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Abstract: Cognitive artificial intelligence (CAI) is an intelligent machine that thinks and behaves
similar to humans. CAI also has an ability to mimic human emotions. With the development of AI in
various fields, the interest and demand for CAI are continuously increasing. Most of the current AI
research focuses on the realization of intelligence that can make optimal decisions. Existing AI studies
have not conducted in-depth research on human emotions and cognitive perspectives. However, in
the future, the demand for the use of AI that can imitate human emotions in various fields, such as
healthcare and education, will continue. Therefore, we propose a method to build CAI in this paper.
We also use Bayesian inference and computing based on the hybrid Monte Carlo algorithm for CAI
development. To show how the proposed method for CAI can be applied to practical problems, we
create an experiment using simulation data.

Keywords: Bayesian computing; hybrid Monte Carlo; cognitive artificial intelligence; human thinking;
emotional machine

1. Introduction

From symbolic and connectionist paradigms to present-day deep learning methods,
various studies of artificial intelligence (AI) have been conducted [1–3]. In the meantime,
not only computer science, but also mathematics, statistics, brain science, psychology,
and industrial engineering have been interdisciplinary studies for AI research [4–6]. To
date, most AI research has aimed at developing intelligent systems that perform optimal
decision-making procedures. For example, AI playing Go focused on the goal of defeating
opponents [7]. However, when humans play the Go game, in some cases, they perform
actions that are slightly advantageous to their opponents for the fun of the game. We have
to consider other concepts of current AI technology. Therefore, we propose cognitive AI
(CAI) in our research. CAI is AI that imitates human thinking and behaves with emotion [8].
As the research on AI in various fields is more actively conducted, the demand for CAI
will increase further [8,9]. For instance, in the fields of healthcare and education, the
need for CAI that can emotionally communicate with humans has been raised [10–14].
The research on CAI is still at an early stage. Sumari and Syamsiana (2021) presented an
introduction to a knowledge-growing system by CAI [6]. In addition, Sumari et al. (2021)
proposed predictions using a knowledge-growing system as a CAI approach [15]. The
previous two studies related to CAI focused on knowledge-growing systems and did not
deal with human decision making based on emotions. In another study related to CAI, Jun
(2021) proposed a method for making a machine capable of mimicking human thinking [8].
The method applied the results of a posterior distribution and Bayesian bootstrap to
construct a machine imitating human thinking [8]. In this paper, we also use a method for
CAI development using advanced Bayesian computing. We consider the hybrid Monte
Carlo (HMC) algorithm for our Bayesian approach [16–23]. Human thinking is performed
through fast computation based on a parallel neural network structure. Therefore, we
chose HMC, which has a faster computation speed than the popular Metropolis–Hastings
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algorithm in Bayesian learning [16–18]. The HMC algorithm is used to construct model
parameters [19–23]. This paper contributes to developing machines that think and behavior
similar to humans with emotion. We apply the HMC algorithm to create the proposed
method. We expect our research results to be used in the development of human-friendly
AI systems in various practical applications, such as healthcare, education, and mobility.
Traditional AI focuses on optimal decision making, but the CAI proposed in this study
focuses on the development of machines that mimic human emotions.

In order to proceed with the proposed research, we organized our paper as follows. In
Section 2, the research background is introduced. In this section, we describe the concepts of
cognitive systems for AI and Markov Chain Monte Carlo (MCMC) algorithms. We present
our proposed method for CAI in Section 3. In the next section, we perform a simulation
study to show how the proposed method can be used in real domains. Lastly, we present
our conclusions and future works in Section 5.

2. Research Backgrounds
2.1. Cognitive Systems for Artificial Intelligence

At present, most research conducted on AI is to develop intelligence to make optimal
decisions [2,24–27]. The goal of AI is to find the optimal solution to a given problem [2,24,27].
In contrast, humans do not always make optimal decisions [8,28]. Sometimes, humans
make decisions based on emotions [28]. CAI is an AI that imitates human thinking and
behavior by emotion as well as optimization [8]. Jun (2021) studied Bayesian learning
and bootstrapping to develop machines imitating human thinking [8]. This research used
prior and data and combined the posterior and Bayesian bootstrap intervals [8]. It is very
difficult to create machines that think and behave similar to humans [5]. This is because it
is difficult for machines to have a human-like cognitive ability with the current technology.
Therefore, we studied the building of CAI with cognitive abilities similar to humans using
Bayesian computing based on HMC.

To date, the research on CAI has been largely developed based on two academic fields.
The first is the field of computer science, including data science and statistics. The second
is cognitive science, including psychology. Table 1 shows the existing research results of
optimal and emotional AI according to computer and cognitive sciences [2,3,5–8,29–38].

Table 1. Existing research results of optimal and emotional AI according to computer and cogni-
tive sciences.

CAI Optimal AI Emotional AI

Computer science
Data science

Statistics

Silver et al. (2016) [7]
Russell and Norvig (2014) [2]
Goodfellow et al. (2016) [3]

Neal (1996) [17]
Ghahramani (2015) [31]

Sumari and Syamsiana (2021) [6]
Jun (2021) [8]

Cognitive science
Psychology

Cognitive psychology

Griffiths et al. (2012) [32]
Mnih et al. (2015) [34]

Tenenbaum et al. (2011) [35]
Ellis et al. (2022) [36]

Krafft et al. (2021) [38]

Lake et al. (2017) [5]
Economides et al. (2015) [29]
Gershman et al. (2015) [30]

Lake et al. (2015) [33]
Kryven et al. (2021) [37]

In the field of cognitive science, including psychology and cognitive psychology, both
studies of optimal and emotional AI systems have been actively progressing. On the other
hand, in computer science, including data science and statistics, the research on optimal AI
has progressed to a high level, but the research on emotional AI has not yet been properly
conducted. Sumari and Syamsiana (2021) [6] studied the CAI for knowledge-growing
system rather than the development of AI that mimics human thoughts and emotions.
Therefore, we confirmed the need for research on emotional AI from the point of view of
computer science.
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2.2. Markov Chain Monte Carlo Algorithms

The goal of Bayesian inference is to construct a posterior distribution and parameter
θ [39–41]. The posterior distribution is built by combining the prior of θ and likelihood [39,42].
When a model is complicated or the number of parameters increases, it becomes difficult
for us to accurately obtain the posterior distribution [43]. Therefore, we considered the
Markov Chain Monte Carlo (MCMC) algorithms to estimate the posterior distribution
of θ. We have to obtain the posterior sample to estimate θ. There are various MCMC
methods, such as Gibbs sampler and the Metropolis–Hastings algorithm. Among them, the
Metropolis–Hastings algorithm has been used in Bayesian computing. This is performed
by the following steps [39,43]:

(Step 1) Drawing initial value θ0 from starting distribution p0(θ).
(Step 2) Sampling new parameter value θi from proposal distribution (i = 1, 2, . . .).
(Step 3) Calculating the acceptance probability of the new parameter value by (1).

pacceptance(θi+1|θi) = min
(

1,
p(θi+1)q(θi|θi+1)

p(θi)q(θi+1|θi)

)
(1)

(Step 4) Selecting a new parameter value if the acceptance probability is higher than the
value obtained from a uniform distribution on [0, 1]; otherwise, it stays at the current value.
(Step 5) Repeating Steps 2 through 4 until we have enough samples.

We drew an initial value for start parameter θ0 in Step 1. Subsequently, we sam-
pled a new parameter value θi at time period i, (i = 1, 2, . . .) in Step 2. In Step 3, the
Metropolis–Hastings criteria to accept a new parameter value was shown. If the probability
of pacceptance(θi+1|θi) was larger than the random value generated from a uniform distribu-
tion of [0, 1], we accepted the new value (θi+1); otherwise, we selected current parameter
value (θi). In general, the MCMC methods, including the Metropolis–Hastings algorithm,
required enough samples for an accurate approximation of the posterior distribution. More-
over, the methods needed a long computation time. To overcome the problems, we applied
the HMC algorithm to our CAI model.

3. Proposed Method

In this paper, we proposed a method to build CAI, a learning machine that can
mimic human thoughts and emotions. We introduced the cognitive processing of humans
interacting with the surrounding environment in Figure 1.
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Figure 1. Human cognitive processing for thinking and behavior.

Humans improve their current knowledge by absorbing the considerable amount
of data they experience from their surroundings. That is, humans combine their current
knowledge with data, and update the intelligence by learning from data. The current and
updated knowledge represent the prior and posterior distributions in Bayesian learning.
Therefore, humans learn from the data experienced in the environments and improve
their intelligence by the results of learning from data, based on the updated intelligence
every time humans think about and behave according to their surroundings. In human
cognitive processing, humans do not always make optimal decisions. Sometimes, they
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present emotional thinking and behavior. This is the greatest difference between the CAI
proposed in this paper and the existing AI. Figure 2 presents our CAI structure combining
AI and human thinking.
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At present, the aim of AI is to develop an intelligent machine for optimal decision
making. In contrast, humans make decisions and actions that are biased by emotions, as
well as optimal decision making. In Figure 2, the CAI works by combining the functions
of optimal and emotional decisions in AI and humans. Therefore, we proposed a method
to develop CAI performing optimal and emotional behaviors similar to humans. In this
paper, we considered Bayesian learning to construct our CAI, because the Bayesian learning
process is similar to humans learning from surrounding environments [5,17,40]. Bayesian
learning is performed by prior distribution, likelihood function, and posterior distribu-
tion [40]. The prior distribution represents the current belief in each task. The likelihood
function figures out the experience under prior knowledge. That is, the function explains
the results observing the data in environments. Lastly, we have the posterior distribution,
which is the updated belief of the task. This distribution is obtained by multiplying the
prior distribution and likelihood function. In reality, it is difficult for us to accurately obtain
the posterior distribution because the model is complex or there are many parameters
to estimate [16]. Therefore, we used MCMC methods to approximately estimate the pos-
terior distribution. The Gibbs sampler and Metropolis–Hastings algorithm are popular
MCMC methods. However, they are not suitable for modeling human thinking and be-
havior because they require a lengthy computation time and many samples. That is, the
Metropolis–Hastings algorithm requires enough samples to obtain accurate approximation
of the target distribution [41]. Therefore, we needed a lot of time to obtain enough samples.
Since the computation time is important in CAI that mimics the rapid human thought
process, it is difficult to obtain a sufficient sample because it takes a lot of time. To solve this
problem, we considered HMC as a more efficient method for MCMC. HMC provides better
results in high-dimensional and complex modeling compared to the existing methods,
such as Gibbs sampling or the Metropolis–Hastings algorithm in MCMC [16]. In general,
human thinking is multidimensional and complex; therefore, in this paper, we proposed
a CAI method using HMC. HMC is also one of the MCMC methods used for Bayesian
inference. In the current paper, we proposed a method of Bayesian computing using HMC
for constructing CAI.

HMC produces better performance than the Metropolis–Hastings algorithm because
it can avoid random walk behavior [17]. Furthermore, this is an algorithm combining the
Metropolis algorithm and sampling method by dynamical simulations [17]. We obtained a
sample of points extracted from a specified distribution as a result of HMC. Therefore, HMC
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accepts the proposals at a much higher rate than the Metropolis–Hastings algorithm. In the
HMC algorithm, the horizontal and vertical locations are represented by θ and q, where θ
is the parameter estimated by the HMC chain and q is a parameter for the momentum of
the HMC procedure. Moreover, θ follows the posterior distribution f (θ) and q is used to
simulate θ in the following formula called the Hamiltonian equation [16,17].

H(θ, q) = P(θ) + K(q) (2)

where the Hamiltonian function H(θ, q) consists of energy functions P(θ) and K(q) for
potential and kinetic energies. As with other MCMC methods, we sampled θ from f (θ).
The P(θ) represents −log f (θ) and q follows normal distribution Nk(0, Σ), where k is the
vector length of θ and Σ is the given variance–covariance matrix. Therefore, Equation (2) is
expressed as follows [16,44]:

H(θ, q) = −log f (θ) +
1
2

qTΣ−1q (3)

By first differentiating Equation (3) with respect to time t, we solve the Hamiltonian
differential equations in HMC. So, we show the HMC algorithm precedure as follows.

(Step 1) Initializing

(1-1) Initial value of parameters, θ0;
(1-2) Time start, t = 1;
(1-3) Initial log posterior density, log f

(
θ0);

(1-4) Generating momentum q from N(0, Σ).

(Step 2) Sampling

(2-1) Starting states for leapfrog, θ̃ = θt−1, q̃ = q;
(2-2) Repeating leapfrog algorithm (L times);
(2-3) Producing HMC proposal density, θ̃ and q̃.

(Step 3) Accepting or rejecting

(3-1) Determining acceptance probability, α;
(3-2) If accepting, θt = θ̃, qt = −q̃;
(3-3) If rejecting, θt = θt−1, qt = qt−1.

(Step 4) Repeating Steps 2 and 3 until N samples are obtained, t = t + 1.

In Step 3, the acceptance probability α is determined by (4) [16].

α = min

1,
exp
(

log f
(

θ̃
)
− 1

2 q̃TΣ−1q̃
)

exp
(

log f
(

θ̃t−1
)
− 1

2 qTΣ−1q
)
 (4)

In the current paper, we focused on the regression analysis for target modeling in CAI.
Therefore, we consider the regression model as follows:

y = β0 + β1X1 + β2X2 + · · ·+ βpXp + e (5)

In (5), X =
(
1, X1, X2, . . . , Xp

)
is the explanatory variable vector and y is the response

variable. The first element of X, 1 is a value corresponding to intercept β0. The e value is an
error term following the Gaussian distribution with mean zero and constant variance σ2

e .
β =

(
β0, β1, . . . , βp

)
is the parameter vector corresponding to X. The likelihood function is

expressed as Equation (6) [43]:

f
(

y
∣∣∣β, σ2

e

)
=

(
1√

2πσe

)n
exp
(
− 1

2σ2
e
(y− Xβ)T(y− Xβ)

)
(6)
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where n is the number of data elements. Subsequently, the priors of β and e are the following
distributions of (7) and (8):

β ∼ N
(
µβ, Σβ

)
(7)

σ2
e ∼ Inverse− gamma(a, b) (8)

By multiplying the priors and likelihood function, we obtain the posterior distribution
as (9) [43]:

F
(

β, σ2
e

∣∣∣y) ∝ f
(

y
∣∣∣β, σ2

e

)
exp
(
−1

2
(

β− µβ

)TΣ−1
β

(
β− µβ

))
(σ2

e )
−a−1e−

b
a2 (9)

Using HMC based on (6)–(8), the regression parameters β̂ =
(

β̂0, β̂1, . . . , β̂p
)

are
estimated. When the new input Xnew is given, we predict response y using the estimated
parameters and Xnew. In this case, the prediction of y is always an optimal single value.
However, the CAI does not predict single value y given Xnew, it predicts various values as
well as optimal values by its thinking and emotion. To overcome this problem, we estimate
confidence intervals of regression parameters as (10) [43]:

CI(βi, 1− α) =

(
β̂i − tα/2

σe√
n

, β̂i + tα/2
σe√

n

)
, i = 0, 1, 2, . . . , p (10)

where α is the significance level and has a value between 0 and 1. For example, we obtain
a 90% confidence interval when α is 0.5. As the value of α increases, the length of the
confidence interval decreases. In the current paper, we applied the lower and upper
bounds of confidence intervals for the parameters of the uniform distribution. To derive
CAI decisions, we sampled the random number from the uniform distribution and used
this value as the regression parameter. Therefore, we could predict a different response
y each time for the same given X. Moreover, we could control the degree of emotion
according to (1− α). As this value increased, the length of the confidence interval increased
and the emotional degree increased, so that it was possible to provide various predicted
values for y. Figure 3 illustrates the flowchart for our proposed method.
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In Figure 3, AI and humans all collect experience and data from external circumstances.
The experienced data is learned by AI and humans. Through this process, AI performs
optimal decision making, and humans not only make optimal decisions but also act based
on their emotions. This is the CAI proposed in this paper. Finally, we used HMC to build
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an emotional machine that can think emotionally similar to humans. Subsequently, we
showed the performance and validity of our method by a simulation study.

4. Experiments and Results
4.1. Simulation Data

To illustrate how our proposed method can be applied to practical cases, we used
simulated data and designed the following regression model:

Y = 0.5− 1.5X1 + 2.5X2 + e (11)

In (11), X1 and X2 are explanatory variables and Y is the response variable. Moreover,
e is the error term. In general regression models, Y and e are random variables with
probability distributions. In order to conduct our experiments, we generated simulation
data with X1, X2, and e by the probability distributions presented in Table 2.

Table 2. Probability distributions for generating simulation data.

Variable Distribution Parameter Expectation Variance

X1 Gaussian Mean = 24
Standard deviation = 16 E(X1) = 24 Var(X1) = 162

X2 Gamma Shape = 2
Inverse scale = 0.5 E(X2) =4 Var(X2) = 8

e Gaussian Mean = 0
Standard deviation = 1 E(e) = 0 Var(e) = 1

We determined the Gaussian and gamma distributions for X1 and X2, respectively. In
Table 1, the density function is shown in (12) [42]:

f(x1|µ = 24, σ = 16) =
1√
2πσ

exp

(
− (x1 − µ)2

2σ2

)
,−∞ < x1 < ∞ (12)

Therefore, X1 has values ranging from negative infinity to positive infinity. As in the
following Equation (13), X2 has a real value greater than 0 [42]:

f(x2|α = 2, β = 0.5) =
βα

Γ(α)
xα−1

2 exp(βx2), x2 > 0 (13)

where α and β are the shape and inverse scale parameters of the gamma probability density.
In addition, Γ(α) is the gamma function of α [42]. The error term e also follows the same
Gaussian distribution as X1, and the mean and standard deviation of the distribution are 0
and 1, respectively. Therefore, we generated the simulation data for X1, X2, and e using the
probability densities presented in Table 2. Figure 4 illustrates the scatter plots between the
variables simulated in Table 2.

We knew that Y and X1 were strongly negatively correlated with each other and Y
and X2 were weakly positively correlated. The error term e was used as noise following the
standard normal distribution. Using the simulation data, we performed regression analysis
and present the results of the comparative methods in Table 3.

Table 3 represents the results of the parameter estimation. In this table, we compared
HMC with a generalized linear model (GLM) based on least squares. The values of the
estimated parameters are presented in the first column. We observed that the β0 values
of GLM and HMC were different from each other. On the other hand, we observed that
the β1 and β2 values were estimated to be similar to each other in GLM and HMC. We also
presented the confidence intervals of the parameters estimated by HMC. In Table 3, we
computed two confidence intervals according to the significance levels of 50% and 90% for
the parameters of β0, β1, and β2. We observed that the length of the confidence interval
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with a significance level of 90% was greater than 50%. Subsequently, in Table 4, we made
emotional decisions using the results presented in Table 3.
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Table 3. Estimated parameters and intervals: simulation data.

Estimated Confidence Interval: HMC

GLM HMC 50% 90%

β0 0.1987 0.6866 (0.6866, 0.6866) (0.6866, 1.0489)

β1 −1.4923 −1.4878 (−1.4971, −1.4878) (−3.6898, −1.4878)

β2 2.5389 2.4011 (2.4011, 2.4011) (1.7923, 2.5970)

Table 4 represents the predicted value of Y using the estimated parameters presented
in Table 3. We determined the input values of X1 and X2 as 2, 4, and 6. In the optimal
column of Table 4, according to input values of X1 and X2 the Y values are computed
by the fixed parameters of Table 3. In the emotions column, we showed three different
values of Y using the HMC confidence interval in Table 3. Of course, we could expect
different values for Y in other simulation data because we computed the values by the
parameters randomly sampled from uniform distributions with lower and upper bounds
of the confidence interval. In the current paper, the values of 0.5 and 0.9 in the emotions
column represent the emotional degree. The values were same as the significance levels
of the confidence intervals presented in Table 3. For example, when X1 and X2 were all 2,
the emotional values of emotional degree=0.5 (2.4987, 2.4989, 2.5021) were similar to the
optimal values of GLM and HMC (2.2919, 2.5132). However, as the value of the emotional
degree increased by 0.9, the emotional values (2.1376, −0.3294, −1.0978) varied. In this
result, we observed that one of three values (2.1376) was similar to the optimal values, but
the others were not. That is, the larger the emotional degree, the stronger the cognitive
behavior. Through this experiment, we showed the practical applicability of the CAI
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method that could provide not only an optimal value, but also values that slightly deviated
from the optimal value.

Table 4. Optimal and emotional decisions: simulation data.

Input Optimal Emotional: HMC

X1 X2 GLM HMC 0.5 0.9

2
2
4
6

2.2919
7.3697

12.4475

2.5132
7.3154

12.1176

(2.4987, 2.4989, 2.5021)
(7.3009, 7.3011, 7.3043)

(12.1031, 12.1033, 12.1065)

(2.1376, −0.3294, −1.0978)
(6.7160, 3.3936, 3.7315)

(11.2944, 7.1167, 8.5608)

4
2
4
6

−0.6927
4.3851
9.4629

−0.4624
4.3398
9.1420

(−0.4914, −0.4911, −0.4847)
(4.3108, 4.3111, 4.3175)
(9.1130, 9.1133, 9.1197)

(−1.0696, −5.1515, −7.8567)
(3.5088, −1.4284, −3.0273)

(8.0873, 2.2946, 1.8020)

6
2
4
6

−3.6773
1.4005
6.4783

−3.4380
1.3642
6.1664

(−3.4815, −3.4810, −3.4714)
(1.3207, 0.3212, 1.3308)
(6.1229, 6.1234, 6.1330)

(−4.2768, −9.9735, −14.6155)
(0.3016, −6.2505, −9.7862)
(4.8801, −2.5275, −4.9569)

4.2. Car Data Set

We performed another experiment using the car data set provided by the R project [45].
This data set consisted of two variables, Speed and Dist. The data represent the stopping
distance of cars according to their speed [35]. We considered the following model to present
the performance and validity of our proposed method:

Dist = β0 + β1Speed + e (14)

In (14), the Dist and Speed are response and explanatory variables and e is the error
term. This model has same structure of the model in (11). Table 5 presents the estimated
parameters and HMC confidence intervals by confidence levels.

Table 5. Estimated parameters and intervals: car data set.

Estimated Confidence Interval: HMC

GLM HMC 50% 90%

β0 −17.5791 −2.2399 (−3.0122, −1.7071) (−3.4520, −0.7613)

β1 3.9324 3.1163 (2.9993, 3.2496) (2.8191, 7.2629)

Similar to the results presented in Table 3, as the significance level increases, the length
of the HMC confidence interval increases. In the current paper, we used the significance
level as the emotional degree. The result of the optimal and emotional decisions is presented
in Table 6.

Table 6. Optimal and emotional decisions: car data set.

Speed
Optimal Emotional: HMC

GLM HMC 0.5 0.9

17 49.2717 50.7372 (52.2944, 50.7462, 49.0986) (116.6369, 88.9605, 56.1986)

From the results presented in Table 6, we can observe that the optimal values of
GLM and HMC are similar to each other. When the emotional level of HMC is 0.5, all
emotional values are similar to the optimal value of HMC; however, when the emotional
level increases to 0.9, some values are far from the optimal value of HMC. Therefore, we
can illustrate the performance and validity of our method.
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5. Conclusions

We proposed a statistical method for developing CAI. Although there are some defi-
nitions of CAI, we defined CAI as AI that can imitate human emotions and behavior. At
present, most AI systems focus on the optimal decisions made for given problems, but our
CAI tried to mimic human thought and behavior. Humans usually try to make optimal
decisions, but sometimes they are driven by emotions. Therefore, to build a CAI machine
that thinks and behaves similar to humans, we applied HMC computation and confidence
intervals based on HMC to develop our CAI. The HMC consisted of prior distributions
representing initial beliefs and the likelihood function based on observed data, and multi-
plied the prior and likelihood functions to construct the posterior distribution that was an
updated belief for given tasks. This was similar to the improvement procedure of human
intelligence. Human intelligence consists of emotional thinking and behavior as well as
optimal decision making. The state-of-the-art (SOTA) method presented in this paper
enabled various decision-making functions, including optimal decision making according
to emotional levels, unlike traditional AI that performs optimal decision making. For our
SOTA method, we extracted random numbers from the Bayesian posterior distribution
using HMC and used these values for emotional decision making.

In the current paper, we performed a simulation study on a regression problem
to illustrate how our method can be applied to real problems. We determined a linear
regression model and generated simulation data from Gaussian and gamma distributions.
Using the simulation data, we conducted the regression analysis to compare the decisions
made between emotion and optimization. In our proposed model, we introduced the
emotional degree that controlled the strength of emotions in CAI. This degree had a value
between 0 and 1.The closer the degree was to 1, the greater the intensity of the emotion,
and when it was 0, optimal decision making was performed. In the simulation study, we
presented the results of emotional decisions according to emotional degrees of 0.5 and 0.9.
We could also confirm that when the degree value of 0.9 was compared to 0.5, it deviated
from the more optimal decision. Therefore, using the simulation results, we showed the
possibility of developing CAI based on the proposed method.

In this paper, we focused on the emotional as well as optimal approaches for cognitive
AI. Therefore, we could not consider the ablation study. However, we agree with the
necessity of this study to improve the performance of our method. In our future works, we
will perform the ablation study to build a more advanced model for CAI. Moreover, we will
consider more advanced methods based on Bayesian learning algorithms and hierarchical
Bayesian models. Therefore, we will build more sophisticated models for CAI. We will also
consider other machine learning algorithms, such as the variational autoencoder (VAE)
and generative adversarial network (GAN), for combining with Bayesian learning models.
VAE and GAN are popular learning algorithms for generative models related to generating
simulation data. The final future task is to deal with the theorem implications. Therefore,
we will consider the necessary new theorems for our CAI methods.
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