(z):

Q0(z)−Q0(−z) = z−(m−2K+1) (22)

This implies that Q0(z) and Q0(−z) are odd symmetric with respect to π/2. Substitut-
ing Equation (8) into (22), it follows that

2
2K−1

∑
n=0

h2nz−(2K−1−2n) = z−(m−2K+1) (23)

From Equation (23), the equivalence of both sides can be found to be established by

h2n

∣∣∣∣∣∣n=0,1,2,..., 2K−1 =


1
2

, 2n = 4K− 2−m

0 , 2n 6= 4K− 2−m
(24)
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Substituting Equation (24) to (8) with h2K−1 = 1/2 and using m = 4K − 2 − 2n
(n = 0, 1, . . . 2K− 1) lead to a two-taps filter form

Q0(z) =
1
2

{
1 + z−(2K−1−2n)

}
(25)

where n = 0, 1, . . . 2K− 1. The filter of Equation (25) also satisfies the unity gain condition
of Equation (7) (i.e.,

∣∣Ts
(
ejω)∣∣ = 1,−π ≤ ω ≤ π) for a given even m, and the realization of a

gain error-free s-filter bank is possible. In particular, it can be seen that Equation (25) exhibits
a linear phase comb filter having m− 2K + 1 zeros equally spaced on the z-plane’s unit
circle and leads to a completely symmetric comb filter of Q0(−z) = 1/2

{
1− z−(2K−1−2n)

}
by replacing z by −z. Conclusively, applying Equation (25) into the s-filter bank can be
seen to produce a new two-channel orthogonal symmetric filter bank in which analysis
and synthesis banks have a symmetric two-tap filter structure and each also consists of the
perfect symmetric filters (of Q0(z) and Q0(−z)) with respect to ω = π/2. As an example,
imposing n = K − 1 on Equation (25) yields a simplest linear-phase half-band lowpass
filter with two taps as

Q0(z) =
1
2

(
1 + z−1

)
(26)

Then, Equation (7) becomes Ts(z) =
1
2

z−3, and both the lower and upper bands have
a half bandwidth of π/2. Further, in the other case of n = K− 4 allowing 2K− 1− 2n = 7,
the comb filter is obtained from Equation (25) as

Q0(z) =
1
2

(
1 + z−7

)
(27)

Figure 4 shows the frequency responses of two filters with two coefficients described
in Equations (26) and (27). The analysis s-filter bank using the two-tap lowpass filter
of Equation (26) leads to a symmetric subband decomposition since both filtered and
subtraction-loop bands have a half bandwidth of π/2, while using the comb filter of
Equation (27) displays the frequency response that shows regularly spaced peaks giving
the appearance of a comb [31]. The two-tap filter examples show that the lower and upper
bands performed by the analysis s-filter bank have centrally symmetric frequency responses.

Appl. Sci. 2022, 12, 9166 8 of 12 
 

exhibits a linear phase comb filter having 𝑚𝑚 − 2𝐾𝐾 + 1 zeros equally spaced on the z-
plane’s unit circle and leads to a completely symmetric comb filter of 𝑄𝑄0(−𝑧𝑧) = 1/2{1 −
𝑧𝑧−(2𝐾𝐾−1−2𝑛𝑛)} by replacing 𝑧𝑧 by −𝑧𝑧. Conclusively, applying Equation (25) into the s-filter 
bank can be seen to produce a new two-channel orthogonal symmetric filter bank in which 
analysis and synthesis banks have a symmetric two-tap filter structure and each also con-
sists of the perfect symmetric filters (of 𝑄𝑄0(𝑧𝑧)  and 𝑄𝑄0(−𝑧𝑧))  with respect to 𝜔𝜔 = 𝜋𝜋 2⁄ . As 
an example, imposing 𝑛𝑛 = 𝐾𝐾 − 1 on Equation (25) yields a simplest linear-phase half-
band lowpass filter with two taps as 

𝑄𝑄0(𝑧𝑧) =
1
2

(1 + 𝑧𝑧−1) (26) 

Then, Equation (7) becomes  𝑇𝑇𝑠𝑠(𝑧𝑧) = 1
2
𝑧𝑧−3, and both the lower and upper bands have 

a half bandwidth of  𝜋𝜋 2⁄ . Further, in the other case of 𝑛𝑛 = 𝐾𝐾 − 4 allowing 2𝐾𝐾 − 1 −
2𝑛𝑛 = 7, the comb filter is obtained from Equation (25) as 

𝑄𝑄0(𝑧𝑧) =
1
2

(1 + 𝑧𝑧−7) (27) 

Figure 4 shows the frequency responses of two filters with two coefficients described 
in Equations (26) and (27). The analysis s-filter bank using the two-tap lowpass filter of 
Equation (26) leads to a symmetric subband decomposition since both filtered and sub-
traction-loop bands have a half bandwidth of  𝜋𝜋/2, while using the comb filter of Equation 
(27) displays the frequency response that shows regularly spaced peaks giving the ap-
pearance of a comb [31]. The two-tap filter examples show that the lower and upper bands 
performed by the analysis s-filter bank have centrally symmetric frequency responses. 

0.0 0.5 1.0

0.0

0.5

1.0

Q0(z)=0.5(1+z−1)

ω / π

Q0(–z)

 
0.0 0.5 1.0

0.0

0.5

1.0

Q0(z)=0.5(1+z−7)

Q0(−z)

ω / π  
(a) (b) 

Figure 4. The magnitude responses of two-taps filters: (a) half-band lowpass filter with order of 1 
and (b) comb filter with order of 7. 

4. Performance Evaluation 
For performance evaluation, a reversible/irreversible JPEG 2000 (part 1) coding 

scheme [28,32] was used based on five grayscale images with resolution of 256 × 256 pixels. 
To demonstrate the effectiveness of the proposed s-filter bank, the 2, 3, 5 and 7-taps s-filter 
banks were compared with the (reversible) 5/3 and (irreversible) 9/7 filter banks [28,32]. 
Then, the s-filter bank structure of Figure 2b was chosen creating relatively narrower 
highpass bandwidth than Figure 2a. This is due to the fact that the narrow high-frequency 
bandwidth (by directly using a highpass filter) has lower entropy than the wide case (by 
lower-band subtraction loop). In the lossless (reversible) mode, each image was split into 
4, 7 and 10 subbands and average entropy (bit-rate) was compared. Further, in the lossy 
(irreversible) mode, each image was split into the seven subband decompositions and 
coded at 0.6–0.4 bit per pixel (bpp) for Peak Signal to Noise Ratio (PSNR) comparison. 
Table 2 shows simulation results compared in the lossless compression mode of the 

Figure 4. The magnitude responses of two-taps filters: (a) half-band lowpass filter with order of 1
and (b) comb filter with order of 7.

4. Performance Evaluation

For performance evaluation, a reversible/irreversible JPEG 2000 (part 1) coding
scheme [28,32] was used based on five grayscale images with resolution of 256 × 256 pixels.
To demonstrate the effectiveness of the proposed s-filter bank, the 2, 3, 5 and 7-taps s-filter
banks were compared with the (reversible) 5/3 and (irreversible) 9/7 filter banks [28,32].
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Then, the s-filter bank structure of Figure 2b was chosen creating relatively narrower high-
pass bandwidth than Figure 2a. This is due to the fact that the narrow high-frequency
bandwidth (by directly using a highpass filter) has lower entropy than the wide case (by
lower-band subtraction loop). In the lossless (reversible) mode, each image was split into 4,
7 and 10 subbands and average entropy (bit-rate) was compared. Further, in the lossy (irre-
versible) mode, each image was split into the seven subband decompositions and coded at
0.6–0.4 bit per pixel (bpp) for Peak Signal to Noise Ratio (PSNR) comparison. Table 2 shows
simulation results compared in the lossless compression mode of the JPEG2000 where
integer operations by adding and shifting are performed. It can be seen that the proposed
s-filter bank using a 3-tap filter (described in Table 1) provides lower bit rate(entropy) for
test images than using the 5/3 filter bank, which is attributed to achieving a higher image
compression ratio despite the use of only one 3-tap filter. Further, the PSNR comparison
of lossy image compression is also indicated in Table 3. The proposed s-filter banks are
experimentally verified to have PSNR performance that is better than or similar to the
9/7 filter banks, although providing a much more computationally efficient solution due to
integer operations.

Table 2. Lossless compression bit-rate comparison (bpp).

Filter Bank 1

(Reversible)
Number of
Subbands

Test Image

Lena Couple Tank Cameraman Mandrill

JPEG2000
5/3

4
7

10

4.16
3.45
3.30

4.22
3.57
3.44

3.76
3.25
3.14

3.86
3.16
3.00

4.89
4.44
4.33

s-filter bank
3-tap

(K = 1)

4
7

10

3.90
2.95
2.74

4.04
3.19
2.99

3.53
2.77
2.59

3.64
2.77
2.56

4.65
3.95
3.76

1 The simulations were performed in the lossless (reversible) JPEG2000 standard.

Table 3. Coding performance comparison at 0.6–0.4 bpp.

Test Image bpp

Filter Bank 1 (Irreversible)

JPEG2000 s-Filter Bank

9/7 3-Tap
(K = 1)

5-Tap
(K = 2)

7-Tap
(K = 3)

Lena
0.6
0.5
0.4

51.73
50.11
46.20

52.59
49.55
45.68

52.64
51.01
45.89

52.81
50.94
46.26

Couple
0.6
0.5
0.4

51.99
48.80
45.72

52.50
49.39
45.63

52.57
49.30
45.69

52.83
49.55
46.10

Tank
0.6
0.5
0.4

52.10
50.44
45.68

52.42
50.04
45.69

52.51
50.52
45.80

52.89
51.00
46.13

Cameraman
0.6
0.5
0.4

53.25
52.05
48.18

53.35
52.11
48.67

53.59
52.23
48.19

53.68
52.57
48.30

1 The simulations were performed in the lossy (irreversible) JPEG2000 standard.

Table 4 shows the comparison of computational complexity for two-channel analytic
filter banks. It can be found that the proposed s-filter banks exhibit significantly low
computational complexity of less than 50% of the (reversible) 5/3 and (irreversible) 9/7 filter
banks. Consequently, the comparison results suggest that proposed lossless s-filter banks
not only achieve relatively high image compression performance, but also provide low
computational complexity without calculation error due to integer operation.
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Table 4. Computational complexity comparison of two-channel analysis filter banks.

Filter Bank Band Split
Computation

Multiplication Addition Shift Total

9/7
(irreversible)

Low
High

5
4

5
4

0
0 18

5/3
(reversible)

Low
High

0
0

3
2

2
1 8

s-filter
bank

3-tap
(K = 1)

Low
High

0
0

1
2

0
1 4

5-tap
(K = 2)

Low
High

0
0

1
3

0
2 6

7-tap
(K = 3)

Low
High

0
0

1
4

0
4 9

11-tap
(K = 4)

Low
High

0
0

1
5

0
5 11

13-tap
(K = 5)

Low
High

0
0

1
6

0
6 13

5. Conclusions

The DWT filter bank is vastly utilized in large-scale operational applications requiring
a computationally demanding task such as RS image retrieval, classification in a DWT com-
pressed image archive, analyzing quantization noise for medical imaging, image encryption
and image deblurring with convolutional neural network. However, existing two-channel
filter banks provide the disadvantages of less flexibility (due to limited condition and
structure) in designing lowpass and highpass analysis filters, causing undesired reconstruc-
tion errors and high computational complexity. In this paper, to address such issues, we
proposed a novel two-band lossless s-filter bank with a computationally efficient and error-
free structure, which consists of one single (analysis) filter and its mirrored subtraction
loop. A unique lossless condition was shown to allow a closed-form half-band polynomial
with zero odd-order coefficients, resulting in an explicit formula for directly obtaining
integer-coefficient filters with maximally flat (MAXFLAT) half-band frequency response.
The simulation results showed that the proposed s-filter banks have better performances
than the lossless 5/3 and lossy 9/7 filter banks (of the JPEG2000), although providing low
computational complexity of less than 50%. It can be concluded that this new approach
allows more flexible and affordable PR DWT bank systems to be built, and it helps solve
limited filter-design problems due to obtaining desired lossless filter banks.
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